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Abstract

Real-time optimization of traffic flow addresses important practical problems: reducing a driver’s wasted time, improving city-
wide efficiency, reducing gas emissions and improving air quality. Much of the current research in traffic-light optimization relies
on extending the capabilities of traffic lights to either communicate with each other or communicate with vehicles. However,
before such capabilities become ubiquitous, opportunities exist to improve traffic lights by being more responsive to current traffic
situations within the current, already deployed, infrastructure. In this paper, we introduce a traffic light controller that employs
bidding within micro-auctions to efficiently incorporate traffic sensor information; no other outside sources of information are
assumed. We train and test traffic light controllers on large-scale data collected from opted-in Android cell-phone users over
a period of several months in Mountain View, California and the River North neighborhood of Chicago, Illinois. The learned
auction-based controllers surpass (in both the relevant metrics of road-capacity and mean travel time) the currently deployed lights,
optimized static-program lights, and longer-term planning approaches, in both cities, measured using real user driving data.

Keywords: Traffic Lights, Traffic Flow, Signal Timing, Traffic Estimation, Adaptive Traffic Management, Light Schedule
Estimation, Machine Learning, Stochastic Search

1. Introduction

Traffic congestion is a practical problem resulting in sub-
stantial delays, extra fuel costs, and unnecessary harmful gas
emissions. In urban areas, traffic is largely controlled by traffic
lights. Improving their control and responsiveness to existing
travel flows holds immense potential for alleviating congestion
and its associated problems.

Inefficient configuration of traffic lights remains a common
problem in many urban areas – one of the largest complaints of
commuters in the Mountain View, California area is the amount
of traffic they face during the morning and evening rush hours.
One of the problem areas, controlled by seven main lights, is
shown in Figure 1 (Top). The goal of our project is to evaluate
the timing of the traffic lights on these intersections and also
improve them through either better control algorithms or im-
proved sensors. For example, many traffic lights are based on
fixed cycles, which means that they are set to green, yellow and
red for fixed amounts of time. Rarely is this an optimal solu-
tion, as real-time traffic situations are not considered, and can
leave cars waiting in long queues to satisfy shorter queues or
even empty queues. Nonetheless, even assuming fixed-length,
non-traffic-responsive lights, it is possible to optimize the light
timings to utilize historic knowledge of average (or worst case)
flows that have been observed. Such approaches are often tack-
led through the use of genetic algorithms to optimize the light
timings (phases and offsets) [1, 2, 3, 4]. An alternate approach
to the learning/optimization approaches of stochastic search al-

gorithms are methods that use reinforcement learning to dis-
cover optimal policies for the lights and/or cars [5, 6, 7, 8].

The methods referenced above have not only been applied
to fixed-policy lights, but also to lights that use vehicle sensors
to provide real-time traffic state information to the light con-
trollers. Additionally, many researchers have looked into fu-
ture possibilities where car-to-car, light-to-car, and car-to-light
communication exists [9, 10, 11]. Such communication allows
for better light control through the possibility of explicitly and
directly communicating light schedules to cars and car arrival
times to lights. Further, if we consider communication from
lights to other lights, such that each light could communicate
its schedule as well as the flows it is observing, more detailed
planning and scheduling schemes can be created [12, 13, 14].
A good overview can be found in [15].

It should be mentioned that approaches relying on a cen-
tralized controller or hierarchies of controllers have also been
explored in the research literature. However, the more coordi-
nation that is assumed, the greater the difficulties encountered
in scalability. Further, the problem of system “nervousness”
grows when central coordination is assumed — small changes
in the overall state of the system may require large changes at
the lower levels [16]. For scalability, we concentrate only on
local-decision making in this paper.

In the bidding-based traffic light controllers presented here,
external information is provided solely through local sensors
(the most common being physically nearby in-roadway induc-
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Figure 1: Top: Area to be optimized in Mountain View, Califor-
nia. A rush hour traffic flow shown (using Google Maps with
Traffic Overlay.) Bottom: Area to be optimized in Chicago,
Illinois.

tion loop sensors1 or cameras). Rather than creating ad hoc
rules for controlling light-changes, the sensor information is
placed within the framework of a micro-auction. When a light
(phase) change is permitted, the light controller collects bids
from all the phases and conducts a micro-auction to determine
the next phase. Each phase’s bids are set by current readings
from local induction-loop sensors. The bidding process and the
weights of the bids are learned by our system through the use of
large-scale, real, historic data collected from opted-in Android
cell phone users.

This paper builds upon two branches of work: our initial
studies with micro-auction based controllers [18] and the data-
driven estimation of deployed traffic lights [19]. To avoid po-
tential confusion, it should be remarked that the auctions in this
paper substantially differs from auction-related approaches in
which drivers and/or automated cars bid for the right of way [20,
21, 22] to gain favorable light timings. In this work, the micro-
auctions serve as a unifying internal mechanism to handle the
complexities of prioritizing the different phases (colors/settings)
of the lights.

There are two primary contributions of this work. The first,
as described above, is the introduction of an auction-based con-
troller that relies primarily on currently deployed sensors and
does not assume the existence of future communication be-
tween sensors. The proposed controller is tested on months of
real data in two large cities. The second contribution of this
paper is to provide a novel method for establishing a realistic
baseline of performance based on the currently deployed traf-
fic controllers. This addresses an often overlooked pragmatic
issue — in many real environments, access to the programs of
the existing light deployed throughout cities is not available.
Without this information, however, realistically assessing im-
provements over baselines is impossible. We address this prob-
lem through a novel method of creating models of the behavior
of the currently deployed lights based on observed traffic data.
This yields a realistic baseline of performance with which to
compare proposed improvements — including those of our own
traffic controllers.

To provide the necessary background for understanding traf-
fic light control, in the next section, we briefly describe how
to simulate unconstrained transitioning between light phases,
which is fundamental for fully responsive controllers. We also
describe a powerful recent state of the art planning-based traf-
fic controller [12] which was has been successfully deployed
in Pittsburgh, Pennsylvania. This provides a strong competi-
tor to our approach. Section 3 details our micro-auction con-
troller. All of the methods presented in this paper require learn-
ing many parameters. A simple learning/optimization proce-
dure, termed Next Ascent Stochastic Hillclimbing (NASH), is
presented in Section 4. Experiments with alternative optimiza-
tion procedures, such as Genetic Algorithms and Probabilistic
Model Based Optimization, are also described.

1Induction loop sensors are placed inside the roadway’s pavement and, at
a high-level, work by creating an electromagnetic field around the loop area.
As vehicles enter and exit the field, fluctuations in the field are recorded as an
indication that a car has passed over [17]. They are widely deployed, and have
been in use since the 1960s.
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Figure 2: An example four-phase traffic light

As mentioned earlier, a real baseline of performance, one
which considers the programs/schedules of the currently de-
ployed lights, is difficult to obtain. Before we present our final
results, in Section 5, we describe a practical method to estimate
the behavior of the currently deployed traffic light schedules
based on collected traffic data. Although this section is not part
of the auction-based algorithm itself, the procedures presented
in this section are vital to accurately estimate the real expected
differences in performance over current traffic-light programs.

With the baselines obtained through the methods described
in Section 5, we can provide confident measurements of the
effects of bidding-based traffic controllers. Large scale, ex-
tensive, empirical results are presented in Sections 6 & 7, for
Mountain View California and Chicago, Illinois. The auction-
based controllers yield improvements in the both the important
measurements of road-capacity and mean travel time within
both urban environments. The paper concludes with directions
for future work in Section 8.

2. Background Context: Traffic Light Control with Uncon-
strained Transitions

At a high level, whenever there is a transition from one
traffic-light phase to another, where some of the lights that were
green become red, there is the need for an intermediate phase, a
yellow phase, to provide warning to the affected drivers to stop
or to proceed, based on their speed and distance to the inter-
section. In static traffic lights, the sequence of green phases is
simply round-robin (e.g., in Figure 2, repeatedly going through
the four indicated green phases in counting order). In the case
of round-robin transitions, since the sequence of greens is fixed
and pre-defined, it follows that there is only one yellow phase
that will follow any given green phase. However, when we em-
ploy traffic sensor inputs, we are given the flexibility for out-
of-sequence transitions (e.g., phase 1, then phase 3, and so on),
based on the readings of the current intersection’s local induc-
tion loops. This may yield improved traffic flow, but it also
introduces the need for additional yellow-phase logic.

In our experiments, both with planning-based lights and
micro-auction based lights, in order to be responsive to sensed-

traffic, we allow lights to make out-of-sequence transitions be-
tween green phases. This allows more complete use of the in-
tersection capacity. In addition, when the traffic-light logic in-
cludes advance planning, there is a second advantage to out-of-
sequence transitions by shortening the planning horizon. With
planning-based logic, forcing a round-robin sequencing neces-
sitates long planning horizons to avoid making short-sighted
decisions — the light must plan ahead for the combined du-
ration of all the phases in the cycle. In contrast, with uncon-
strained sequences, the light only needs to plan ahead for the
duration of a single yellow phase.

Which of the signal lights needs to be yellow depends on
the specific combination of the previous and subsequent green
phases. Since we allow out-of-sequence transitions between
green phases, we create a grid of the correct yellow phases to
place between each transition. During the simulation setup [23],
for each pair of green phases, if any green state needs to change
to a red state, the intermediate yellow phase is simply con-
structed by setting those soon-to-be-red states as yellow. The
second step is setting the duration of the yellow. We can look
at the states that are marked as yellow and trace backwards
from them to the maximum of the speed limits for the lanes
that those signal states control. The yellow for that pair is set to
the maximum speed divided by the Department Of Transporta-
tion (DOT)-recommended safe deceleration rate of 3 m/s2 [24]
plus a reaction time of 1 second.

As an implementation note, we remark here that all ex-
periments were conducted within the SUMO [23] simulator.
SUMO (Simulation of Urban MObility) is a traffic micro simu-
lation package [25], that uses discrete time steps (1 msec each)
in its simulations but keeps a continuous representation of lo-
cation, distance, and speed. 2 This continuous spatial repre-
sentation improves simulations that include congested surface
streets, compared to many discrete-space alternatives [26].

2.1. Prior Work: Long-Term Planning Based Approaches

The micro-auction based traffic lights that are the focus of
this paper are reactive by design; they do not have a planning
mechanism for future events. Complementary approaches, such
as planning based traffic lights that attempt to anticipate the
traffic that will arrive in the future, provide additional avenues
to explore. We have implemented planning based lights to com-
pare their effectiveness with micro-auction lights. One imple-
mentation of planning based lights is described here.

Inspired by the exemplary results of the Carnegie Mellon
University Pittsburgh traffic-light deployment [12], we imple-
mented a traffic light controller that uses remote sensors and
planning for controlling when traffic phase switches occur. With
the planning-based approach, we solve the phase scheduling

2Two important considerations in selecting SUMO were: (1) SUMO is writ-
ten in a combination of C++ and Python that can be easily modified; this was
important for being able to handle non-standard light logic. (2) The free li-
cense allows us to parallelize it on multiple machines; in our tests, thousands of
tests have been carried out simultaneously — allowing deeper exploration than
would be possible with more restrictive licenses.
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problem by collecting the traffic data from a sequence of in-
duction loops that are tied to a given phase of the traffic light,
with the loops spaced at about 3 seconds of expected travel time
apart from each other. The sensors are placed in the roadway,
spaced at distances dictated by the speed limit and this target
separation time. In the planning-based approach, we use these
sensors for both occupancy and speed data [27]. We assume
that they have been placed on all lanes that could lead traffic
to the controlled intersection in 15 seconds (or less) of travel.
When intersections are closely spaced, these non-local sensors
may be on the other side of other intersections, leading to a
large web of sensors and distributed communication. While
this likely includes more sensors (and communication) than is
minimally required, it enables us to create a detailed speed and
occupancy profile for each section of road, which is useful for
planning.

Internal to our planning-based traffic lights, we maintain
time lines of when we expect cars (observed by local and re-
mote induction loops) to arrive at the controlled intersection.
The car counts (from induction loops) are scaled by a learned
weighting factor, based on the historically observed turning ra-
tios between the sensor and the traffic light, as well as the his-
torically observed rates for which the phase will be needed by
the incoming traffic (e.g., straight or left turn at the controlled
intersection itself). The distance-to-time mapping used to put
the car onto the time line is based on the observed speed profile
for the road (also from the known induction loops). Finally, we
use dynamic programming to solve for the best phase sequence
and transition times. Since this is a crucial part of the planning
process, it is described in more detail.

The dynamic-programming search is initialized with a sin-
gle potential schedule that has the start time of the current phase
as its (already past) starting point. If there are cars waiting at the
traffic light on other phases, it increases the solution space by
considering a phase change to each of the other phases that are
in demand, taking into account the yellow-duration lead time
needed for scheduling. For example, considering Figure 2, if
phase 3 is the current phase and there is traffic waiting for phase
1 and phase 2, the space of possible solutions will expand to
three possibilities: (a) remaining on phase 3; (b) changing to
phase 1; and (c) changing to phase 2. This expansion of the
possible solution space continues with new possible branches
being introduced each time a new car arrives.

The timing of the phase changes is restricted so that the
minimum time given for each phase of the light (plus the yel-
low duration) is respected: e.g. if phase 4 requires a minimum
duration of 3 seconds, then the next possible phase change will
be postponed until 3 seconds plus the yellow duration after the
start of phase 4. Also, if the current phase is expected to be
“empty” before the arrival of the new traffic (that is, no cars
waiting as measured by the local induction loop sensors and
no cars arriving as measured by the remote induction loop sen-
sors), the proposed phase change for the newly arriving traffic
is moved up to be as early as possible, such that the yellow will
start just after the current phase is empty. This early change has
the advantage of reducing the amount of time that the intersec-
tion remains under utilized.

Given the complete description of how phases can change,
the scheduling solution is then selected based on minimizing
a combination of three penalties (the automatic setting of the
weights of these penalties is described in Section 4).

1. Speed-loss penalty: This is the penalty for forcing a car
to stop. The penalty is scaled by the speed limit of the
road that the car will be traveling onto. That speed was
chosen since it best reflects the acceleration that the car
will require, that it otherwise would not have needed had
it not been forced to stop.

2. Waiting-time penalty: This is a penalty that is linear in
the amount of time that each car must wait at a red light.

3. Phase-change penalty: This is a penalty that is added for
each proposed phase change. It increases the penalty on
the schedules that unnecessarily cycle through the differ-
ent phases when there is no waiting or incoming traffic.

The solution space is repeatedly expanded and then pruned,
using the approach described in [14]. It is expanded by mov-
ing forward through all of the arrival times of incoming traffic.
After each expansion, the solution space is checked for sched-
ules that can be pruned. Pruning of candidate solutions hap-
pens with solutions that end on the same phase and have the
same number of waiting cars as other solutions, but have higher
associated partial costs (longer times). Experiments with the
planning-based controllers are presented in Section 6.

In contrast to the approaches described in this section, the
alternatives that we propose, auction-based controllers, do not
create plans and are purely reactive. They are described next.

3. Auction-Based Controllers

In this section, a detailed description of the new auction-
based controllers is provided. In contrast with the planning-
based traffic-light control [14], the auction-based approach does
not require the use of remote sensors since no planning is re-
quired. Instead, only the typical induction loops that are placed
at the entrance lanes to the controlled intersection are used. Be-
cause we rely only on existing roadway infrastructure, these
controllers should be easier to deploy than those that require
remote communication.

At a high level, each phase of the auction-based traffic light
logic has three time-separated behaviors (see Figure 3). The
timing and inputs used for these behaviors are optimized to the
general traffic patterns that are expected a given time of day
(e.g., morning commute hours). Based on our tests, it is the
combination of these three behaviors along with the parame-
ter optimization that are responsible for the improved efficiency
witnessed over static timed and planning-based approaches. The
behaviors are described below and the parameter optimization
is explained in the next section.

In auction-based logic, each traffic-light phase definition in-
cludes a weighted list of sensors that is to be used by that phase
to determine its bid for the cycle at any given time. The weights
can be positive or negative and are used to effectively scale
the number of cars observed on that sensor. For example, a
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Figure 3: Phase change logic in auction-based traffic lights.

5



phase for a lower-priority road could include in its sensor list a
negative-weighted induction loop from in front of the higher-
priority road, so that the lower-priority road would be more
likely to release the phase when cars arrive from the higher-
priority direction. Similarly, a more heavily-used phase could
use a larger positive weight for some of its own sensors, to al-
low it to out-bid the lighter-traffic direction. Instead of having
these weighted lists of sensors be given as a fixed input that is
manually specified, the learning procedure selects both which
of the local sensors to use and their associated weight for each
phase. Formally, a bid is the weighted sum of the current, lo-
cal induction-loop measurements (sj): the bid bi for phase i is
bi =

∑
j wijsj . The weights (wij) are selected in the learn-

ing process (see Section 4). When the learning process sets
wij = 0, we refer to that as having removed sensor j from
phase i.

As shown in Figure 3, the way in which the traffic light de-
cides whether to change phase depends on how long the current
phase has been active. We use the terms minimum duration,
priority duration, and release duration to separate the time in-
tervals for these different behaviors. As suggested by its name,
minimum duration is the minimum amount of time that a phase
must be green before possibly changing to yellow. The mini-
mum duration is given as an input to the simulation and can be
set to be different for each phase of the light. For simplicity,
we start with all of the minimum durations as 3 seconds but al-
low the learning procedure to adjust that to be larger, if needed
to avoid too-fast switching between phases in light traffic. No
phase changes can occur before minimum duration.

For each second between minimum duration and priority
duration, the current phase has priority on the traffic light. If its
bid for the cycle is non-negative (indicating that it would like
to have the cycle), then it will keep the cycle, no matter what
the bids of the other phases are. While this greedy approach
may seem to be suboptimal, it has the advantage of increasing
the average duration of the cycles and reducing the amount of
time spent switching between green phases (and thereby reduc-
ing amount of time wasted on yellow lights). Again, we allow
the learning procedure to adjust the priority duration to the ex-
pected traffic demands.

For each second between priority duration and release du-
ration, an auction is held between the different phases. Each
phase bids according to the weighted sum of the sensors that
have been selected for that phase. If the highest bid is negative,
then the current phase is the default winner of the cycle until
one or more of the bids change. Otherwise, the phase with the
highest bid will get the cycle (after the appropriate yellow). If
multiple phases have the same winning bid, the winner is se-
lected by simple round-robin selection.

For each second after the release duration, it is important to
make phase switching less restrictive. The same type of auction
is held with the added constraint that the current phase cannot
bid an amount above zero. This non-positive bid by the current
phase likely releases the cycle. Any other phase that would like
to have the cycle will win the auction away from the current
phase. If more than one of the other phases have positive bids,
the auction process will pick the strongest bidder. Only if all the

bids are strongly negative, is it possible for the current phase to
stay green.

The progression restarts after the start of each green phase,
progressing from non-negotiable (below minimum duration) to
greedy (below priority duration) to auctioned (below release du-
ration) to a handicapped auction (above release duration).

Because the learning procedure is allowed to remove any or
all of the sensor inputs to any given phases bid, we designed our
control logic to handle these cases. When a phase has no sensor
inputs, it will continually place a zero bid for the light. If the
learning procedure removes all sensor inputs from all phases
of the traffic light, the auction logic results in the light behav-
ing as a static light, using round-robin cycling and using each
phase’s priority duration. Interestingly, in practice, the no-
sensor configuration is automatically instantiated through our
learning procedure for multiple lights; this will be discussed in
the results sections.

4. Learning/Optimization Algorithms and Data Gathered

No matter which approach is used for traffic light control,
fixed-schedule, long term planning, or micro-auctions, each has
numerous internal parameters that must be set. For example,
even with a simple fixed-schedule controller, the length of the
phase and offsets of each light have a large impact on the per-
formance of the overall system. Table 1 summarizes the param-
eters that characterize the behavior for a given traffic light in
each of the three approaches explored here. Genetic Algorithms
(GA) [28] have been most commonly used to set the numeric
and enumerable values associated with traffic lights [1, 2, 3, 4].

Following the published research, genetic algorithms were
first attempted. A thorough overview of GAs can be found in
[28]. Since genetic algorithms are themselves characterized
by a number of control parameters, over 40 different combi-
nations were tried. In the GA variants explored, the control
parameters that were varied included: the mutation rate was
varied between 0.5% - 10%, crossover type employed: uni-
form and single/multi point, the use of elitist selection (preserv-
ing best solution from one generation to the next), population
sizes were set between 10-1000, and numerous crossover rates
were attempted. Two settings consistently had the largest im-
pact. The largest effect on the performance of the algorithm
was observed in the setting of the mutation rate. Regardless
of the other parameters, the entire population converged to far
from-optimal candidate solutions that were then substantially
improved through random mutations. Even when crossover was
turned off (probability = 0.0%), the results were not statistically
different than when crossover was used. The other control pa-
rameter, whether elitist selection was turned on, was important.
In the runs where it was used, the final solutions found were
consistently better than when it was not used.

In addition to GAs, probabilistic optimization approaches
such as Population Based Incremental Learning (PBIL) [29],
and variants that include explicit modeling of inter-parameter
dependencies were also attempted [30, 31]. These probabilis-
tic models provide a method to explicitly maintain the statistics
that a genetic algorithm’s population implicitly maintains. A

6



Table 1: Parameter Categories Optimized for Each Approach

Fixed-Schedule Planning Micro-Auctions

Phase Lengths Speed Loss Penalty Weight Detector Weights
Phase Offsets Waiting Time Penalty Weight Detectors to Use

Phase-Change Penalty Weight Durations (Minimum, Priority, Release)

good overview of probabilistic optimization techniques is pro-
vided in [32]. For our experiments, the inter-parameter depen-
dencies that were modeled were pair-wise dependencies using
tree-shaped networks. As shown in [33], a simple algorithm
can be employed to select the optimal tree-shaped network for
a maximum-likelihood model of the data (in our case, the data is
the high performing parameter settings found through search).
This tree-model is then sampled to generate the next candidate
solution in an analogous step to the crossover operation in a GA.
Like the GAs attempted, a large driver of improvement was the
mutation operator. 3

Based on the consistently large effects of the mutation op-
erator on the quality of the solution obtained, a simpler search
method Next-Ascent Stochastic Hillclimbing (NASH), was tried.
It is described below.

Formally, we define S to be the set of parameters that fully
specify a given scenario. For instance, a micro-auction simula-
tion containing 10 traffic lights would require setting |S| = 50
parameters (5 parameters per light). Since different lights will
(in general) employ different parameter settings, their behavior
will not be identical. The goal of our optimization is to identify
parameter set Ŝ that minimizes the total travel time for the cars
in the simulation (detailed more formally below). NASH oper-
ates in a manner similar to other stochastic hillclimbing meth-
ods:

1. Perturb S: Since S is an aggregation of parameters, we
randomly select a parameter s ∈ S (drawn with uniform
probability) to perturb as:

s′ ← s+ U(−0.05s, 0.05s) for continuous-valued s;
s′ ← U(options(s) \ s) for discrete-valued s.

where U(., .) denotes a draw from the uniform distribu-
tion and options(s) denotes the set of legal values for
a discrete parameter. In other words, we perturb con-
tinuous parameters by ±5% and assign a random legal
value to enumerable parameters. We do not simultane-
ously perturb every parameter in s; the number of pa-
rameters changed in one operation is given by sampling
U(1, 0.05|S|) (i.e., perturb no more than 5% of the to-
tal parameters in the simulation in each iteration). The
perturbed parameter set is denoted as S′.

2. Project S′ onto valid subspace: Since the perturbation
operation described above operates independently over

3Brief attempts with other heuristic optimization procedures were also con-
ducted. Although they sometimes outperformed the GAs used, they did not
provide any statistical benefit over simple hillclimbing. For simplicity, we use
only hillclimbing throughout the remainder of this paper.

parameters in S, it can generate a setting S′ that vio-
lates constraints over parameter subsets. For instance,
increasing a phase length in a given fixed-schedule traf-
fic light controller will break synchronization unless an-
other phase length for the same light is reduced to keep
the overall cycle constant. To address this, we employ
an approach-specific repair operation over S′ to adjust
parameter settings (e.g., normalizing parameters for each
light).

3. Evaluate objective: With the parameter modifications,
the new S′ is evaluated with the desired objective func-
tion. The standard objective functions that have been
used in the literature include: minimizing the overall or
average wait time, maximum wait time, emissions, stop
time, or maximizing throughput, speed, etc. For our stud-
ies, we set the objective function to minimize total travel
time of all the cars that enter the region of interest during
the observation interval.
Our implementation assigns a pre-generated route and
entry time for each car c ∈ C in the simulation. These
are drawn directly from the (anonymized) real gathered
data of Android users, as will be described next, in Sec-
tion 4.1. The exit time for the car depends on the traffic
flow in the region of interest; in general, poor settings
of S result in the car exiting the region of interest later.
Thus, the objective of total travel time is given by

O =
∑
c∈C

cexit − centry

where centry and cexit denote the entry and exit times for
car c. Since

∑
c∈C centry is constant across iterations (de-

terministic arrival times and routes), and cexit is deter-
mined by the parameter settings S, our optimization prob-
lem can be concisely stated as

minimize
S

∑
c∈C

cexit

4. Accept S’: If the perturbed parameters S′ result in an
improvement over S on the objective, we accept the per-
turbed settings, S ← S′. Otherwise, we discard S′.

This process is iterated until either a satisfactory solution
is found or time expires. Though extremely simple, NASH
worked as effectively as the other optimization methods tried,
consistently outperforming GAs. Further, it was simpler to im-
plement and faster in practice than GAs and building proba-
bilistic models. This somewhat counter-intuitive result has also
been observed by other researchers in exploring the trade-offs
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between genetic algorithms and stochastic hillclimbing tech-
niques [34, 35, 36, 37]. This finding is especially pronounced
in problems in which mutation (as opposed to the Genetic Al-
gorithm’s primary search operator, crossover) is the main driver
for improvement in the solution — as we have empirically found
to be the case in this problem.

We employed a straightforward objective function that meets
the goal of minimizing overall travel times. However, it is
worth noting that many other objective functions could have
been used. Two common ones include minimizing driver idle or
wait-times and minimizing emissions. Although both of these
can be used here with no change to the algorithms or optimiza-
tion procedures (other than the objective function); their effects
can be large. For example, in minimizing emissions, reducing
stop times at lights and consistency of speed may take higher
precedence than minimizing overall travel time. Although this
may also reduce overall travel time, that reduction will be a
side-effect of reducing the emissions. Additionally, other inter-
esting, more specialized objective functions can be used as well,
such as minimizing travel times on specified roads or routes, or
even minimizing congestion at a specific light.

4.1. Anonymous Real-World Traffic Data

For the real-world experiments presented in this paper, two
sets of data are needed: the roadway information (layout, speed
limits, etc.), and travel-track information. To gather the road
information, we combined the data available from Google maps
and OpenStreetMap [38]. The results provided roadways as
well as traffic light locations, as shown in Figure 4.

In addition to accurate road information, demand for each
road section must be modeled. We created a demand profile
through anonymized location data collected from opted-in An-
droid cell phone users [39][40]. The data was collected over
several months. The raw data, which itself does not include per-
sonally identifiable information, was additionally scrubbed by
segmenting the travel-tracks to prevent association of trip ori-
gins and destinations to even further reduce identifiability risks.
See Figure 4(Enlarged Section) for a sample of the data col-
lected.

From this data, we further sub-select the data with travel-
tracks that intersect with the map area shown. We also filter
by time, limiting to looking at a given start and end date — in
particular around rush hour periods. We then filter all the given
times down to the weekday and time of day (e.g., Tuesday 7am
local time). This provides a close-to-realistic profile of the road
demand for Android users. By folding/overlapping the gathered
data over weeks, we compensated for the fact that all travelers
are not Android users who provide their data.

5. Establishing a Baseline: Modeling the Behavior of Cur-
rently Deployed Lights

Before conducting the experiments, we need a method of
determining whether the new controllers will improve real traf-
fic flow beyond the currently deployed traffic light controllers.
In this section, we step away from discussing algorithms for

traffic light control and examine the pragmatic issue of how to
obtain the existing traffic light schedules and behaviors from
which to create a realistic baseline of performance.

Unfortunately, for deployed traffic lights, the running light
schedules/programs are often not known. Rarely are they kept
in a central database, and even when they are, they are often
not easily obtainable. The most straight-forward solution is
to manually watch and time each traffic light in the city to be
optimized. For lights on fixed schedules this may be theoret-
ically feasible, but will likely be prohibitively expensive and
time-consuming to do at scale. Nonetheless, without the ex-
isting schedule information, it is difficult to ascertain any real-
improvements that new traffic light algorithms and approaches
will have in reality.

We take a behaviorist approach to discover lights’ currently
deployed schedules. We attempt to discover the light schedules
for all the lights in the system we wish to model. This is done
by creating models that match known car travel paths and tim-
ings that were observed in a large collection of gathered travel-
tracks. If we can determine the lights’ programs accurately,
when simulating the known travel-tracks through the city, the
timings will match observed timings. With this derived model,
we can simulate their performance light’s programs with vary-
ing traffic conditions to test how they will scale in comparison
to any of the alternative light controllers that we propose.

Unlike the rest of this paper, in which which we use NASH
to optimize controllers to improve traffic lights’ schedules, in
this section, the goal is to obtain a light schedule that matches,
as closely as possible, the behavior of the current pre-existing
schedule. Recall that NASH relies on a repeated stochastic gen-
eration and evaluation methodology to guide search. The eval-
uation of the candidate traffic light schedules is controlled by
setting an objective function (in the description of the NASH al-
gorithm presented in Section 4, see step 3). Instead of using the
commonly employed traffic-optimization objective functions to
improve some aspect of flow throughput, we specify the fol-
lowing objective function based on similarity (formulated as a
minimization task):

f(h) =
∑
c∈C
|JourneyTimeh(c)− JourneyTimea(c)|, (1)

where h and a are the hypothesized and actual light settings,
respectively, and C denotes the set of cars in the simulation.

Minimizing this objective allows us to determine light set-
tings that generate a simulated traffic flow that closely mirrors
the actual flow. Note that although the constraint is not ex-
plicitly specified in Eqn. 1, the cars are all introduced into the
system in the same order and at the same times as they were
observed in the actual data; this is crucial to ensure that traffic
jams and roadway usage are emulated correctly. As a reminder,
note that this similarity measurement is suitable only for deter-
mining the currently deployed light schedules. Similarity is not
the correct measurement to use when optimizing the light con-
trollers to minimizing wait time, emissions, total travel time,
etc. For those objectives, we will simply minimize the specific
objective instead.
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Figure 4: Roadway data imported into SUMO simulator [23]. Left: Overview of the area we are considering in Mountain View,
CA. The seven lights considered are numbered (and appear in red). Right: Enlarged section with traffic at Shoreline Blvd. and
101/85 exit ramps at 9am on a summer Tuesday. Each yellow triangle represents one vehicle.

5.1. Validating the Estimates on Controlled Data

Because estimating deployed traffic light parameters is a
novel part of this study, we validate the approach with a series
of experiments using synthetic data before turning to real-world
data. Using a smaller, synthetic, data set has the advantages of
being noise-free and completely within our control to modify
in order to examine different aspects of matching. For the syn-
thetic data, 3200 cars were instantiated over a period of 4000
seconds to travel along the simple grid shown in Figure 5. The
speed limit for each segment was chosen independently and
randomly, and seven types of car were instantiated, with dif-
fering profiles in terms of acceleration/deceleration, following
distance, length, etc.

Each simulated car’s path was chosen to start and end at ran-
domly selected edge nodes. The path was constrained such that
no intersection was visited twice. Vehicle launch times were
uniformly randomly distributed over the 4000 seconds.

The 3200 cars were simulated in SUMO with a pseudo-
randomized 4 light setting, this is referred to as the Target-Light-
Setting. For the synthetic data experiments, the Target-Light-
Setting corresponds to the settings for traffic lights that we seek
to estimate using the procedures in this section. For simplicity
of exposition, here we assume that the actual traffic lights can
be modeled with fixed schedules. As discussed later, more com-

4This light setting was significantly perturbed from SUMO’s default light
setting to ensure that it could not “accidentally” be found by NASH by initial-
izing SUMO and making tiny perturbations to their default light settings.

Figure 5: The synthetic roadway. The number of lanes varies
between 1 and 3 in each direction. Cars can be introduced and
exit at any of the twelve outer edges. Lights are at located at
each of the nine intersections. Enlarged region shows typical
traffic.
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Figure 6: Match Error over successive trials. 2000 trials shown.
Y-axis the average difference in journey times for cars under
the hypothesized light setting and the actual light setting (in
seconds). X-axis: trial number.

plex controllers that incorporate induction loop sensors also fit
naturally within this procedure.

NASH was then applied to the uncalibrated, randomly ini-
tialized, lights to adjust them such that the cars had approxi-
mately the same travel times as in the original distribution. The
objective function was to match, for each travel path, the arrival
time of the car as closely as possible to what SUMO yielded
with the Target-Light-Setting. Recall that because we want to
emulate not having any a priori information about the actual
light settings, we start NASH with random settings for all the
lights in the system. The hope is that through learning, the
light settings that are found will behave the same as those in
Target-Light-Setting. It is interesting to note that there may be
many possible light settings that generate similar aggregate traf-
fic flow behaviors. As will be shown in later experiments, when
multiple NASH runs are conducted, different, but equally well
matching, light settings are found.

The progress of the matching algorithm is shown in Fig-
ure 6. Two lines are shown, the bottom line (in red) shows
the best light setting that was found in the search to that point.
The top line (in blue) shows the evaluation of each candidate
light setting as search progresses. From the red line, observe
that in the beginning of learning, the average difference (in sec-
onds) between when a car reaches its destination with the origi-
nal Target-Light-Setting and the approximated light-setting was
over 80 seconds. By the end of learning, this is reduced to 31.8
seconds. Also notice that the blue line is riddled with spikes.
This means that the majority of perturbations to the best-light
setting found to that point yielded matches that performed sig-
nificantly worse; small mutations in the light settings caused
drastic changes in the overall traffic flow. Only a few trials,
those where the red line took a step downwards, revealed an
improved performance. These are the steps in which the NASH
algorithm accepted a new baseline from which the learning then
proceeded.

To compare the distributions of travel times to the actual
travel times, see Figure 7 (Top). The actual travel time dis-

Figure 7: Distribution of travel times for 3200 cars. (Top)
Lights calibrated with NASH. (Bottom) uncalibrated lights.
These are lights with random phases and offsets — presented
for comparison.

tribution is shown with dark bars, the travel time distribution
obtained with the calibrated light settings is shown with lighter
(green) bars. As can be seen, the distribution of travel time ap-
pear similar. For comparison, if we plot the travel times for ran-
dom light settings (uncalibrated), the distributions appear quite
different Figure 7 (Bottom).

We can also measure the correlation of journey times un-
der the hypothesized light system and the target light system.
Here, we correlate each car’s travel times under both scenarios.
Results are shown in Figure 8. Instead of just correlating a sin-
gle trial, Figure 8 also shows the results of 24 additional tests.
We reran the entire NASH-matching algorithm from scratch 25
times. Because NASH is stochastic and is initialized with ran-
dom seeds, we fully expect different schedules to be found in
each run; the hope is that at the end of each run, the aggre-
gate behavior approximates the target light system — even if
the light settings themselves are not the same. The correlations
to the actual travel times of all 25 calibrated systems (found
through NASH) remains high for all trials.

For comparison, also shown in Figure 8 are the correlation
of 25 uncalibrated (random) light systems to actual travel times.
It might seem surprising that for random systems there is any
correlation; however, since we are measuring travel times, even
with random light settings, as cars travel through the entire sys-
tem, longer paths are likely to have longer travel times, regard-
less of the light settings. Nonetheless, as can be seen, by match-
ing the lights through NASH, the correlation of travel times in-
creases dramatically.

Next we posit the question: how robust are these matches?
What happens when we severely alter the underlying traffic pro-
file? If we change all the routes and their distributions, how
do the travel times of the new cars compare in the NASH-
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Figure 8: Correlation of calibrated and uncalibrated lights with
actual travel times. Average calibrated correlation = 0.8, aver-
age uncalibrated correlation = 0.5.

Figure 9: Correlations of calibrated and uncalibrated Lights to
actual timings when all of the routes are replaced with never
previously seen routes.

calibrated light systems to the original Target-Light-Setting?
If the NASH calibrated light systems were truly close to the
Target-Light-Setting, we would expect a high correlation to re-
main under any traffic load, not just the load on which it was
trained.5 To test this, all of the routes are replaced with ran-
domly created new routes. We measure the correlation of tim-
ings of the cars under the target-light-schedule and the NASH-
derived-light schedules, and the uncalibrated light schedules
(random). The results are shown in Figure 9.

The results are positive: under both seen (Figure 8) and un-
seen traffic loads (Figure 9), after NASH is used to estimate the
settings of the lights, we observe that the correlation of travel
times to the original Target-Light-Setting remains high.

As a final test, we visualize how correlated the light settings
are with each other. If they all capture the same conditions
well, they should exhibit high correlation to each other. We
also compare how correlated the 25 uncalibrated light settings
are to both the calibrated lights and uncalibrated lights. The re-
sults are shown in Figure 10. The upper-left quadrant (brighter)

5This additional test is only possible for the data in Section 5, since we are
using purely synthesized traffic, and we therefore have the actual traffic light
settings that we are trying to discover with NASH. In real usage (e.g. the next
two sections) this test would not be possible without having ground-truth light
settings.

Figure 10: Correlations of 25×calibrated and 25×uncalibrated
lights to each other and across sets. The lighter quadrant (upper-
left corner) is the 25 calibrated lights compared to each other.
They exhibit a large degree of correlation. The darker quadrant
(lower-right corner) is the uncalibrated lights, exhibiting far less
correlation. The white diagonal line is each setting’s correlation
with itself (1.0).

shows the 25x25 correlations with the calibrated lights. As can
be seen, they exhibit high correlations with each other. When
they are compared to the non-calibrated lights, the correlations
drop precipitously. The bottom-right corner shows the corre-
lations between the uncalibrated lights; far less correlation is
present.

In summary, the results are what we hoped: despite not
being optimized to be exactly the same light-programs (since
the true light program may not be known), the behavior of
the calibrated lights are highly correlated with each other and
also highly correlated to the actual observed timings. This is
precisely what is required to obtain a realistic baseline perfor-
mance.

Next, we return our attention to optimizing the traffic lights
to improve capacity and throughput. To measure our perfor-
mance, we use the methods described in this section to establish
credible baseline performances in both cities examined.

6. Results: Mountain View, California

In this section, we examine the performance of static lights,
long-term planning based lights, and auction based lights, on
real traffic from Mountain View, California.

6.1. Calibrating to Real Lights

The results from Section 5 revealed that matching the be-
havior of lights was possible, at least with simulated data. In
this section, we apply the same approach to the seven traffic
lights in Mountain View, California. This is a significantly
larger and more complex simulation than the synthetic data
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Figure 11: Progress on matching the real traffic using NASH.
Y-axis the average difference in journey times for cars under
the hypothesized light setting and the real-data (in seconds). X-
axis: trial number. First 500 trials shown - the remaining 1500
trials (not shown) showed continued, but smaller magnitude,
improvements.

use earlier. In the previous section, the synthetic simulations
used 3200 travel-tracks. For these experiments, we use approx-
imately 67,000 tracks. Additionally, unlike in the synthetic ex-
periments, the distribution of paths is far from uniform. Back-
ups happen non-uniformly — only on certain streets and in cer-
tain directions. Small perturbations in a single critical traffic
light’s schedule can lead to drastic changes in throughput while
large perturbations to the schedule of a less busy traffic light
may generate little observable impact.

We begin the calibration procedure similarly to the synthetic
case — we use NASH to match the timings. The progress is
shown in Figure 11. Note that the mean error in times drops
quickly. In the beginning of the learning process, the error was
over over 400 seconds (in this case, the default SUMO traf-
fic light settings were used for initialization). By completion,
NASH lowered the error between actual and matched times to
approximately 51 seconds.

Next, similar to the analysis conducted with synthetic data,
we examine the distribution of travel times for the 67,000 tracks.
Figure 12 shows the distributions of the tracks for the real data
and the times obtained through a simulation in SUMO using the
NASH-calibrated lights.

As can be seen the distributions are similar, but as expected,
not as close a match as with the simulated data. The correlation
between the predicted and real times is 0.5. For reference, when
a random light setting is used (the default SUMO settings), the
correlation with the real data is only 0.18. Recall that with the
synthetic data, the correlation of NASH-Calibrated lights to the
actual timings was 0.8 and the random light settings to the ac-
tual timings was 0.5.

There are several distinguishing attributes of this data that
explain why it was possible to correlate the synthetic data bet-
ter than the real data. First, in the synthetic data, drivers did

not have unnecessary delays in start/stop times due to exoge-
nous factors such as distraction, change of plans, etc. Second,
in the synthetic data, drivers behaved uniformly at yellow and
red lights; this was not the case for real drivers. Even if the ex-
act correct light settings were found, these factors would lead to
lower correlations since they would not be modeled. Third, the
real data is significantly more noisy; a problem we did not have
with synthetic data. Recall how the data was acquired and ag-
gregated over the period of many months (done to account for
the fact that not all drivers are opted-in Android phone users).
This aggregation process leads to noise in the real data which
we are trying to mimic. Fortunately, as usage of cell-phone
GPS/maps increases and more travel-track data becomes avail-
able, these estimates will improve. Despite the above difficul-
ties, we were able to significantly reduce the average discrep-
ancy between actual and predicted times from approximately 7
minutes to 51 seconds.

As a final test to ensure that NASH actually learned some-
thing about the lights and did not overfit the exact traffic on
which it was trained, we repeated the experiment with a more
difficult setup. For NASH, we only looked at the data from
the first 1.5 months of collection. Then, for testing the tim-
ings we tested on a non-overlapping, subsequent, 1.5 months
of data. This also represents another common use and test sce-
nario where a period of time is devoted to training and then the
learned model is used in the future. What we found indicated
that NASH captured the behavior of the lights and did not over-
fit the data. The results did not change from using the entire
3 months of data. Both the mean error and overall correlation
remained the same as when the entire 3 month period was used
for modeling the lights.

6.2. Testing the New Traffic Light Controllers
Thus far, we have used NASH to match the timings of the

lights in simulation to those actually deployed on the roadways.
Now, we use NASH in a manner that is more familiar — to op-
timize the internal parameters of the light controllers to reduce
the mean travel times. NASH is used to optimize the parame-
ters of the three types of controllers. For fixed-schedule con-
trollers, the phase lengths and offsets are optimized, for long-
term planning controllers the penalty weights are optimized,
and for micro-auction based controllers the detector weights
and their durations (minimum, priority and release) are opti-
mized. The objective function (step 3 in the NASH algorithm)
is set to minimizing the mean travel time of the cars. Each
learning run is given a total of 2000 simulations – that is, 2000
perturbations of the traffic controller’s parameters were tested
in simulation.

The traffic-data used for the learning process were based
on the data collected over months in Mountain View, Califor-
nia. Rather than using this exact data for the learning, multiple
new, reality-based, data sets were created based on this data.
Each new data set was created by perturbing the original data
in the number of cars released on each route and the car-release
schedules. Small changes in the order of car release or in the
number of cars can have very large effects on the overall traffic
and timings of the cars in the simulation. Therefore, instead of
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Figure 12: Distributions of Real (Dark) and NASH-calibrated light travel times (Light/Green).

optimizing the signal timings on a single data set, simulations
were run for all the data sets (10 dataset perturbations were cre-
ated and used). The lights were optimized to work well on all
the data sets by incorporating them into the objective function.
During the learning process, to determine whether a candidate
light setting was better than its predecessor (Steps 4 & 5 in the
NASH algorithm), not only did the average travel times across
data sets have to be lower than its predecessor, but of the N data
sets that were used, at least N/2 had to have a lower mean travel
times. This ensured that if a candidate light setting worked ex-
ceedingly well on a single data set at the expense of working
well on the rest, it was discarded, despite potentially having a
lower overall average across all data sets.

The benefits of using the multiple reality-based data sets
were two-fold. First, multiple data sets helps account for nat-
urally occurring variability in traffic patterns on different days.
Since small changes cause large distortions in traffic flow, this
is vital. Second, by not using the actual data for training the sig-
nals, this left the pristine, real, data for the final round of tests.
The clean data was used only as a final test to measure effects
of improved controllers on capacity and mean time of travel.

The results, comparing mean travel times, and expected ca-
pacity, are shown in Tables 2 and 3, respectively. We com-
pare different approaches to traffic light control during differ-
ent commuter-traffic profiles. We perform the comparison by
considering as our baseline the travel times under the NASH-
calibrated light controls.

When comparing an alternative approach (e.g., optimized
static-phase controls) to the baseline, we run the simulation us-
ing the alternative control approach, always using the same dis-
tribution of routes as was used for the baseline. For Table 2,
we keep the same number of cars as well and simply compare
the mean travel-time (MTT) changes. For Table 3, we scale
the number of cars up or down (with the same distribution of
routes), until we match its average travel time to the baseline
travel time.

The first lines of Tables 2 and 3 report the results of our

comparison of optimized static control to the NASH-calibrated
control. The optimized static control uses the phase durations
and relative offsets that were found to be best for an average-
morning commute period (weekday 7am–11am), using NASH.
There is improved throughput throughout the commute cycle,
with the largest improvements seen when it is most needed,
during the 8:00-9:30am peak period. For example, we could in-
crease the peak period load by as much as 16% without increas-
ing the travel times, using this learned static controller instead
of the NASH-calibrated controller. This improvement demon-
strates the power of the learning procedure. It is interesting to
see this level of improvement using static light timing, even af-
ter the light synchronization work was done on Shoreline Blvd.
in 2012–13 [41]. It may be that the increase in traffic in those
two years is enough to change the best choices for the traffic
light durations.

A potential concern with the witnessed improvements is
whether the improvements come at the expense of infrequently
traveled routes experiencing severe delays that they previously
did not? These trade-offs were examined in detail. The vast
majority of cars reduced their travel times. Of the ones that
did not, most increased their travel times by under 4 seconds.
Only a few cars experienced longer delays under the optimized
controllers; however, even with the extra delays, their resulting
times were in the lowest 10% of the times experienced without
learning.

For planning-based lights (Table 3), we did not see a con-
sistent change in capacity across the commute periods: the im-
plied changes in capacity, compared to the NASH-calibrated
control, were all small and likely not to be significant. This is
most probably due to the situation that was studied. The major-
ity of the traffic that was involved in the simulation were cars
exiting from a freeway onto a congested arterial road. Most of
the traffic was not in “clusters”, as observed in the Pittsburgh
study [12]. Another potential contributing factor is that there
were only three parameters (the penalty weights) that were op-
timized. We made this choice because of the obvious physical
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Table 2: Mean-travel-time (MTT) changes under matched demand - Mountain View, California

Peak rush (8:00–9:30 am) Average rush (9:00–10:30 am) Low rush (9:30–11:00 am)
21861 observed cars 20139 observed cars 18154 observed cars
668.68 sec observed MTT 173.65 sec observed MTT 110.37 sec observed MTT

Optimized static lights 44% faster (376.56 sec MTT) 30% faster (121.37 sec MTT) 6% faster (103.58 sec MTT)
Planning-based lights 21% faster (525.82 sec MTT) 8% slower (187.18 sec MTT) 6% slower (116.54 sec MTT)
Learned Auction lights 79% faster (140.87 sec MTT) 38% faster (108.01 sec MTT) 10% faster (99.57 sec MTT)

Table 3: Capacity changes under matched MTTs - Mountain View, California

Peak rush (8:00–9:30 am) Average rush (9:00–10:30 am) Low rush (9:30–11:00 am)
21861 observed cars 20139 observed cars 18154 observed cars
668.68 sec observed MTT 173.65 sec observed MTT 110.37 sec observed MTT

Optimized static lights +16% (25306 cars) +9% (22037 cars) +8% (19661 cars)
Planning-based lights +3% (22473 cars) -4% (19253 cars) -2% (17736 cars)
Learned Auction lights +47% (32082 cars) +46% (29499 cars) +11% (20204 cars)

correlates for all of the other parameters (e.g. observed speed
profiles for sensor-to-light delays and turning ratios for sensor-
to-phase weights).

Finally, our auction-based traffic lights provided the largest
gains in capacity over the matched-to-current controls. The
biggest gains were during the peak rush period, when it is most
needed: we were able to allow 47% more traffic into the road
network (using the same distribution of routes) during these
times, without increasing travel times, when we used auction-
based traffic controls compared to the matched-to-current lights,
a significant accomplishment. In contrast, if we increased the
traffic load during peak hours by 47%, the currently deployed
lights (as modeled by the procedures described in Section 5),
we expect to see the travel times increase by over 200% (to
2203.6 sec). Similarly, impressive reduction in travel times
were achieved across the board, especially during peak rush
hour.

6.3. Detailed Discussion

Because of the stochastic nature of NASH, as well as the
complex interactions possible between a system of traffic lights
and real traffic, it is difficult to a priori predict what behav-
iors will emerge after learning. From the previous tables, it
was clear that throughput and mean travel time improvements
were found. In this section, we attempt to give some intu-
ition into (the sometimes non-obvious) ways in which they were
achieved.

Somewhat surprisingly, the planning-based approach was
the least successful of the systems that we tested. Due to the
strong physical interpretation of each of the parameters (phys-
ical distances, etc), it was the one that least lent itself to opti-
mization. A future research direction is to test this approach
using fully optimized parameters that may not correspond to
physical interpretations, but may reveal improved performance
within the context of the full system.

Examining the auction-based lights in more detail, the de-
cisions learned are both interesting and revealing. In four of

the seven lights, the learning procedure removed all sensors
from all the phases, resulting in the lights acting as static lights:
lights 1, 2, 5, and 7 (see Figure 4 for numbering). The phase
durations seen on all of these lights except light 5 were nearly
identical to the durations found when we optimized static-control
lights: the other three were within 2 sec (out of 86 sec total cy-
cle length) of the optimized static-control light durations. At
least this small amount of variation (if not more) is expected
from a stochastic search process, such as NASH.

The learning procedure also found several different ways
to, in effect, remove dedicated-left phases, especially at the
most congested intersections (for example, lights 3 and 6 in
Figure 4).6 This behavior seems especially interesting, given
the reduced capacity that is generally seen at intersections with
many dedicated lefts [42].

One approach that the system automatically discovered to
remove dedicated lefts from the less-used roads was to match
the bids of the dedicated left to the direct-through phase that
was just before it, in the round-robin ordering. Specifically, on
light 6 (Figure 4), phases 1 and 2 share a matched set of sensor
weights and phases 3 and 4 share another matched set of sensor
weights. This means that the direct-through/dedicated-left pair
will always tie on any auctions. Since the direct-through phases
are always before the dedicated left phases in the round-robin
cycle when starting from an opposing direction (e.g., phase 1
will be before phase 2, when starting from either phase 3 or
phase 4), this has the interesting property that cycling between
directions (cycling from north-south to east-west or vice-versa)
will always go to the through phase.

In visual examination of this intersection during simulation,
it often happened that phases 1 and 2 started giving high bids
for the light, while phase 3 (east-west direct-through) was ac-
tive but still greedy. As soon as phase 3 is slightly longer than
its priority duration, the light changes to using phase 1 (north-
south direct-through), without going through the phase 4 (the

6The largest amount of congestion is at light 4. However, due to the com-
plexity of that intersection, there was no dedicated-left phase to remove.
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dedicated left). Similar switching is only occasionally seen for
the opposite pairs. Since Shoreline has much heavier traffic
than Terra Bella (the east-west road), this happened much less
often. Both sets of dedicated lefts happen less often but are still
possible.

The learned controllers also used the time differences be-
tween release durations to favor traffic on the phases that were
more prone to long lines. For example, at light 4 (Figure 4), the
priority duration given to the 101-Freeway exit ramp was 10×
longer than the priority duration given to La Avenida (the small
road that enters the intersection from the east). With this 10×
weighting, we see the traffic delays suffered by the La Avenida
traffic approximately equal (on a per-car basis) to the delays
seen by the 101-exit-ramp traffic.

Finally, the learned lights used the number of incoming lanes
allowed to pass through a phase as another way to bias the auc-
tion towards the dominant direction of traffic. For example, at
light 3, the combined weight given to the sensors of Shoreline
traffic is five times that given to the Pear-Ave traffic (the east-
west road at that intersection). This was done by giving all of
the sensors the maximum-allowed positive or negative weights
and simply relying on the number of sensors (and hence the
number of lanes) to provide priority to larger streets.

7. Results: Chicago, Illinois

In Chicago, we considered twenty lights in the River North
area shown in Figure 1 (Bottom). The area, as imported into
SUMO, is shown in Figure 13.

The steps in the optimization of the twenty traffic lights in
Chicago proceeded in the same manner as the optimization of
the lights in the Mountain View area. To avoid redundancy, we
will provide only a summary of the procedure and results and
refer the reader to Section 6 for details.

7.1. Calibrating to Real Lights

In order to be able to establish a realistic baseline, as we
did with Mountain View, we once again used NASH to cali-
brate the lights in our simulations (see Section 4). Similarly
to the previous experiment, anonymized, fully privacy preserv-
ing, travel-tracks of Android users were collected over several
months. For our tests, approximately 18,000 cars were used in
the simulation. By using NASH to adjust the lights schedules,
we were able to reduce the average discrepancy between the ac-
tual and the predicted travel times to approximately 43 seconds.
For comparison, in the analogous procedure using the Mountain
View, California data, the error was reduced to 51 seconds (see
Figure 11).

7.2. Testing the New Traffic Light Controllers

Once the settings for the deployed lights are estimated, the
next step is to attempt to change the light settings to improve
the traffic flow. In the first experiment, NASH is employed to
modify the phase durations and offsets of the 20 lights (e.g. op-
timize static lights). In the second experiment, NASH is used to
optimize the parameters of the micro-auction based controllers.

Figure 13: Chicago roadways as imported in to SUMO. The
twenty lights to be optimized are marked.
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Figure 14: Progress of average time of travel as learning of con-
troller parameters occurs for the 20 lights in Chicago. Lower is
better. 1.0 on the Y-Axis is the base performance. Variations
from 1.0 are due to perturbations in the controller’s settings.
TOP: Optimization of fixed light schedules. BOTTOM: Opti-
mization of micro-auction based traffic lights. Each run is al-
lowed 2000 evaluations (controller settings) to try. Note that
many controller settings result in performance worse than the
initial setting; these are discarded. Also note that the learning
of micro-auction controllers allows the average time of travel
to drop substantially more than optimizing the fixed-time con-
trollers.

Unlike the previous experiments with Mountain View, CA. we
do not revisit the planning based approach for this scenario.

Learning, as it progresses, is shown in Figure 14. From the
two graphs, we see several important trends. First, optimizing
the fixed-light controllers (Top) does not dramatically improve
the performance of the fixed-light controllers in terms of the av-
erage time to destination. Compared to the default settings, the
best setting found revealed an improvement of approximately
7%.

In contrast, there are much larger variations in the optimiza-
tion of the auction based controllers. In Figure 14 (Bottom),
we see that in the 2000 trials, many times the settings are sig-
nificantly worse than the original. As explained earlier, these
settings are tried and then discarded. Most importantly, how-
ever, in the cases in which better controller settings are found,
a substantial improvement over the fixed-light controllers is ob-

tained. With the auction-based light controllers, the learning
process discovered settings that reduced the mean travel time
by 25%.

As with the study conducted with the Mountain View, Cali-
fornia, the settings for the light controllers are found by training
with multiple reality-based data sets. This helps to account for
variability in traffic flows as well as leaves the actual data un-
touched for testing. For the final results, reported below, we use
the actual data.

Tables 4 and 5 compare the mean-travel times and the ca-
pacity changes to NASH-calibrated lights. As witnessed in
Mountain View, both the optimized static and the auction-based
traffic lights provide improvements in the mean-travel times and
in the capacity of the streets: up to 25% faster mean-travel time
for the auction-based traffic lights and, during the main com-
mute hours, up to 150% more capacity during low rush hours.

The traffic problems addressed in this region of Chicago are
different than those in Mountain View, California. In Mountain
View, most of the traffic delay was associated with long, per-
sistent, queues at intersection 4 in Figure 4 (Shoreline and the
northbound exit from 101 and 85) and with the addition of traf-
fic onto Shoreline from that exit. In the Chicago study, there is a
busy freeway exit at intersection 12 in Figure 13, but the traffic
clears from the ramp on most light cycles. Instead, the delays
in traversing this section are largely due to repeated stops at
the traffic lights along W. Ohio (intersections 12, 13, and 14 in
Figure 13) and along W. Ontario (intersections 9, 10, and 11).

The optimized static lights are able to increase capacity and
decrease travel times by changing the phase duration allocation
to better match the dominant directions of congestion at the dif-
ferent intersections, most significantly increasing phase dura-
tions for east-west traffic as it crosses N. Wells and N. Franklin
and increasing the phase duration for north-south traffic at N.
Orleans and W. Ontario (intersection 9) by 14%. The phase off-
set between the lights was unchanged from the matched lights
to the optimized static traffic lights. This helps explain why
the travel times had a smaller improvement than the capacity
measurements: many cars still slowed or stopped for the same
sets of lights, but the length of the queues were smaller (even
with increased traffic load), due to the optimized match to the
historically-observed congestion.

The explanation for the improved capacity for the actuated
lights is similar but more indirect. We cannot simply examine
the phase durations, since the duration is demand driven and
changes throughout the simulation. Furthermore, the average
change in phase duration from matched to actuated lights (that
is, the difference in the percent time that a given phase was
green over the full simulation run) was not consistent across
the different time windows. The most noticeable and consistent
change between the static and auction-based light simulations
was that the size of the queues for the major intersections were
shorter in all directions using the actuated traffic lights. The
first car to the intersection would typically still need to slow or
stop but, the following cars in the same wave would typically
make it through the same cycle. Examining the way that the
sensors were used by the actuated lights, there seems to be a
bias towards using all of the sensor readings to establish the bid
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Table 4: Chicago: Mean-travel-time (MTT) changes under matched demand

Peak rush (8:00–9:30 am) Average rush (9:00–10:30 am) Low rush (9:30–11:00 am)
7516 observed cars 6834 observed cars 6390 observed cars
87.18 sec observed MTT 86.42 sec observed MTT 85.71 sec observed MTT

Optimized static lights 2% faster (85.63 sec MTT) 3% faster (84.02 sec MTT) 3% faster (83.17 sec MTT)
Learned Auction lights 24% faster (66.40 sec MTT) 23% faster (66.57 sec MTT) 25% faster (64.41 sec MTT)

Table 5: Chicago: Capacity changes under matched MTTs

Peak rush (8:00–9:30 am) Average rush (9:00–10:30 am) Low rush (9:30–11:00 am)
7516 observed cars 6834 observed cars 6390 observed cars
87.18 sec observed MTT 86.42 sec observed MTT 85.71 sec observed MTT

Optimized static lights +9% (8195 cars) +26% (8601 cars) +31% (8362 cars)
Learned Auction lights +26% (9505 cars) +95% (13360 cars) +150% (15965 cars)

of the phase for the dominant direction of travel (intersections
1, 2, 3, 9, 11, 12, 14, 15), with the weighting on the sensors
leading the bid to pay more attention to traffic in the dominant
direction but to yield the light if that traffic is less than seen on
the non-dominant direction sensors.

Interestingly, as with many of the optimized Mountain View
lights, most of the protected-left phases were effectively re-
moved from the light sequence. In most cases, this was done by
having the through-traffic phases with sensor weights that are
“matched opposites” (that is, all the sensor weights for phase 3
are the negative of the weights for phase 1, in Figure 2). Here,
the protected-left can be effectively removed by omitting sen-
sors from that phase (lights 1, 3, 4, 7, 9, 16, 19) or by matching
the sensor weights for the protected left to the previous through-
traffic phase (lights 2, 3, 7, 9, 15, 16, 19).7

8. Conclusions and Future Work

There are two primary contributions of this work. First, we
have introduced the micro-auction based traffic light controllers
and a simple learning/optimization procedure to make them ef-
fective. The controllers do not necessitate communication be-
tween lights or between cars and lights; only local induction
loops sensors are used. Rather than coming up with ad hoc rules
for traffic priorities and scheduling, each sensor’s information is
placed within the framework of a micro-auction system. When
a phase change is permitted, the light controller collects bids
from all the phases and conducts a real-time micro-auction.

We tested the controllers on real traffic loads observed over
months of traffic collection. In Mountain View, California, the
load was dominated by the confluence of a freeway exit ramp
with a congested arterial road. Next, we studied real traffic
in Chicago, Illinois, to determine the controller’s performance
in within-city grids. For both cities, we employed the exact
same method to estimate the performance of the deployed traf-
fic lights with no changes to the algorithms. We successfully

7Lights 3, 7, 9, 16, and 19 appear on both of these lists since their two
protected-left phases used both of the strategies.

demonstrated that with auction-based controllers, the improve-
ments in capacity and mean travel times in both cities were ex-
tremely promising. Perhaps equally as interesting as the quan-
titative results are the common ways in which the learning pro-
cedures worked with the auction-based controllers in finding
similar strategies for improving traffic in both cities: eliminat-
ing protected lefts, weighting bids higher from dominant roads,
and even negatively weighting bids from less traveled roads.
These strategies were automatically determined; none were pre-
programmed.

The second contribution of this work is a method through
which the program schedules of currently installed traffic light
can be approximated. This addresses an important practical is-
sue in measuring the benefits of new traffic light controllers. For
the traffic researcher, two classes of crucial data have become
increasingly available. First, detailed maps of the streets and
the precise locations of the traffic lights is publicly available
through a number of sources. Second, through the increased
usage of personal cell-phone based GPS systems, an enormous
amount of travel-tracks have been amassed. What is often lack-
ing, however, is detailed knowledge of the existing traffic light
schedules and traffic light response behaviors. This paper has
presented a simulation-based approach to approximate the be-
havior of installed lights. This provides a method to create a
solid baseline from which to quantitatively measure improve-
ments.

There are several areas of future research that are natural
next steps. First, with respect to our procedures used to de-
termine the schedules of the currently deployed lights, in this
study, we only considered matching the timings of static-lights.
Nonetheless, it should readily possible to adapt the same meth-
ods presented here to learning the parameters for lights that in-
corporate induction loop sensors. We suspect that this will pro-
vide improvements even in the scenarios considered here.

Second, in this study, the planning-based lights did not per-
form as well as the auction-based system. In the future, if
planning-based lights are reexamined, further parameterization
of the sensor placement and readings should be considered, de-
spite the potential for a priori setting weights based on physi-
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cal constraints. This may require new, more complex learning
algorithms that explicitly model the interactions between pa-
rameters; many have been explored in genetic algorithm litera-
ture [30, 32, 31], among other places.

Third, a large amount of research has been conducted to-
wards lights that communicate between each other and with
cars. If this form of communication is available, it can be easily
incorporated into auction based models. In the simplest man-
ner, the induction loop sensors can be replaced with counters
revealing the presence of cars through communication chan-
nels. However, more interesting interactions are also possible.
If there is higher priority traffic (for example emergency vehi-
cles or lanes that need right-of-way for event traffic manage-
ment), in an auction based system their weights can be appro-
priately accounted for in a phase’s bidding process to reflect the
urgency of travel.

The focus of this paper was not in exposing the auction me-
chanics externally, but rather using the auction as a guiding
principle for internal light controls. In the future, if lights do
communicate with cars, it is conceptually easy to incorporate
tolls and payment priorities into our auction process. If each
car has the ability to virtually “bid” on how much it is willing
to pay to make it through the lights, the auction-based mecha-
nisms support this by altering the weights of the bids that are
received into the micro-auction. Of course, setting the weights
and the algorithms to be fair will require careful consideration;
nonetheless, the mechanisms to support monetary bidding are
provided through these learned auctions-based controllers.
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