
Workshop track - ICLR 2016

A MINIMALISTIC APPROACH TO SUM-PRODUCT NET-
WORK LEARNING FOR REAL APPLICATIONS

Viktoriya Krakovna
Department of Statistics, Harvard University
vkrakovna@fas.harvard.edu

Moshe Looks
Google
madscience@google.com

ABSTRACT

Sum-Product Networks (SPNs) are a class of expressive yet tractable hierarchical
graphical models. LearnSPN is a structure learning algorithm for SPNs that uses
hierarchical co-clustering to simultaneously identifying similar entities and simi-
lar features. The original LearnSPN algorithm assumes that all the variables are
discrete and there is no missing data. We introduce a practical, simplified version
of LearnSPN, MiniSPN, that runs faster and can handle missing data and hetero-
geneous features common in real applications. We demonstrate the performance
of MiniSPN on standard benchmark datasets and on two datasets from Google’s
Knowledge Graph exhibiting high missingness rates and a mix of discrete and
continuous features.

1 INTRODUCTION

The Sum-Product Network (SPN) [Poon & Domingos, 2011] is a tractable and interpretable deep
model. An advantage of SPNs over other graphical models such as Bayesian Networks is that they
allow efficient exact inference in linear time with network size. An SPN represents a multivari-
ate probability distribution with a directed acyclic graph consisting of sum nodes (clusters over
instances), product nodes (partitions over features), and leaf nodes (univariate distributions over
features), as shown in Figure 1.

The standard algorithms for learning SPN structure assume discrete data with no missingness, and
mostly test on the same set of benchmark data sets that satisfy these criteria [Rooshenas & Lowd,
2014]. This is not a reasonable assumption when dealing with messy data sets in real applications.
The Google Knowledge Graph (KG) is a semantic network of facts, based on Freebase [Bollacker
et al., 2008], used to generate Knowledge Panels in Google Search. KG data is quite heterogeneous,
with a lot of it missing, since much more is known about some entities in the graph than others.
High missingness rates can also worsen the impact of discretizing continuous variables before doing
structure learning, which results in losing more of the already scarce covariance information.

Applications like the KG are common, and there is a need for an SPN learning algorithm that can
handle this kind of data. In this paper, we present MiniSPN, a simplification of a state-of-the-art
SPN learning algorithm that improves its applicability, performance and speed. We demonstrate the
performance of MiniSPN on KG data and on standard benchmark data sets.

2 VARIATION ON THE LEARNSPN ALGORITHM

LearnSPN [Gens & Domingos, 2013] is a greedy algorithm that performs co-clustering by recur-
sively partitioning variables into approximately independent sets and partitioning the training data
into clusters of similar instances, as shown in Figure 2. The variable and instance partitioning
steps are applied to data slices (subsets of instances and variables) produced by previous steps. The
variable partition step uses pairwise independence tests on the variables, and the approximately
independent sets are the connected components in the resulting dependency graph. The instance
clustering step uses a naive Bayes mixture model for the clusters, where the variables in each cluster
are assumed independent. The clusters are learned using hard EM with restarts, avoiding overfitting
using an exponential prior on the number of clusters. The splitting process continues until the data

1

ar
X

iv
:1

60
2.

04
25

9v
3

 [
cs

.A
I]

 2
4

A
pr

 2
01

6

Workshop track - ICLR 2016

Figure 1: Example of an SPN structure
(figure from Zhao et al. [2015])

Figure 2: Recursive partitioning process in the
LearnSPN algorithm
(figure from Gens & Domingos [2013])

slice has too few instances to test for independence, at which point all the variables in that slice are
considered independent. The end result is a tree-structured SPN.

The standard LearnSPN algorithm assumes that all the variables are discrete and there is no missing
data. Hyperparameter values for the cluster penalty and the independence test critical value are
determined using grid search. The clustering step seems unnecessarily complex, involving a penalty
prior, EM restarts, and hyperparameter tuning. It is by far the most complicated part of the algorithm
in a way that seems difficult to justify, and likely the most time-consuming due to the restarts and
hyperparameter tuning. We propose a variation on LearnSPN called MiniSPN that handles missing
data, performs lazy discretization of continuous data in variable partition step, simplifies the model
in the instance clustering step, and does not require hyperparameter search.

We simplify the naive Bayes mixture model in the instance clustering step by attempting a split into
two clusters at any given point, and eliminating the cluster penalty prior, which results in a more
greedy approach than in LearnSPN that does not require restarts or hyperparameter tuning. This
seems like a natural choice of simplification - an extension of the greedy approach used at the top
level of the LearnSPN algorithm. We compare a partition into univariate leaves to a mixture of two
partitions into univariate leaves (generated using hard EM), and the split succeeds if the two-cluster
version has higher validation set likelihood. If the split succeeds, we apply it to each of the two
resulting data slices, and only move on to a variable partition step after the clustering step fails.
The greedy approach is similar to the one used in the SPN-B method [Vergari et al., 2015], which
however alternates between variable and instance splits by default, thus building even deeper SPNs.

In the variable partition step, we perform an independence test using the subset of rows where both
variables are not missing, and conclude independence if the number of such rows is below threshold.
We apply binary binning to each continuous variable, using its median in the data slice as a cutoff.

We compare to the “Pareto” algorithm, previously used for learning SPN models in KG, inspired by
the work of Grosse et al. [2012]. It produces a Pareto-optimal set of models, trading off between
degrees of freedom and validation set log likelihood score. At each iteration, production rules are
randomly applied to add partition and mixture splits to the models in the current model set, and
the new models are added to the model set. If a model in the model set has both lower degrees of
freedom and higher log likelihood score than another model, the inferior model is removed from
the set. The algorithm returns the model from the Pareto model set with the highest validation log
likelihood. We also compare to a hybrid method, with the Pareto algorithm initialized by MiniSPN.

3 SUMMARY OF EXPERIMENTS

We use two data sets from the Knowledge Graph People collection. In the KG Professions data
set, most of the variables are boolean indicators of whether each person belongs to a particular
profession. There are 83 boolean variables and 4 continuous variables. In the KG Dates data set,
there are 14 continuous variables representing dates of life events for each person and their spouse(s),

2

Workshop track - ICLR 2016

Table 1: Average log likelihood and runtime comparison on KG data sets (best performing methods
are shown in bold).

Test set log likelihood Runtime (seconds)
Data set Pareto Hybrid MiniSPN Pareto Hybrid MiniSPN
Professions-10K -10.2 -6.2 -6.09 5.3 3.7 0.4
Professions-100K -6.61 -6.53 -6.44 72 131 7.2
Dates-10K -8.66 -8.53 -8.68 1.7 2.4 0.26
Dates-100K -17.1 -16.7 -16.5 29 566 5.4

Table 2: Average log likelihood and runtime comparison on literature data sets (best performing
methods are shown in bold).

Test set log likelihood Runtime (seconds)
Data set Pareto Hybrid MiniSPN LearnSPN Pareto Hybrid MiniSPN LearnSPN
NLTCS -6.33 -6.03 -6.12 -6.1 4.8 35 1.4 60
MSNBC -6.54 -6.4 -6.61 -6.11 61 212 5.6 2400
KDDCup -2.17 -2.13 -2.14 -2.21 152 2080 23 400
Plants -17.3 -13.1 -13.2 -13 28 780 11 160
Audio -41.9 -39.9 -40 -40.5 28 556 12 955
Jester -54.6 -52.9 -53 -53.4 13 193 6.7 1190
Netflix -59.5 -56.7 -56.8 -57.3 27 766 14 1230
Accidents -40.4 -32.5 -32.6 -30.3 31 1140 18 330
Retail -11.1 -11 -11.1 -11.09 25 63 7.3 100
Pumsb-star -40.8 -28.4 -28.3 -25 47 1100 22 350
DNA -98.1 -91.5 -93.9 -89 6.3 45 3 300
Kosarek -11.2 -10.8 -10.9 -11 90 537 22 200
MSWeb -10.7 -9.94 -10.1 -10.26 75 572 34 260
Book -35.1 -34.7 -34.7 -36.4 83 181 32 350
EachMovie -55 -52.3 -52.2 -52.5 62 218 22 220
WebKB -161 -155 -155 -162 37 169 38 900
Reuters-52 -92 -85.2 -84.7 -86.5 76 656 95 2900
Newsgroup -156 -152 -152 -160.5 181 1190 139 28000
BBC -258 -250 -249 -250 33 123 42 900
Ad -52.3 -49.5 -49.2 -22 58 92 50 300

with around 95% of the data missing. We use subsets of 10000 and 100000 instances from each of
these data sets, and randomly split the data sets into a training and test set.

On the KG data sets, we compare MiniSPN, Pareto and Hybrid algorithms. We were not able to
apply the standard LearnSPN algorithm on these data sets, since they contain missing data. Table
1 shows log likelihood performance on the test set and runtime performance. MiniSPN does better
than Pareto, both in terms of log likelihood and runtime. Hybrid performs comparably to MiniSPN,
but is usually the slowest of the three.

We use 20 benchmark data sets from the literature (exactly the same ones used in the LearnSPN
paper [Gens & Domingos, 2013]) to compare the performance of MiniSPN with the standard Learn-
SPN algorithm. We are particularly interested in the effect of MiniSPN’s simple two-cluster instance
split relative to the more complex instance split with the exponential prior and EM restarts used in
the standard LearnSPN. Table 2 shows log likelihood performance on the test set and runtime per-
formance. Like on the KG data, we find that MiniSPN uniformly outperforms Pareto, and performs
similarly to Hybrid and LearnSPN but runs much faster (on the most time-intensive data set, News-
group, MiniSPN takes 2 minutes while LearnSPN takes 8 hours).

4 CONCLUSION

Sum-product networks have been receiving increasing attention from researchers due to their expres-
siveness, efficient inference and interpretability, and many learning algorithms have been developed
in the past few years. While recent developments have mostly focused on improving performance on
benchmark data sets, our variation on a classical learning algorithm is simple yet has a large impact
on usability, by improving speed and making it possible to apply to messy real data sets.

3

Workshop track - ICLR 2016

REFERENCES

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a collab-
oratively created graph database for structuring human knowledge. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pp. 1247–1250. ACM, 2008.

Robert Gens and Pedro M. Domingos. Learning the Structure of Sum-Product Networks. In Pro-
ceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA,
USA, 16-21 June 2013, pp. 873–880, 2013.

Roger B. Grosse, Ruslan Salakhutdinov, William. T. Freeman, and Joshua B. Tenenbaum. Exploit-
ing compositionality to explore a large space of model structures. In Proceedings of the 28th
Conference on Uncertainty in AI (UAI), 2012.

Hoifung Poon and Pedro M. Domingos. Sum-Product Networks: A New Deep Architecture. In UAI
2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
Barcelona, Spain, July 14-17, 2011, pp. 337–346, 2011.

Amirmohammad Rooshenas and Daniel Lowd. Learning Sum-Product Networks with Direct and
Indirect Variable Interactions. In Tony Jebara and Eric P. Xing (eds.), Proceedings of the 31st
International Conference on Machine Learning (ICML-14), pp. 710–718. JMLR Workshop and
Conference Proceedings, 2014.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Simplifying, Regularizing and Strength-
ening Sum-Product Network Structure Learning. In Machine Learning and Knowledge Discov-
ery in Databases - European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11,
2015, Proceedings, Part II, pp. 343–358, 2015.

Han Zhao, Mazen Melibari, and Pascal Poupart. On the Relationship between Sum-Product Net-
works and Bayesian Networks. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, pp. 116–124, 2015.

4

	1 Introduction
	2 Variation on the LearnSPN algorithm
	3 Summary of experiments
	4 Conclusion

