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ABSTRACT

Audio event recognition, the human-like ability to identify and re-
late sounds from audio, is a nascent problem in machine percep-
tion. Comparable problems such as object detection in images have
reaped enormous benefits from comprehensive datasets – principally
ImageNet. This paper describes the creation of Audio Set, a large-
scale dataset of manually-annotated audio events that endeavors to
bridge the gap in data availability between image and audio re-
search. Using a carefully structured hierarchical ontology of 632
audio classes guided by the literature and manual curation, we col-
lect data from human labelers to probe the presence of specific audio
classes in 10 second segments of YouTube videos. Segments are pro-
posed for labeling using searches based on metadata, context (e.g.,
links), and content analysis. The result is a dataset of unprecedented
breadth and size that will, we hope, substantially stimulate the de-
velopment of high-performance audio event recognizers.

Index Terms— Audio event detection, sound ontology, audio
databases, data collection

1. INTRODUCTION

Within the domain of machine perception, we are interested in artifi-
cial sound understanding. We would like to produce an audio event
recognizer that can label hundreds or thousands of different sound
events in real-world recordings with a time resolution better than
one second – just as human listeners can recognize and relate the
sounds they hear.

Recently, there have been astonishing results in the analogous
problem of image recognition [1, 2, 3]. These make use of the Im-
ageNet dataset, which provides more than 1 million images labeled
with 1000 object categories [4]. ImageNet appears to have been a
major factor driving these developments, yet nothing of this scale
exists for sound sources.

This paper describes the creation of Audio Set, a dataset and
ontology of audio events that endeavors to provide comprehensive
coverage of real-world sounds at ImageNet-like scale. Our inten-
tion is to use the dataset to create automatic audio event recognition
systems that are comparable to the state-of-the-art in recognizing ob-
jects in real-world images.

Audio event recognition has been studied from perceptual and
engineering perspectives. Warren & Verbrugge [5] were among the
first to connect perceptual properties to acoustic features in their
study of bouncing and breaking sounds. Ballas [6] probed the per-
ception of 41 short events obtained from a sound effects collection by
relating identification time to acoustic features, measures of famil-
iarity, and environmental prevalence. Gygi, Kidd & Watson [7] used
multidimensional scaling to identify acoustic factors such as tem-
poral envelope and pitch measures that predicted similarity ratings

among 50 environmental sounds. LeMaitre and Heller [8] proposed
a taxonomy of sound events distinguishing objects and actions, and
used identification time and priming effects to show that listeners
find a “middle range” of abstraction most natural.

Engineering-oriented taxonomies and datasets began with Gaver
[9] who used perceptual factors to guide the design of synthetic
sound effects conveying different actions and materials (tapping,
scraping, etc.). Nakatani & Okuno [10] devised a sound ontol-
ogy to support real-world computational auditory scene analysis.
Burger et al. [11] developed a set of 42 “noisemes” (by anal-
ogy with phonemes) to provide a practical basis for fine-grained
manual annotation of 5.6 hours of web video soundtrack. Shar-
ing many of the motivations of this paper, Salamon et al. [12] re-
leased a dataset of 18.5 hours of urban sound recordings selected
from freesound.org, labeled at fine temporal resolution with
10 low-level sound categories chosen from their urban sound taxon-
omy of 101 categories. Most recently, Säger et al. [13] systemati-
cally constructed adjective-noun and verb-noun pairs from tags ap-
plied to entire freesound.org recordings to construct AudioSen-
tiBank, 1,267 hours of audio labeled with 1,123 adjective-noun or
verb-noun “sentiment” tags. The labels’ time resolution is limited
whole clips, which can be up to 15 min long, and there is no guaran-
tee that the word-pairs actually belong together – e.g., “talking bird”
yields mostly tracks containing both “talking” and “bird”, but very
few birds doing the talking.

Automatic systems for audio event classification go back to the
Muscle Fish content-based sound effects retrieval system [14]. EU
Project CHIL conducted an Acoustic Event Detection evaluation
[15] over examples of 16 “meeting room acoustic events” comparing
results of three systems. A similar task was included in the IEEE-
sponsored DCASE 2013 [16] which attracted 7 submissions to detect
16 “office” audio events. F-measures (harmonic mean of precision
and recall of detected events) were below 0.2, leaving much room to
improve. DCASE 2016 [17], includes an audio event detection task
based on 90 minutes of real home and outdoor recordings, carefully
annotated with 13 audio event categories spanning “bird singing” to
“washing dishes”.

Unlike previous work, Audio Set considers all sound events
rather than a limited domain. We believe that a large-scale task, in
terms of both categories and data, will enable more powerful learn-
ing techniques, and hence a step-change in system quality.

2. THE AUDIO SET ONTOLOGY

Given the goal of creating a general-purpose audio event recognizer,
we need to define the set of events the system should recognize. This
set of classes will allow us to collect labeled data for training and
evaluation. In turn, human-labeled data provides a crisp definition
of our research goal: to create a system able to predict the human



labelings from audio alone.
Rather than a flat list of audio events, we want to have events

structured into an abstraction hierarchy. In training, this indicates
classes with nonexclusive relationships; for instance we do not want
to our classifiers to attempt to separate “dog sounds” from “bark”.
During recognition, hierarchical relations allow backing-off to more
general descriptions when the classifier encounters ambiguity among
several subcategories (e.g., a sound that is recognized ambiguously
as “growl”, “bark” and “howl” can fall back to a classification of
“dog sounds”). Finally, a well-structured hierarchy can aid human
labeling by allowing a labeler to quickly and directly find the set of
terms that best describe a sound; this was also important during the
development of the event set when trying to add categories without
overlap and duplication.

This structured set of audio event categories is called the Audio
Set Ontology. The specific principles that guided its development
were:

• The categories should provide a comprehensive set that can
be used to describe the audio events encountered in real-world
recordings.

• The category of a particular audio event should correspond to
the idea or understanding that immediately comes to the mind
of a listener hearing the sound.

• Individual categories should be distinguishable by a “typical”
listener. That is, if two categories correspond to sounds that
a listener cannot easily or reliably distinguish, the categories
should be merged. Sounds that can be distinguished only by
an expert (such as particular bird species, or fine distinctions
in musical instruments) should not be separated. This is a nat-
ural condition to prevent the set becoming unwieldy, although
we recognize the possibility of extensions that expand certain
nodes with more detailed, expert, distinctions.

• Ideally, individual categories are distinct based on their sound
alone, i.e. without relying on accompanying visual informa-
tion or details of context. Thus, a sound is a “thump”, rather
than “bare foot stamping on a wooden floor”.

• The hierarchical structure allows annotators to identify the
best, most specific categories for given audio events as easily
as possible. This means that the hierarchy should not be too
deep, while the number of children in any node should rarely
be more than 10, to facilitate rapid scanning.

To avoid biasing the category set by the orientation of a par-
ticular researcher, or the limited diversity of sounds in a particular
dataset or task, we sought to start from a neutral, large-scale analysis
of web text. We seeded our audio event lexicon using a modified
form of the “Hearst patterns” [18] to identify hyponyms of “sound”,
i.e. terms that frequently occur in constructions of the form “...
sounds, such as X and Y ...” or “X, Y, and other sounds ...”, etc. Ap-
plying these rules over web-scale text yields a very large set of terms,
which are then sorted in terms of how well they represent sounds -
calculated as a combination of overall frequency of occurrence with
how exclusively they are identified as hyponyms of “sound” rather
than other terms. This gave us a starting list of over 3000 terms; as
part of the matching process, they were also resolved against Free-
base/Knowledge Graph entity/machine IDs (MIDs) [19], which we
use as stable identifiers.

Starting from the top of the sorted list, we manually assembled
a hierarchy to contain these terms in a way that best agreed with our
intuitive understanding of the sounds. This step is subjective, but it
best captures the role of the hierarchy in supporting human labelers.

We stopped when the list seemed to be supplying terms that were
all obscure or ill-defined (e.g., “Wilhelm scream”, “The Oak Ridge
Boys”, “Earcon”, “Whump”). The resulting structure is not a strict
hierarchy as nodes may occur in several places; for instance, “Hiss”
appears under “Cat”, “Steam”, and “Onomatopoeia”. There are in
total 33 categories that appear more than once.

We refined this initial structure by comparing it with existing
audio event lists or taxonomies, including [9, 20, 11, 12, 21, 8, 17].
Our hope was that the initial list would subsume these earlier ef-
forts; in fact, numerous gaps were exposed, although eventually we
reached a point where nearly every class from other sets was cov-
ered. Some classes from other sets were not incorporated because
they were too specific, or otherwise did not meet our criteria of be-
ing readily identifiable. For instance, the urban sounds taxonomy
of [12] includes “Car radio” as a source of recorded music, which
makes sense when labeling city street ambience recordings but is too
specialized or context-dependent for our set (although we do have
“Radio” for sounds that are clearly being produced by a radio). The
165 verified-distinct sound clips used in [21] include detailed ex-
amples such “Trumpet jazz solo” and “Walking on leaves”; in our
scheme, these would be simply “Trumpet” and “Walk, footsteps”,
respectively.

We then began using this set to label recordings, as well as try-
ing to find examples for every category (as described in section 2.1
below). Feedback from the larger group of people involved led to
further modifications to the category set.

Our final list contains 632 audio event categories, arranged in
a hierarchy with a maximum depth of 6 levels; an example from
among the eight level-6 nodes is “Sounds of things”→ “Vehicle”→
“Motor vehicle”→ “Emergency vehicle”→ “Siren”→ “Ambulance
(siren)” (a category that was appropriated from the Urban Sound tax-
onomy [12]). Figure 1 shows the 50 first- and second-level nodes in
this hierarchy.

2.1. Ontology Data Release

The ontology is released1 as a JSON file containing the following
fields for each category:

• ID: The Knowledge Graph Machine ID (MID) best match-
ing the sound or source, used as the primary identifier for the
class. In Knowledge Graph, many MIDs refer to specific ob-
jects (e.g., /m/0gy1t2s, “Bicycle bell” or /m/02y 763,
“Sliding door”); when used in the ontology, they are under-
stood to mean “the sound readily associated with the specified
object”. For instance, in the case of “Sliding door”, the sound
made by someone crashing into a closed door would be ema-
nating from the door; however, it would not be the character-
isic short burst of bearing noise that suggests “Sliding door”,
so it should instead be labeled “Smash” or “Thump”.

• Display name: A brief one or two word name for the sound,
sometimes with a small number of comma-separated alterna-
tives (e.g., “Burst, pop”), and sometimes with parenthesized
disambiguation (e.g. “Fill (with liquid)”). Display names are
intended to be unambiguous even when shown without their
ancestor nodes.

• Description: A longer description, typically one or two sen-
tences, used to provide more explanation of the meaning
and limits of the class. In many cases these are based on

1g.co/audioset
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Fig. 1: The top two layers of the Audio Set ontology.

Wikipedia or WordNet descriptions (with appropriate cita-
tion URIs), adapted to emphasize their specific use for audio
events.

• Examples: As an alternative to the textual descriptions, we
also collected at least one example of the sound (excepting
“Abstract” classes, described below). At present, all exam-
ples are provided as URLs indicating short excerpts from pub-
lic YouTube videos. The exercise of finding concrete exam-
ples for each class was helpful in flushing out indistinct or
ambiguous categories from earlier versions of the ontology.

• Children: The hierarchy is encoded by including within each
node the MIDs of all the immediate children of that category.

• Restrictions: Of the 632 categories, 56 are “blacklisted”,
meaning they are not exposed to labelers because they have
turned out to be obscure (e.g., “Alto saxophone”) or confus-
ing (e.g., “Sounds of things”). Another 22 nodes are marked
“Abstract” (e.g., “Onomatopoeia”), meaning that they exist
purely as intermediate nodes to help structure the ontology,
and are not expected to ever be used directly as labels. These
flags appear in the Restrictions field.

Figure 2 shows the complete record for a single example cate-
gory, “Bird vocalization, bird call, bird song”.

3. AUDIO SET DATASET

The Audio Set YouTube Corpus consists of labeled YouTube seg-
ments, structured as a CSV file2 comprising YouTube identifiers,
start time, end time and one or more labels. Dataset segments are

2g.co/audioset

{
id: ’/m/020bb7’,
name: ’Bird vocalization, bird call, bird song’,
description: ’Bird sounds that are melodious to
the human ear.’,
citation uri: ’http://en.wikipedia.org/wiki/Bird
vocalization’,
examples: ’youtu.be/vRg6EQm8pBw?start=30&end=40’,
children: ’/m/07pggtf,/m/07pggtn,/m/07sx8x ’,
restrictions: ’’
}

Fig. 2: The full data record for one sound category from the Audio
Set Ontology. The children correspond to “Tweet”, “Chirp”, and
“Squawk”.

all 10 seconds long (except when that exceeds the length of the un-
derlying video). Each dataset segment carries one or more ontology
class labels.

3.1. Human rating

Human raters were presented with a 10-second segments including
both the video and audio components, but did not have access to the
title or other meta-information of the underlying YouTube video. If
the duration of the video was less than 10 seconds, the entire video
was used for rating. We experimented both with shorter segments
and audio-only presentation, but raters found these conditions far
more difficult, possibly due to the fine-grained nature of our audio
event ontology.

For each segment, raters were asked to independently rate the
presence of one or more labels. The possible ratings were “present”,
“not present” and “unsure”. Each segment was rated by three raters
and a majority vote was required to record an overall rating. For
speed, a segment’s third rating was not collected if the first two rat-
ings agreed for all labels.

The raters were unanimous in 76.2% of votes. The “unsure”
rating was rare, representing only 0.5% of responses, so 2:1 majority
votes account for 23.6% of the decisions. Categories that achieved
the highest rater agreement include “Christmas music”, “Accordion”
and “Babbling” (> 0.92); while some categories with low agreement
include “Basketball bounce”, “Boiling” and “Bicycle” (< 0.17).

Spot checking revealed a small number of labeling errors which
were mostly attributed to: 1) confusing labels, 2) human error, and
3) difference in detection of faint/non-salient audio events. As an
additional check we analyzed correlations between “present” labels
and words in the video’s metadata. This exposed some commonly-
misinterpreted labels, which were then removed from the ontology.
Due to the scale of the data and since majority agreement was very
high, no other other corrective actions were taken.

3.2. Selecting segments for rating

In order to obtain a sufficient number of positive ratings from a mod-
erate volume of labeling effort, it is important to send for rating only
those that have a good chance of containing particular audio events.

We used a variety of methods to identify videos that were likely
to be relevant to particular labels: About half of the audio events
corresponded to labels already predicted by an internal video-level
automatic annotation system, and we used the videos bearing the
label to provide segments for rating. The labels from the inter-
nal video labeling system are automatically generated and thus in-
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Fig. 3: Histogram of label counts over the entire 1,789,621 segment
dataset.

evitably imperfect. They are, however, based on multiple comple-
mentary sources of information, such as metadata, anchor text of
incoming links, comments, and user engagement signals, and their
reliability is greatest for popular videos which have more of these
attributes. We therefore select only videos with at least 1,000 views.

In addition, videos were selected by searching titles and other
metadata for relevant keywords. We used a ranking-based approach
where videos were scored by matching not only against the display
name of the audio event, but also, with decreasing weight, its par-
ents in the ontology. Including the term “sound” as a root node in
these searches improved the precision of results. Temporal selection
of segments with the returned videos was arbitrary, typically tak-
ing segments with a start time at 30 sec to avoid any introduction
or channel branding at the start of the video. For some of the data,
temporal selection was based on content analysis such as nearest-
neighbour search between the manually-verified clips clips and the
label-specific candidate videos.

Using all these techniques, there were some categories for which
we were unable to find enough positive examples to fully populate
the dataset, but this proportion is now very small (and shrinking).

In general we found that segments nominated by the automatic
video annotation system performed the best (49% of segments rated
present, versus 41% for the metadata-based approach), with the
caveat that not all audio classes are included. For audio classes
not included in the automatic annotations, 36% of the metadata-
based segments were rated present. The effectiveness of the content-
similarity approaches varied widely depending on the quality of the
example and the candidate set of videos.

Regardless of the mechanism by which a segment was nom-
inated, we gathered ratings for all labels associated with the seg-
ment by any method. Additionally, we always collected ratings for
“Speech” and “Music” (excepting a few experimental runs).

3.3. Dataset construction and characteristics

The released dataset constitutes a subset of the collected material:
Only “present” ratings are represented in the release. Rating was
conducted with an effort to maximize balance across audio event
labels. However, since segments can be labeled with multiple au-
dio events (including the always-rated “Speech” and “Music”), cer-
tain labels appear much more frequently. A second objective was
to avoid drawing more than one segment from any given video, to
avoid correlation of examples.

These objectives were achieved by iteratively adding segments
for the least-represented class (for which further examples are avail-
able). Out of the set of candidate segments for this audio event class,
preference is given to segments bearing the greatest number of la-
bels. We also provide maximally-balanced train and test subsets
(from disjoint videos), chosen to provide at least 50 positive exam-
ples (in both subsets) for as many classes as possible. These sets
were constructed by first collecting examples for the rarest classes,
then moving on to less-rare classes and adding more segments only
where they had not already passed the threshold of 50. Even so,
very common labels such as “Music” ended up with more than 5000
labels.

The resulting dataset includes 1,789,621 segments (4,971
hours), comprising at least 100 instances for 485 audio event cat-
egories. The remaining categories are either excluded (blacklisted /
abstract as described in section 2.1), or difficult to find using our cur-
rent approaches. We will continue to develop methods for proposing
segments for rating, and aim eventually to cover all non-excluded
classes. The unbalanced train set contains 1,771,873 segments and
the evaluation set contains 17,748. Because single segments can
have multiple labels (on average 2.7 labels per segment), the overall
count of labels is not uniform, and is distributed as shown in Fig. 3.
“Music” is particularly common, present in 56% of the segments.

4. BENCHMARK

To give a sense of the performance possible with this data, we have
trained a simple baseline system. Using the embedding layer repre-
sentation of a deep-network classifier trained on a large set of generic
video topic labels [22], we used the training portion of the Audio Set
YouTube Corpus to train a shallow fully-connected neural network
classifier for the 485 categories in the released segments. We eval-
uated on the test partition by applying the classifier to 1 sec frames
taken from each segment, averaging the scores, then for each cate-
gory ranking all segments by their scores. This system gave a bal-
anced mean Average Precision across the 485 categories of 0.314,
and an average AUC of 0.959 (corresponding to a d-prime class sep-
aration of 2.452). The category with the best AP was “Music” with
AP / AUC / d-prime of 0.896 / 0.951 / 2.34 (reflecting its high prior);
the worst AP was for “Rattle” with 0.020 / 0.796 / 1.168.

5. CONCLUSION

We have introduced the Audio Set dataset of generic audio events,
comprising an ontology of 632 audio event categories and a collec-
tion of 1,789,621 labeled 10 sec excerpts from YouTube videos. The
ontology is hierarchically structured with the goal of covering all
acoustic distinctions made by a ‘typical’ listener. We are releasing
this data to accelerate research in the area of acoustic event detection,
just as ImageNet has driven research in image understanding. In the
future, we hope to be able to make larger and improved releases,
ideally including contributions from the wider community.
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