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Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)

! “Hello my name is Heiga Zen”

Machine translation (MT)
“Hello my name is Heiga Zen”! “Ich heiße Heiga Zen”

Text-to-speech synthesis (TTS)

“Hello my name is Heiga Zen”!
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Speech production process
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Typical �ow of TTS system

Sentence segmentation

Word segmentation

Text normalization

Part-of-speech tagging

Pronunciation

Prosody prediction

Waveform generation

TEXT

Text analysis

SYNTHESIZED

SEECH

Speech synthesis
discrete ) discrete

discrete ) continuous

NLP

Speech

Frontend

Backend
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Speech synthesis approaches

Rule-based, formant synthesis [�] Sample-based, concatenative
synthesis [�]

Model-based, generative synthesis
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Speech synthesis approaches

Rule-based, formant synthesis [�] Sample-based, concatenative
synthesis [�]

Model-based, generative synthesis

| text=”Hello, my name is Heiga Zen.”)p(speech=
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Probabilistic formulation of TTS

Random variables

X Speech waveforms (data) Observed
W Transcriptions (data) Observed
w Given text Observed
x Synthesized speech Unobserved

Synthesis
• Estimate posterior predictive distribution
! p(x | w,X ,W)

• Sample ¯

x from the posterior distribution
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Probabilistic formulation

Introduce auxiliary variables (representation) + factorize dependency

p(x | w,X ,W) =

y X

8l

X

8L

�
p(x | o)p(o | l, �)p(l | w)

p(X | O)p(O | L, �)p(�)p(L | W)/ p(X )

 
dodOd�

where

O,o: Acoustic features
L, l: Linguistic features

�: Model

X W w

x

L lO

�

o
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Approximation (�)

Approximate {sum & integral} by best point estimates (like MAP) [�]

p(x | w,X ,W) ⇡ p(x | ˆ

o)

where

{ˆ

o, ˆl, ˆO, ˆL, ˆ�} = arg max

o,l,O,L,�

�

p(x | o)p(o | l, �)p(l | w)

p(X | O)p(O | L, �)p(�)p(L | W)

 

ˆ

o

X W w

x

L lO
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o
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Approximation (�)
Joint! Step-by-step maximization [�]

ˆO = arg max

O
p(X | O) Extract acoustic features

ˆL = arg max

L
p(L | W) Extract linguistic features

ˆ� = arg max

�

p(

ˆO | ˆL, �)p(�) Learn mapping

ˆ

l = arg max

l

p(l | w) Predict linguistic features

ˆ

o = arg max

o

p(o | ˆ

l, ˆ�) Predict acoustic features

¯

x ⇠ f
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Representations: acoustic, linguistic, mapping
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Representation – Linguistic features

Hello, world.

Hello, world.

hello world

h-e2 l-ou1 w-er1-l-d

h e l ou w er l d Phone: voicing, manner, ...

Syllable: stress, tone, ...

Word: POS, grammar, ...

Phrase: intonation, ...

Sentence: length, ...

! Based on knowledge about spoken language
• Lexicon, letter-to-sound rules
• Tokenizer, tagger, parser
• Phonology rules
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Representation – Acoustic features

Piece-wise stationary, source-�lter generative model p(x | o)

Pulse train (voiced)

White noise (unvoiced)

Speech

Vocal source Vocal tract filter

Fundamental
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0

[dB]

8 [kHz]

Cepstrum, LPC, ...

e(n)

x(n) = h(n)*e(n)

h(n)

overlap/shift

windowing

! Needs to solve inverse problem
• Estimate parameters from signals
• Use estimated parameters (e.g., cepstrum) as acoustic features
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Representation – Mapping

Rule-based, formant synthesis [�]

ˆO = arg max

O
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! Hand-crafted rules on knowledge-based features
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Representation – Mapping

HMM-based [�], statistical parametric synthesis [�]
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! Replace rules by HMM-based generative acoustic model
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HMM-based generative acoustic model for TTS

• Context-dependent subword HMMs
• Decision trees to cluster & tie HMM states! interpretable
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HMM-based generative acoustic model for TTS

• Non-smooth, step-wise statistics
! Smoothing is essential

• Dif�cult to use high-dimensional acoustic features (e.g., raw spectra)
! Use low-dimensional features (e.g., cepstra)

• Data fragmentation
! Ineffective, local representation

A lot of research work have been done to address these issues
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Alternative acoustic model

HMM: Handle variable length & alignment
Decision tree: Map linguistic! acoustic

yes noyes no

...

yes no

yes no yes no

Statistics of acoustic features o

Linguistic features l

Regression tree: linguistic features! Stats. of acoustic features

Replace the tree w/ a general-purpose regression model
! Arti�cial neural network
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FFNN-based acoustic model for TTS [6]
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RNN-based acoustic model for TTS [�]
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NN-based generative acoustic model for TTS

• Non-smooth, step-wise statistics
! RNN predicts smoothly varying acoustic features [�, 8]

• Dif�cult to use high-dimensional acoustic features (e.g., raw spectra)
! Layered architecture can handle high-dimensional features [�]

• Data fragmentation
! Distributed representation [��]

NN-based approach is now mainstream in research & products
• Models: FFNN [6], MDN [��], RNN [�], Highway network [��], GAN [��]
• Products: e.g., Google [��]
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NN-based generative model for TTS
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Knowledge-based features! Learned features

Unsupervised feature learning

x(t) 
(raw FFT spectrum) 

Acoustic
feature
o(t)

)

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0hello

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
w

orld

w(n)

(1-hot representation of word)

w(n+1)

~
x(t)

Linguistic
feature
l(n)

)
l(n-1)

• Speech: auto-encoder at FFT spectra [�, ��]! positive results
• Text: word [�6], phone & syllable [��]! less positive
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Relax approximation
Joint acoustic feature extraction & model training

Two-step optimization! Joint optimization

8
><

>:

ˆO = arg max

O
p(X | O)

ˆ� = arg max

�

p(

ˆO | ˆL, �)p(�)

+
{ˆ�, ˆO} = arg max

�,O
p(X | O)p(O | ˆL, �)p(�)

Joint source-�lter & acoustic model optimization
• HMM [�8, ��, ��]
• NN [��, ��]
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Relax approximation
Joint acoustic feature extracion & model training

Mixed-phase cepstral analysis + LSTM-RNN [��]
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Relax approximation
Direct mapping from linguistic to waveform

No explicit acoustic features

{ˆ�, ˆO} = arg max

�,O
p(X | O)p(O | ˆL, �)p(�)

+
ˆ� = arg max

�

p(X | ˆL, �)p(�)

Generative models for raw audio
• LPC [��]
• WaveNet [��]
• SampleRNN [��]
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WaveNet: A generative model for raw audio

Autoregressive (AR) modelling of speech signals

x = {x0, x1, . . . , xN�1} : raw waveform

p(x | �) = p(x0, x1, . . . , xN�1 | �) =

N�1Y

n=0

p(x
n

| x0, . . . , xn�1,�)

WaveNet [��]
! p(x

n

| x0, . . . , xn�1, �) is modeled by convolutional NN

Key components
• Causal dilated convolution: capture long-term dependency
• Gated convolution + residual + skip: powerful non-linearity
• Softmax at output: classi�cation rather than regression
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WaveNet – Causal dilated convolution

���ms in �6kHz sampling = �,6�� time steps
! Too long to be captured by normal RNN/LSTM

Dilated convolution
Exponentially increase receptive �eld size w.r.t. # of layers

Input

Output

Hidden
layer3

Hidden
layer2

Hidden
layer1

. . .

p(x  | x   ,..., x   )n n-16n-1

xn-1

xn-2

xn-3

xn-16
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WaveNet – Non-linearity

Residual block

Residual block

Residual block

Residual block

30

ReLU

1x1256

ReLU

1x1256

Softm
ax

256

Skip connections

0

p(x  | x ,..., x   )n n-1

: 1x1 convolution1x1

ReLU : ReLU activation

Gated : Gated activation
Softmax : Softmax activation

...

2x1 dilated

Gated

1x1

1x1
256

512

Residual block

To residual block

To skip connection

+

...
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WaveNet – Softmax

Time
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m

p
litu

d
e

Analog audio signal
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WaveNet – Softmax

Time

A
m

p
litu

d
e

Sampling & Quantization
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WaveNet – Softmax
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Categorical distribution → Histogram

  - Unimodal

  - Multimodal

  - Skewed

  ...
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WaveNet – Conditional modelling

Embedding
at time n 

hn

Linguistic
features l

2x1 dilated

Gated
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1x1
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WaveNet vs conventional audio generative models

Assumptions in conventional audio generative models [��, �6, ��, ��]
• Stationary process w/ �xed-length analysis window
! Estimate model within ��–��ms window w/ �–�� shift

• Linear, time-invariant �lter within a frame
! Relationship between samples can be non-linear

• Gaussian process
! Assumes speech signals are normally distributed

WaveNet
• Sample-by-saple, non-linear, capable to take additional inputs
• Arbitrary-shaped signal distribution

SOTA subjective naturalness w/ WaveNet-based TTS [��]
HMM LSTM Concatenative WaveNet
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Relax approximation
Towards Bayesian end-to-end TTS

Integrated end-to-end
8
><

>:

ˆL = arg max

L
p(L | W)

ˆ� = arg max

�

p(X | ˆL, �)p(�)

+
ˆ� = arg max

�

p(X | W , �)p(�)

Text analysis is integrated to model

X W w

�

ˆ�

x
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Relax approximation
Towards Bayesian end-to-end TTS

Bayesian end-to-end
8
<

:

ˆ� = arg max

�

p(X | W , �)p(�)

¯

x ⇠ f
x

(w, ˆ�) = p(x | w, ˆ�)

+
¯

x ⇠ f
x

(w,X ,W) = p(x | w,X ,W)

=

Z
p(x | w, �)p(� | X ,W)d�

⇡ 1

K

KX

k=1

p(x | w, ˆ�
k

)  Ensemble

Marginalize model parameters & architecture

X W w

�

x
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Outline

Generative TTS

Generative acoustic models for parametric TTS
Hidden Markov models (HMMs)
Neural networks

Beyond parametric TTS
Learned features
WaveNet
End-to-end

Conclusion & future topics



Generative model-based text-to-speech synthesis

• Bayes formulation + factorization + approximations

• Representation: acoustic features, linguistic features, mapping
� Mapping: Rules! HMM! NN
� Feature: Engineered! Unsupervised, learned

• Less approximations
� Joint training, direct waveform modelling
� Moving towards integrated & Bayesian end-to-end TTS

Naturalness: Concatenative  Generative

Flexibility: Concatenative⌧ Generative (e.g., multiple speakers)
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Beyond “text”-to-speech synthesis

TTS on conversational assistants

• Texts aren’t fully contained

• Need more context
� Location to resolve homographs
� User query to put right emphasis

We need representation that can

organize the world information & make it accessible & useful

from TTS generative models ,
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Beyond “generative” TTS

Generative model-based TTS

• Model represents process behind speech production
� Trained to minimize error against human-produced speech
� Learned model! speaker

• Speech is for communication
� Goal: maximize the amount of information to be received

Missing “listener”
! “listener” in training / model itself?
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Thanks!
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(4) Step-by-step maximization
e.g., statistical parametric TTS
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