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Abstract

We introduce a data-driven model to pre-
dict battery consumption of apps. The
state-of-the-art models used to blame battery
consumption on apps are based on micro-
benchmark experiments. These experiments
are done under controlled conditions where
power measurements of each internal re-
source (CPU, Bluetooth, WiFi, ...) are read-
ily available. We empirically verify that such
models do not capture the power consump-
tion behavior of mobile devices in the wild
and propose instead to train a regression
model using data collected from logs. We
show that this learning approach is correct
in the sense that under mild assumptions, we
can recover the true battery discharge rate of
each component. Finally, we present experi-
mental results where we consistently outper-
form a model trained on micro-benchmarks.

1. Introduction

With more than one billion users worldwide, mobile
devices have surpassed the popularity of personal com-
puters. Social networking, media streaming, text mes-
saging, and navigation are among the many ways that
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consumers use these devices. This versatility, how-
ever, has come at the expense of deteriorating battery
life. To address this problem, mobile device manu-
factures have invested a lot of effort into improving
battery capacity. However, battery improvements de-
velop at a slower pace than the current market requires
(Schlachter, 2013).

Another way to improve battery life is through soft-
ware engineering, minimizing the amount of battery
used by apps. Of course, before it can be minimized,
an app’s battery usage must first be measured. While
measuring the battery consumption of a mobile device
is typically straightforward, attributing that consump-
tion to the individual apps running on the device is
more challenging, and is commonly done in two steps:

1. Tracking how much the app uses each hardware
component (such as Bluetooth, CPU, camera,
etc).

2. Modeling how much power each hardware compo-
nent drains when it is in use.

The modeling problem has received the attention of
a substantial body of literature (see Section 1.1).
However, nearly all previous work has a common
caveat: Model parameters were tuned by exercising
each hardware component separately in carefully con-
trolled micro-benchmark experiments performed in a
laboratory. Even in cases where real-world data was
used to estimate model parameters, the learned mod-
els were evaluated in a laboratory setting. However,
laboratory experiments are inadequate for estimating
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or validating models that will ultimately be used to
predict the battery consumption of apps used by ac-
tual consumers for the following reasons:

• Even in an experimental setting, it is hard to com-
pletely isolate a particular hardware component,
as some components must always run in the back-
ground to allow the device to function.

• The discharge rates vary from device to device de-
pending on their hardware and operating systems,
and it is impractical to estimate parameters for all
components on all devices and all OS versions..

• The battery consumption rates of many hardware
components is not the same in a laboratory as dur-
ing real-world operation. For instance, the radio
will transmit at a higher power when it is farther
from a tower (Ding et al., 2013). Accurately cap-
turing all possible variations of the power profile
of a component is difficult.

• By training each component model separately,
one cannot capture the interactions between dif-
ferent components. Evidence of the importance of
correlations between metrics is given in (Peltonen
et al., 2015).

In view of these problems, we propose a data-driven
method to jointly estimate the discharge rates of all
hardware components. Our data consists of battery
discharge reports from thousands of users over sev-
eral days of usage. These reports contain information
about the components used by each app during a par-
ticular period of time as well as the battery discharge,
measured in milliampere-hours, over this period. Our
model parameters are learned by performing linear re-
gression on these observables. We provide theoreti-
cal evidence that the estimated parameters are accu-
rate. We also empirically measure the accuracy of our
models by using them to predict the battery usage of
apps on specially-instrumented devices. To the best
of our knowledge, ours is the first work to both es-
timate and evaluate battery consumption models on
real-world data.

1.1. Related Work

A large body of literature has attempted to model the
battery usage of mobile devices, with much of it fo-
cused on network activity. For example, Balasubra-
manian et al. (2009) model the power associated with
network activity as a finite state machine. The authors
also discuss the existence of high energy consumption
states. These states not only consume power while be-
ing used but seem to keep draining power after data
transfers have finished. Similarly, Rosen et al. (2015)
show that several apps persist on their foreground net-
work activity even after moving to the background. In

Hardware Component Model Type

CPU Frequency + Utilization

GPU Frequency + Utilization

Screen Brightness Level

WiFi FSM + Signal Strength

3G/LTE FSM + Signal Strength

WiFi Beacon WiFi Status

Cellular Paging Cellular Status

SOC Suspension Constant

Table 1. Summary of power model used by (Chen et al.,
2015)

fact, this activity persists sometimes for even a day,
unnecessarily wasting data and battery. Ding et al.
(2013) propose a way to incorporate signal strength
into the network-battery model showing that a poor
signal is associated with greater battery consumption.
In all these papers, however, the model parameters are
tuned and validated in microbenchmark experiments.

Chen et al. (2015) introduce a complex model that can
be viewed as the sum of 8 different models, each one ac-
counting for one of the components shown in Table 1.
The authors deployed their model via an app to thou-
sands of users to understand their power consumption
behavior. Despite analyzing battery consumption “in
the wild”, the models themselves are estimated via
laboratory experiments. On the other hand, Peltonen
et al. (2015) collect millions of user reports and esti-
mate the influence of each metric on battery discharge
as a function of their mutual information. But their
approach is evaluated in a laboratory setting.

2. Setup

We will learn a battery consumption model from
anonymized reports r = (x, y) ∈ Rd × R. Each re-
port spans a contiguous time period (typically 1 day
for phone and a few days for tablets) on a particular
device. The report consists of a vector x = (x1, . . . , xd)
where each xi represents how much of a resource was
consumed during the span of a report. For instance,
the number of bytes transferred via WiFi, number of
crashes, gps on time; the full list of features used in
our model can be found in Table 2. Each report also
contains a scalar y corresponding to the total bat-
tery consumed by the device measured in milliampere-
hours (mAh). We assume there exists a weight vector
w ∈ Rd such that w>x ≈ y. Our goal is to estimate
a weight vector ŵ ∈ Rd such that ŵ ≈ w. The esti-
mated weight vector can then be used in two ways:

• Predicting power consumption at device
level. Given a vector x representing the resource
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usage of a device during a time period, ŵ>x is an
estimate of the battery consumption of the device
during the period. Although this consumption
can be directly measured without the need for a
model, this step can be useful for model evalua-
tion.

• Predicting power at an app level. Given a
vector x representing the resource usage of a single
app during a time period, ŵ>x is an estimate of
the battery consumption of the app during the
period.

3. Power Allocation

Using the model introduced in section 2 standard re-
sults ensure that the prediction of total power will be
accurate on new reports. Can we also guarantee that
high accuracy in total prediction power implies a cor-
rect allocation of power consumption blame to each
app?

In this section we answer the above question affirma-
tively under certain natural assumptions.

Assumption 1. There exists w ∈ Rd such that for
any sequence of reports xi the total power consumption
of report i is given by yi = w>xi+εi, where εi are i.i.d.
random variables with E[εi] = 0 and there exists R > 0

such that E[eηεi ] ≤ e
R2η2

2 for all η ∈ R.

The assumption on the exponential moment of the
noise is weaker than assuming that the noise falls over
the interval [−R,R]. (We defer the proof of the The-
orem to the full version of the paper.)

Theorem 1. Let Xm = (x1, . . . ,xm) be the ma-
trix whose columns are given by the reports, ym =
(y1, . . . , yn) be the vector formed by the observed power
consumptions and let Vm = λI + XmX>m. Let also
ŵ = V−1m Xmym denote the solution to our optimiza-
tion problem. Then, for any δ > 0, with probability at
least 1− δ over the randomness of the noise we have

‖ŵ − w‖ ≤ R

√√√√2dn log
(

1+mL2

λ

δ

)
λ+ σmin

+
λ‖w‖

λ+ σmin
,

where σmin denotes the minimum eigenvalue of XmX>m
and L = maxi∈{1,...,m} ‖xi‖.
Corollary 1. If σmin ≥ mσ for some σ > 0 then

‖ŵ −w‖ ≤M
√

2dn log(1 +mL2) + log(1/δ)

1 +mσ

+
1

1 +mσ
‖w‖

= O
(
M

√
log(m) + log(1/δ)

σm
+
‖w‖
σm

)

The previous corollary gives us conditions for which,
given enough data, our algorithm will find the true
discharge rate for each component. In particular,
we require the eigenvalues of the covariance matrix
1
mXmX>m to be bounded away from zero. It is easy to
show that with high probability this property of the
covariance matrix holds when there is no set of com-
ponents that is perfectly correlated. Moreover, this
condition can be empirically verified and Figure 1(a)
shows that the smallest eigenvalue of the covariance
matrix is roughly 0.2 � 0. This implies we can cor-
rectly allocate blame to each component. Further-
more, if the power drainage of an app corresponds to
the sum of the power drainage of its components, we
can then accurately allocate blame to apps.

4. Experiments

Here we report the performance of our model and com-
pare it against a model trained on micro-benchmarks.
The micro-benchmark (MB) model was trained by us-
ing controlled laboratory experiments where each com-
ponent was ran on isolation and the power used by
the phone was regressed against that particular com-
ponent usage. Our data consists of a sample from 19
days of reports or approximately 300, 000 reports cov-
ering a varied set of devices. A more detailed descrip-
tion of the types of devices found in our training set
can be found in Figure 1(b). Our model was trained
using stochastic gradient descent on the square loss.
Our test set consists of m = 19, 000 unseen examples.
Figure 2 reports the distribution of errors, for both
models, between the predicted battery consumption
and the true battery consumption reported by the de-
vice.

Notice that our model consistently outperforms the
model trained on micro-benchmarks. And in fact the
mean prediction of our model is 8x better than the MB
model.

To validate the way our model allocates battery blame
to different components we conducted various experi-
ments with a portable power monitor on a Nexus 5X.
The experiments were designed to run certain apps
while measuring the amount of battery drained. Given
that we can control the apps being used we are able to
come up with a ground truth on how much power each
app was consuming. In Table 4 we report the errors
on the predictions of our model and the MB model.
In this experimental setup we are again achieving bet-
ter accuracy across the board. This is remarkable since
the MB model was trained under laboratory conditions
and we therefore expect it to be better, yet only on a
couple of examples does it beat our learned model.
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mobile active time full wakelock time partial wakelock phone on time

gps on time bluetooth on low power mode enabled time mobile bytes rx

mobile bytes wifi bytes rx wifi bytes tx wifi on

wifi running time wifi scan time wifi scan full wifi lock time

system kernel overhead time wakeup kernel wakeup count app wakeup count

idle screen brightness dark time screen brightness dim time screen brightness medium

screen brightness light time screen brightness time wifi strength none time wifi signal strength poor time

wifi signal strength moderate time wifi signal strength good wifi signal strength great time wifi signal strength none count

wifi signal strength poor wifi signal strength moderate count wifi signal strength good count wifi signal strength great

signal strength none or unknown time signal strength poor time signal strength moderate time signal strength good time

signal strength great time signal strength none or unknown signal strength poor count signal strength moderate count

signal strength good signal strength great count process crashes process anrs

cpu user time cpu system time cpu power flashlight count

audio time audio video time video count

Table 2. Features included in the model

App Relative error (learned) Relative error (MB)

freewarmer 14.7% 58.9%

music 54.5% 39.7%

mytracks 0.35% 87.6%

screen 7.5% 61.2%

voltair 15.8% 71.9%

youtube 43.4% 86.2%

chrome 69% 59.9%

Table 3. Results of battery prediction in reports labeled
by portable power monitor. The columns correspond re-
spectively to the relative error (absolute mAh error / true
mAh consumption) of the learned model and the micro-
benchmark (MB) model.
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Figure 1. (a) Distribution of eigenvalues of empirical co-
variance matrix. Notice that the smallest eigenvalue is
bounded away from zero as required by Theorem 1. (b)
Distribution of devices in our training data.

Figure 2. Absolute prediction error for our learned model
(in blue) and the micro-benchmark model (in green).

5. Conclusion and Open Problems

We introduced a data-driven model for battery pre-
diction. Unlike previous work, our model does not re-
quire the use of controlled experiments. Our model is
therefore easier to train, adaptive to different usage
conditions and more robust to changes in software.
Moreover, we demonstrated that this learned model
consistently outperforms a model trained on micro-
benchmark experiments across different tasks.

A natural extension of this work is that of non-linear
models. Whereas we believe the assumptions made
in this paper are reasonable, preliminary experiments
have shown that non-linear models can achieve bet-
ter accuracy than linear ones. However, if a device’s
battery consumption cannot be decomposed as a sum
of each component’s consumption, it is non-trivial to
solve the battery attribution problem. An interesting
question is whether a set of natural assumptions for
this problem exist that would induce a unique alloca-
tion rule. More importantly, if such allocation exists,
would there be an analog to Theorem 1 for it?
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