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Abstract
The collection and analysis of user data drives
improvements in the app and web ecosystems,
but comes with risks to privacy. This paper ex-
amines discrete distribution estimation under lo-
cal privacy, a setting wherein service providers
can learn the distribution of a categorical statistic
of interest without collecting the underlying data.
We present new mechanisms, including hashed
k-ary Randomized Response (k-RR), that empir-
ically meet or exceed the utility of existing mech-
anisms at all privacy levels. New theoretical re-
sults demonstrate the order-optimality of k-RR
and the existing RAPPOR mechanism at different
privacy regimes.

1. Introduction
Software and service providers increasingly see the collec-
tion and analysis of user data as key to improving their ser-
vices. Datasets of user interactions give insight to analysts
and provide training data for machine learning models. But
the collection of these datasets comes with risk—can the
service provider keep the data secure from unauthorized
access? Misuse of data can violate the privacy of users and
substantially tarnish the provider’s reputation.

One way to minimize risk is to store less data: providers
can methodically consider what data to collect and how
long to store it. However, even a carefully processed
dataset can compromise user privacy. In a now famous
study, (Narayanan & Shmatikov, 2008) showed how to de-
anonymize watch histories released in the Netflix Prize,
a public recommender system competition. While most
providers do not intentionally release anonymized datasets,
security breaches can mean that even internal, anonymized
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datasets have the potential to become privacy problems.

Fortunately, mathematical formulations exist that can give
the benefits of population-level statistics without the col-
lection of raw data. Local differential privacy (Duchi et al.,
2013a;b) is one such formulation, requiring each device (or
session for a cloud service) to share only a noised version of
its raw data with the service provider’s logging mechanism.
No matter what computation is done to the noised output of
a locally differentially private mechanism, any attempt to
impute properties of a single record will have a significant
probability of error. But not all differentially private mech-
anisms are equal when it comes to utility: some mecha-
nisms have better accuracy than others for a given analysis,
amount of data, and desired privacy level.

Private distribution estimation. This paper investigates
the fundamental problem of discrete distribution estima-
tion under local differential privacy. We focus on discrete
distribution estimation because it enables a variety of use-
ful capabilities, including usage statistics breakdowns and
count-based machine learning models, e.g. naive Bayes
(McCallum et al., 1998). We consider empirical, maximum
likelihood, and minimax distribution estimation, and study
the price of local differential privacy under a variety of loss
functions and privacy regimes. In particular, we compare
the performance of two recent local privacy mechanisms:
(a) the Randomized Aggregatable Privacy-Preserving Or-
dinal Response (RAPPOR) (Erlingsson et al., 2014), and
(b) the k-ary Randomized Response (k-RR) (Kairouz et al.,
2014) from a theoretical and empirical perspective.

Our contributions are:

1. For binary alphabets, we prove that Warner’s random-
ized response model (Warner, 1965) is globally optimal
for any loss function and any privacy level (Section 3).

2. For k-ary alphabets, we show that RAPPOR is order op-
timal in the high privacy regime and strictly sub-optimal
in the low privacy regime for `1 and `2 losses using an
empirical estimator. Conversely, k-RR is order optimal
in the low privacy regime and strictly sub-optimal in the
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high privacy regime (Section 4.1).

3. Large scale simulations show that the optimal decoding
algorithm for both k-RR and RAPPOR depends on the
shape of the true underlying distribution. For skewed
distributions, the projected estimator (introduced here)
offers the best utility across a wide variety of privacy
levels and sample sizes (Section 4.4).

4. For open alphabets in which the set of input symbols is
not enumerable a priori we construct the O-RR mech-
anism (an extension to k-RR using hash functions and
cohorts) and provide empirical evidence that the perfor-
mance of O-RR meets or exceeds that of RAPPOR over
a wide range of privacy settings (Section 5).

5. We apply the O-RR mechanism to closed k-ary alpha-
bets, replacing hash functions with permutations. We
provide empirical evidence that the performance of O-
RR meets or exceeds that of k-RR and RAPPOR in both
low and high privacy regimes (Section 5.4).

Related work. There is a rich literature on distribution es-
timation under local privacy (Chan et al., 2012; Hsu et al.,
2012; Bassily & Smith, 2015), of which several works are
particularly relevant herein. (Warner, 1965) was the first to
study the local privacy setting and propose the randomized
response model that will be detailed in Section 3. (Kairouz
et al., 2014) introduced k-RR and showed that it is optimal
in the low privacy regime for a rich class of information the-
oretic utility functions. k-RR will be extended to open al-
phabets in Section 5.1. (Duchi et al., 2013a;b) was the first
to apply differential privacy to the local setting, to study
the fundamental trade-off between privacy and minimax
distribution estimation in the high privacy regime, and to
introduce the core of k-RAPPOR. (Erlingsson et al., 2014)
proposed RAPPOR, systematically addressing a variety of
practical issues for private distribution estimation, includ-
ing robustness to attackers with access to multiple reports
over time, and estimating distributions over open alphabets.
RAPPOR has been deployed in the Chrome browser to al-
low Google to privately monitor the impact of malware on
homepage settings. RAPPOR will be investigated in Sec-
tions 4.2 and 5.2.

Private distribution estimation also appears in the global
privacy context where a trusted service provider releases
randomized data (e.g., NIH releasing medical records) to
protect sensitive user information (Dwork, 2006; Dwork
et al., 2006; Dwork & Lei, 2009; Dwork, 2008; Diakoniko-
las et al., 2015; Blocki et al., 2016).

2. Preliminaries
2.1. Local differential privacy

Let X be a private source of information defined on a dis-
crete, finite input alphabet X = {x1, ..., xk}. A statistical
privatization mechanism is a family of distributions Q that
map X = x to Y = y with probability Q (y|x). Y , the
privatized version of X , is defined on an output alphabet
Y = {y1, ..., yl} that need not be identical to the input al-
phabet X . In this paper, we will represent a privatization
mechanism Q via a k × l row-stochastic matrix. A con-
ditional distribution Q is said to be ε-locally differentially
private if for all x, x′ ∈ X and all E ⊂ Y , we have that

Q (E|x) ≤ eεQ (E|x′) , (1)

where Q (E|x) = P(Y ∈ E|X = x) and ε ∈ [0,∞)
(Duchi et al., 2013a) . In other words, by observing Y ∈
E, the adversary cannot reliably infer whether X = x or
X = x′ (for any pair x and x′). Indeed, the smaller the ε
is, the closer the likelihood ratio of X = x to X = x′ is to
1. Therefore, when ε is small, the adversary cannot recover
the true value of X reliably.

2.2. Private distribution estimation

The private multinomial estimation problem is defined as
follows. Given a vector p = (p1, ..., pk) on the probability
simplex Sk, samples X1, ..., Xn are drawn i.i.d. according
to p. An ε-locally differentially private mechanism Q is
then applied independently to each sample Xi to produce
Y n = (Y1, · · · , Yn), the sequence of private observations.
Observe that the Yi’s are distributed according to m = pQ
and not p. Our goal is to estimate the distribution vector p
from Y n.

Privacy vs. utility. There is a fundamental trade-off
between utility and privacy. The more private you want
to be, the less utility you can get. To formally analyze
the privacy-utility trade-off, we study the following con-
strained minimization problem

r`,ε,k,n = inf
Q∈Dε

r`,ε,k,n(Q), (2)

where

r`,ε,k,n(Q) = inf
p̂

sup
p

E
Y n∼pQ

`(p, p̂)

is the minimax risk under Q, ` is an application dependent
loss function, andDε is the set of all ε-locally differentially
private mechanisms.

This problem, though of great value, is intractable in gen-
eral. Indeed, finding minimax estimators in the non-private
setting is already hard for several loss functions. For in-
stance, the minimax estimator under `1 loss is unknown
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even until today. However, in the high privacy regime, we
are able to bound the minimax risk of any differentially pri-
vate mechanism Q.

Proposition 1 For the private distribution estimation
problem in (2), for any ε-locally differentially private
mechanism Q, there exist universal constants 0 < cl ≤
cu < 5 such that for all ε ∈ [0, 1],

clmin

{
1,

1√
nε2

,
k

nε2

}
≤ r`22,ε,k,n ≤ cumin

{
1,

k

nε2

}
,

and

clmin

{
1,

k√
nε2

}
≤ r`1,ε,k,n ≤ cumin

{
1,

k√
nε2

}

Proof See (Duchi et al., 2013b).

This result shows that in the high privacy regime (ε ≤ 1),
the effective sample size of a dataset decreases from n to
nε2/k. In other words, a factor of k/ε2 extra samples are
needed to achieve the same minimax risk. This is prob-
lematic for large alphabets. Our work shows that (a) this
problem can be (partially) circumvented using a combina-
tion of cohort-style hashing and k-RR (Section 5), and (b)
the dependence on the alphabet size vanishes in the moder-
ate to low privacy regime (Section 4.3).

3. Binary Alphabets
In this section, we study the problem of private distribution
estimation under binary alphabets. In particular, we show
that Warner’s randomized response model (W-RR) is op-
timal for binary distribution minimax estimation (Warner,
1965). In W-RR, interviewees flip a biased coin (that only
they can see the result of), such that a fraction η of par-
ticipants answer the question “Is the predicate P true (of
you)?” while the remaining particants answer the negation
(“Is ¬P true?”), without revealing which question they an-
swered. For η = eε (ε ≥ 0), W-RR can be described by the
following 2× 2 row-stochastic matrix

QWRR =
1

eε + 1

[
eε 1
1 eε

]
. (3)

It is easy to check that the above mechanism satisfies the
constraints imposed by local differential privacy.

Theorem 2 For all binary distributions p, all loss func-
tions `, and all privacy levels ε, QWRR is the optimal solu-
tion to the private minimax distribution estimation problem
in (2).

Proof sketch. (Kairouz et al., 2014) showed that W-RR
dominates all other differentially private mechanisms in a

strong Markovian sense: for any binary differentially pri-
vate mechanism Q, there exists a 2 × 2 stochastic map-
ping W such that Q = W ◦ QWRR. Therefore, for any
risk function r(·) that obeys the data processing inequality
(r(Q) ≤ r(Q ◦W ) for any stochastic mappings Q and
W ), we have that r(QWRR) ≤ r(Q) for any binary dif-
ferentially private mechanism Q. In Supplementary Sec-
tion A, we prove that r`,ε,k,n(Q) obeys the data processing
inequality, thus W-RR achieves the optimal privacy-utility
trade-off under minimax distribution estimation.

4. k-ary Alphabets
Above, we saw that W-RR is optimal for all privacy lev-
els and all loss functions. However, it can only be ap-
plied to binary alphabets. In this section, we study op-
timal privacy mechanisms for k-ary alphabets. We show
that under `1 and `2 losses, k-RAPPOR is order optimal in
the high privacy regime and sub-optimal in the low privacy
regime. Conversely, k-RR is order optimal in the low pri-
vacy regime and sub-optimal in the high privacy regime.

4.1. The k-ary Randomized Response

The k-ary randomized response (k-RR) mechanism is
a locally differentially private mechanism that maps X
stochastically onto itself (i.e., Y = X ), given by

QKRR(y|x) =
1

k − 1 + eε

{
eε if y = x,
1 if y 6= x.

(4)

k-RR can be viewed as a multiple choice generalization of
the W-RR mechanism (note that k-RR reduces to W-RR for
k = 2). In (Kairouz et al., 2014), the k-RR mechanism was
shown to be optimal in the low privacy regime for a large
class of information theoretic utility functions.

Empirical estimation under k-RR. It is easy to see that
under QKRR, outputs are distributed according to:

m =
eε − 1

eε + k − 1
p+

1

eε + k − 1
(5)

The empirical estimate of p under QKRR is given by

p̂ = m̂Q−1KRR (6)

=
eε + k − 1

eε − 1
m̂− 1

eε − 1
,

where m̂ is the empirical estimate of m and

Q−1KRR(y|x) =
1

eε − 1

{
eε + k − 2 if y = x,

−1 if y 6= x.
(7)

via the Sherman-Morrison formula. Observe that because
m̂→m almost surely, p̂→ p almost surely.
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Proposition 3 For the private distribution estimation
problem under k-RR and its empirical estimator given in
(6), for all ε, n, and k, we have that

E `22(p̂,p) =
1−

∑k
i=1 p

2
i

n
+
k − 1

n

(
k + 2(eε − 1)

(eε − 1)2

)
,

and for large n, E `1(p̂,p) ≈

k∑
i=1

√
2((eε − 1)pi + 1)((eε − 1)(1− pi) + k − 1)

πn(eε − 1)2
,

where an ≈ bn means limn→∞ an/bn = 1.

Proof See Supplementary Section B.

Observe that for pU =
(
1
k , · · · ,

1
k

)
, we have that

E `22(p̂,p) ≤ E `22(p̂,pU) (8)

=

(
1 +

k + 2(eε − 1)

(eε − 1)2
k

)
1− 1

k

n
,

and

E `1(p̂,p) ≤ E `1(p̂,pU) (9)

≈
(
eε + k − 1

eε − 1

)√
2(k − 1)

πn
.

Constraining empirical estimates to Sk. It is easy to see
that ||p̂KRR||1 = 1. However, some of the entries of p̂KRR
can be negative (especially for small values of n). Several
remedies are available, including (a) truncating the negative
entries to zero and renormalizing the entire vector to sum
to 1, or (b) projecting p̂KRR onto the probability simplex.
We evaluate both approaches in Section 4.4.

4.2. k-RAPPOR

The randomized aggregatable privacy-preserving ordinal
response (RAPPOR) is an open source Google technol-
ogy for collecting aggregate statistics from end-users with
strong local differential privacy guarantees (Erlingsson
et al., 2014). The simplest version of RAPPOR, called
the basic one-time RAPPOR and referred to herein as k-
RAPPOR, first appeared in (Duchi et al., 2013a;b). k-
RAPPOR maps the input alphabet X of size k to an output
alphabet Y of size 2k. In k-RAPPOR, we first map X de-
terministically to X̃ = Rk, the k-dimensional Euclidean
space. Precisely, X = xi is mapped to X̃ = ei, the ith

standard basis vector in Rk. We then randomize the co-
ordinates of X̃ independently to obtain the private vector
Y ∈ {0, 1}k. Formally, the jth coordinate of Y is given
by: Y (j) = X̃(j) with probability eε/2/(1 + eε/2) and
1 − X̃(j) with probability 1/(1 + eε/2). The randomiza-
tion in Qk-RAPPOR is ε-locally differentially private (Duchi
et al., 2013a; Erlingsson et al., 2014).

Under k-RAPPOR, Yi = [Y
(1)
i , · · · , Y (k)

i ] is a k-
dimensional binary vector, which implies that

P(Y (j)
i = 1) =

(
eε/2 − 1

eε/2 + 1

)
pj +

1

eε/2 + 1
, (10)

for all i ∈ {1, · · · , n} and j ∈ {1, · · · , k}.

Empirical estimation under k-RAPPOR. Let Y n be the
n×kmatrix formed by stacking the row vectors Y1, · · · , Yn
on top of each other. The empirical estimator of p under k-
RAPPOR is:

p̂j =

(
eε/2 + 1

eε/2 − 1

)
Tj
n
− 1

eε/2 − 1
, (11)

where Tj =
∑n
i=1 Y

(j)
i . Because Tj/n converges to mj

almost surely, p̂j converges to pj almost surely. As with
k-RR, we can constrain p̂ to Sk through truncation and nor-
malization or through projection (described in Section 4.1),
both of which will be evaluated in Section 4.4.

Proposition 4 For the private distribution estimation
problem under k-RAPPOR and its empirical estimator
given in (11), for all ε, n, and k, we have that

E `22(p̂,p) =
1−

∑k
i=1 p

2
i

n
+

keε/2

n(eε/2 − 1)2
,

and for large n, E `1(p̂,p) ≈

k∑
i=1

√
2((eε/2 − 1)pi + 1)((eε/2 − 1)(1− pi) + 1)

πn(eε/2 − 1)2
,

where an ≈ bn means limn→∞ an/bn = 1.

Proof See Supplementary Section C.

Observe that for pU =
(
1
k , · · · ,

1
k

)
, we have that

E `22(p̂,p) ≤ E `22(p̂,pU) (12)

=

(
1 +

k2eε/2

(k − 1)(eε/2 − 1)2

)
1− 1

k

n
,

and

E `1(p̂,p) ≤ E `1(p̂,pU) (13)

≈

√
(eε/2 + k − 1)(eε/2(k − 1) + 1)

(eε/2 − 1)2(k − 1)

√
2(k − 1)

πn
.

4.3. Theoretical Analysis

We now analyze the performance of k-RR and k-RAPPOR
relative to maximum likelihood estimation (which is equiv-
alent to empirical estimation) on the non-privatized data
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Xn. In the non-private setting, the maximum likelihood es-

timator has a worst case risk of
√

2(k−1)
πn under the `1 loss,

and a worst case risk of 1− 1
k

n under the `22 loss (Lehmann
& Casella, 1998; Kamath et al., 2015).

Performance under k-RR. Comparing Equation (8) to
the observation above, we can see that an extra factor of(
1 + k+2(eε−1)

(eε−1)2 k
)

samples is needed to achieve the same

`22 loss as in the non-private setting. Similarly, from Equa-

tion (9), a factor of
(
eε+k−1
eε−1

)2
samples is needed under

the `1 loss. For small ε, the sample size n is effectively
reduced to nε2/k2 (under both losses). When compared to
Proposition 1, this result implies that k-RR is not optimal
in the high privacy regime. However, for ε ≈ ln k, the sam-
ple size n is reduced to n/4 (under both losses). This result
suggests that, while k-RR is not optimal for small values of
ε, it is “order” optimal for ε on the order of ln k. Note that
k-RR provides a natural interpretation of this low privacy
regime: specifically, setting ε = ln k translates to telling
the truth with probability 1

2 and lying uniformly over the
remainder of the alphabet with probability 1

2 ; an intuitively
reasonably notion of plausible deniability.

Performance under k-RAPPOR. Comparing Equation
(12) to the observation at the beginning of this subsection,
we can see that an extra factor of

(
1 + k2eε/2

(k−1)(eε/2−1)2

)
samples is needed to achieve the same `22 as in the non-
private case. Similarly, from Equation (13), an extra factor
of (eε/2+k−1)(eε/2(k−1)+1)

(eε/2−1)2(k−1) samples is needed under the `1
loss. For small ε, n is effectively reduced to nε2/4k (un-
der both losses). When compared to Proposition 1, this re-
sult implies that k-RAPPOR is “order” optimal in the high
privacy regime. However, for ε ≈ ln k, n is reduced to
n/
√
k (under both losses). This suggests that k-RAPPOR is

strictly sub-optimal in the moderate to low privacy regime.

Proposition 5 For all p ∈ Sk and all ε ≥ ln(k/2),

E ||p̂KRR − p||22 ≤ E ||p̂RAPPOR − p||22 , (14)

where p̂KRR is the empirical estimate of p under k-RR,
p̂RAPPOR is the empirical estimate of p under k-RAPPOR,
and p̂ is the empirical estimator under k-RAPPOR.

Proof See Supplementary Section D.

4.4. Simulation Analysis

To complement the theoretical analysis above, we ran sim-
ulations of k-RR and k-RAPPOR varying the alphabet size
k, the privacy level ε, the number of users n, and the true
distribution p from which the samples were drawn. In

all cases, we report the mean over 10,000 evaluations of
‖p̂ − p̂decoded‖1 where p̂ is the ground truth sample drawn
from the true distribution and p̂decoded is the decoded k-RR
or k-RAPPOR distribution. We vary ε over a range that
corresponds to the moderate-to-low privacy regimes in our
theoretical analysis above, observing that even large val-
ues of ε can provide plausible deniability impossible under
un-noised logging.

We compare using the `1 distance of the two distributions
because in most applications we want to estimate all val-
ues well, emphasizing neither very large values (as an `2
or higher metric might) nor very small values (as informa-
tion theoretic metrics might). Supplementary Figures 5 and
6, analogous to the ones in this section, demonstrate that
the choice of distance metric does not qualitatively affect
our conclusions on the decoding strategies for k-RR or k-
RAPPOR nor on the regimes in which each is superior.

The distributions we considered in simulation were bino-
mial distributions with parameter in {.1, .2, .3, .4, .5} , Zipf
distribution with parameter in {1, 2, 3, 4, 5}, multinomial
distributions drawn from a symmetric Dirichlet distribution
with parameter ~1, and the geometric distribution with mean
k/5. The geometric distribution is shown in Supplementary
Figure 4. We focus primarily on the geometric distribution
here because qualitatively it shows the same patterns for
decoding as the full set of binomial and Zipf distributions
and it is sufficiently skewed to represent many real-world
datasets. It is also the distribution for which k-RAPPOR
does the best relative to k-RR over the largest range of k
and ε in our simulations.

4.4.1. DECODING

We first consider the impact of the choice of decoding
mechanism used for k-RR and k-RAPPOR. We find that
the best decoder in practice for both k-RR and k-RAPPOR
on skewed distributions is the projected decoder which
projects the p̂KRR or p̂RAPPOR onto the probability simplex
Sk using the method described in Algorithm 1 of (Wang &
Carreira-Perpiñán, 2013). For k-RR, we compare the pro-
jected empirical decoder to the normalized empirical de-
coder (which truncates negative values and renormalizes)
and to the maximum likelihood decoder (see Supplemen-
tary Section F.1). For k-RAPPOR, we compare the standard
decoder, normalized decoder, and projected decoder. Fig-
ure 1 shows that the projected decoder is substantially bet-
ter than the other decoders for both k-RR and k-RAPPOR
for the whole range of k and ε for the geometric distri-
bution. We find this result holds as we vary the number
of users from 30 to 106 and for all distributions we evalu-
ated except for the Dirichlet distribution, which is the least
skewed. For the Dirichlet distribution, the normalized de-
coder variant is best for both k-RR and k-RAPPOR. Be-
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cause the projected decoder is best on all the skewed distri-
butions we expect to see in practice, we use it exclusively
for the open-alphabet experiments in Section 5.

4.4.2. k-RR VS k-RAPPOR

To construct a fair, empirical comparison of k-RR and k-
RAPPOR, we employ the same methodology used above in
selecting decoders. Figure 2 shows the difference between
the best k-RR decoder and the best k-RAPPOR decoder (for
a particular k and ε). For most cells, the best decoder is the
projected decoder described above.

Note that the best k-RAPPOR decoder is consistently better
than the best k-RR decoder for relatively large k and low
ε. However, k-RR is slightly better than k-RAPPOR in all
conditions where k < eε (bottom-right triangle), an empiri-
cal result for `1 that complements Proposition 5’s statement
about ML decoders in `2. All of the skewed distributions
manifest the same pattern as the geometric distribution. As
the number of users increases, k-RR’s advantage over k-
RAPPOR in the low privacy environment shrinks. In the
next sections, we will examine the use of cohorts to im-
prove decoding and to handle larger, open alphabets.

5. Open Alphabets, Hashing, and Cohorts
In practice, the set of values that may need to be collected
may not be easily enumerable in advance, preventing a di-
rect application of the binary and k-ary formulations of pri-
vate distribution estimation. Consider a population of n
users, where each user i possesses a symbol si drawn from
a large set of symbols S whose membership is not known
in advance. This scenario is common in practice; for ex-
ample, in Chrome’s estimation of the distribution of home
page settings (Erlingsson et al., 2014). Building on this in-
tuitive example, we assume for the remainder of the paper
that symbols si are strings, but we note that the methods
described are applicable to any hashable structures.

5.1. O-RR: k-RR with hashing and cohorts

k-RR is effective for privatizing over known alphabets. In-
spired by (Erlingsson et al., 2014), we extend k-RR to open
alphabets by combining two primary intuitions: hashing
and cohorts. Let HASH(s) be a function mapping S → N
with a low collision rate, i.e. HASH(s) = HASH(s′) with
very low probability for s′ 6= s. With hashing, we could use
k-RR to guarantee local privacy over an alphabet of size
k by having each client report QKRR(HASH(s) mod k).
However, as we will see, hashing alone is not enough to
provide high utility because of the increased rate of colli-
sions introduced by the modulus.

Complementing hashing, we also apply the idea of hash co-
horts: each user i is assigned to a cohort ci sampled i.i.d.

from the uniform distribution over C = {1, ..., C}. Each
cohort c ∈ C provides an independent view of the underly-
ing distribution of strings by projecting the space of strings
S onto a smaller space of symbols X using an independent
hash function HASHc. The users in a cohort use their co-
hort’s hash function to partition S into k disjoint subsets
by computing xi = HASHci(si) mod k = HASH

(k)
ci (si).

Each subset contains approximately the same number of
strings, and because each cohort uses a different hash func-
tion, the induced partitions for different cohorts are orthog-
onal: P(xi = xj |ci 6= cj) ≈ 1

k even when si = sj .

5.1.1. ENCODING AND DECODING

For encoding, the O-RR privatization mechanism can be
viewed as a sampling distribution independent of C. There-
fore, QORR(y, c|s) is given by

1

C(eε + k − 1)

{
eε if HASH

(k)
c (s) = y,

1 if HASH
(k)
c (s) 6= y.

(15)

For decoding, fix candidate set S and interpret the privati-
zation mechanism QORR as a kC×S row-stochastic matrix:

QORR =
1

C

1

eε + k − 1
(1+ (eε − 1)H) (16)

where:
H(y, c|s) = 1{HASH

(k)
c (s)=y} (17)

Note that H is a kC×S sparse binary matrix encoding the
hashed outputs for each cohort, wherein each column of H
has exactly C non-zero entries.

Now m = pQORR is the expected output distribution for
true probability vector p, allowing us to form an empiri-
cal estimator by using standard least-squares techniques to
solve the linear system:

p̂ORRH =
1

eε − 1
(C(eε + k − 1)m̂− 1) . (18)

Note that when C = 1 and H is the identity matrix, (18)
reduces to standard k-RR empirical estimator as seen in (6).

As with the k-RR empirical estimator, p̂ORR may have neg-
ative entries. Section 4.1 describes methods for constrain-
ing p̂ORR to Sk, of which simplex projection is demon-
strated to offer superior performance in Section 4.4. The
remainder of the paper assumes that O-RR uses the sim-
plex projection strategy.

5.2. O-RAPPOR

RAPPOR also extends from k-ary alphabets to open alpha-
bets using hashing and cohorts (Erlingsson et al., 2014);
we refer to this extension herein as O-RAPPOR. How-
ever, the k-RAPPOR mechanism uses a size |X̃ | = 2k
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Figure 1: The improvement in `1 decoding of the projected k-RR decoder (left) and projected k-RAPPOR decoder (right).
Each grid varies the size of the alphabet k (rows) and privacy parameter ε (columns). Each cell shows the difference in `1
magnitude that the projected decoder has over the ML and normalized k-RR decoders (left) or the standard and normalized
k-RAPPOR decoders (right). Negative values mean improvement of the projected decoder over the next best alternative.
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Figure 2: The improvement (negative values, blue) of the best k-RR decoder over the best k-RAPPOR decoder varying the
size of the alphabet k (rows) and privacy parameter ε (columns). The left charts focus on small numbers of users (100);
the right charts show a large number of users (30000, also representative of larger numbers of users). The top charts show
the geometric distribution (skewed) and the bottom charts show the Dirichlet distribution (flat).

(a) Open alphabets. (b) Closed alphabets.

Figure 3: `1 loss of O-RR and O-RAPPOR for n = 106 on the geometric distribution when applied to unknown input
alphabets (via hash functions, (a)) and to known input alphabets (via perfect hashing, (b)). Lines show median `1 loss
with 90% confidence intervals over 50 samples. Free parameters are set via grid search over k ∈ [2, 4, 8, . . . , 2048, 4096],
c ∈ [1, 2, 4, . . . , 512, 1024], h ∈ [1, 2, 4, 8, 16] for each ε. Note that the k-RAPPOR and O-RAPPOR lines in (b) are nearly
indistinguishable. Baselines indicate expected loss from (1) using an empirical estimator directly on the input s and (2)
using the uniform distribution as the p̂ estimate.
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input representation as opposed to k-RR’s size |X | =
k representation. Taking advantage of the larger input
space, O-RAPPOR uses an independent h-hash Bloom filter
BLOOM

(k)
c for each cohort before applying the k-RAPPOR

mechanism—i.e. the j-th bit of xi is 1 if HASH
(k)
c,h′(si) = j

for any h′ ∈ [1 . . . h], where HASH
(k)
c,h′ are a set of hC mu-

tually independent hash functions modulo k.

Decoding for O-RAPPOR is described in (Erlingsson et al.,
2014) and follows a similar strategy as for O-RR. However,
because this paper focuses on distribution estimation rather
than heavy hitter detection, we eliminate both the Lasso re-
gression stage and filtering of imputed frequencies relative
to Bonferroni corrected thresholds, retaining just the regu-
lar least-squares regression.

5.3. Simulation Analysis

We ran simulations of O-RR and O-RAPPOR for n = 106

users with input drawn from an alphabet of S = 256 sym-
bols under a geometric distribution with mean=S/5 (see
Supplementary Figure 4). As described in Section 4.4, the
geometric distribution is representative of actual data and
relatively easy for k-RAPPOR and challenging for k-RR.
Free parameters were set to minimize the median `1 loss.
Similar results for S = 4096 and n = 106 and 108 are
included in the Supplementary Material.

In Figure 3(a), we see that under these conditions, O-RR
matches the utility of O-RAPPOR in both the very low and
high privacy regimes and exceeds the utility of O-RAPPOR
over midrange privacy settings.

For O-RR, we find that the optimal k depends directly on
ε, that increasing C consistently improves performance in
the low-to-mid privacy regime, and that C = 1 noticably
underperforms across the range of privacy levels. For O-
RAPPOR, we find that performance improves as k increases
(with k = 4096 near the asymptotic limit), that C = 1 not-
icably underperforms across the range of privacy values,
but with all C ≥ 2 performing indistinguishably. Finally,
we find that the optimal value for h is consistently 1, in-
dicating that Bloom filters provide no utility improvement
beyond simple hashing. See Supplementary Figure 11 for
details.

5.4. Improved Utility for Closed Alphabets

O-RR and O-RAPPOR extend k-ary mechanisms to open
alphabets through the use of hash functions and cohorts.
These same mechanisms may also be applied to closed al-
phabets known a priori. While direct application is possi-
ble, the reliance on hash functions exposes both mechanism
to unnecessary risk of hash collision.

Instead, we modify the O-RR and O-RAPPOR mechanisms,

replacing each cohort’s generic hash functions with mini-
mal perfect hash functions mapping S to [0 . . . S−1] before
applying the modulo k operation. In most closed-alphabet
applications, S = [0 . . . S − 1], in which case these mini-
mal perfect hash functions are simply permutations. Also
note that in this setting, O-RR and and O-RAPPOR reduce
to exactly their k-ary counterparts when C and h are both
1 except that the output symbols are permuted.

In Figure 3(b), we evaluate these modified mechanisms us-
ing the same method described in Section 5.3 (note that the
utilities of k-RAPPOR and O-RAPPOR are nearly indistin-
guishable). O-RAPPOR benefits little from the introduction
of minimal perfect hash functions. In contrast, O-RR’s util-
ity improves significantly, meeting or exceeding the utility
of all other mechanisms at all considered ε.

6. Conclusion
Data improves products, services, and our understanding
of the world. But its collection comes with risks to the
individuals represented in the data as well as to the insti-
tutions responsible for the data’s stewardship. This paper’s
focus on distribution estimation under local privacy takes
one step toward a world where the benefits of data-driven
insights are decoupled from the collection of raw data. Our
new theoretical and empirical results show that combining
cohort-style hashing with the k-ary extension of the classi-
cal randomized response mechanism admits practical, state
of the art results for locally private logging.

In many applications, data is collected to enable the mak-
ing of a specific decision. In such settings, the nature of the
decision frequently determines the required level of util-
ity, and the number of reports to be collected n is pre-
determined by the size of the existing user base. Thus, the
differential privacy practitioner’s role is often to offer users
as much privacy as possible while still extracting sufficient
utility at the given n. Our results suggest that O-RR may
play a crucial role for such a practitioner, offering a single
mechanism that provides maximal privacy at any desired
utility level simply by adjusting the mechanism’s parame-
ters.

In future work, we plan to examine estimation of non-
stationary distributions as they change over time, a com-
mon scenario in data logged from user interactions. We
will also consider what utility improvements may be pos-
sible when some responses need more privacy than others,
another common scenario in practice. Much more work re-
mains before we can dispel the collection of un-noised data
altogether.

Acknowledgements. Thanks to Úlfar Erlingsson, Ilya
Mironov, and Andrey Zhmoginov for their comments on
drafts of this paper.
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Supplementary Material: Discrete Distribution Estimation Under Local Privacy

A. Proof of Theorem 2
As argued in the proof sketch of Theorem 2, it suffices to show that r`,ε,k,n(Q) obeys the data processing inequality.
Precisely, we need to show that for any row stochastic matrix W, r`,ε,k,n(WQ) ≥ r`,ε,k,n(Q). Observe that this is
equivalent to showing that r`,ε,k,n(Q) ≥ r`,k,n, where r`,k,n is the minimax risk in the non-private setting.

Consider the set of all randomized estimators p̂. Under randomized estimators, the minimax risk is given by

r`,k,n = inf
p̂

sup
p∈Sk

E
Xn∼p,p̂

`(p, p̂),

where the expectation is taken over the randomness in the observations X1, · · · , Xn and the randomness in p̂. Under a
differentially private mechanism Q, the minimax risk is given by

r`,ε,k,n(Q) = inf
p̂Q

sup
p∈Sk

E
Y n∼pQ,p̂Q

`(p, p̂Q),

where the expectation is taken over the randomness in the private observations Y1, · · · , Yn and the randomness in p̂Q.

Assume that there exists a (potentially randomized) estimator p̂∗Q that achieves r`,ε,k,n(Q). Consider the following ran-
domized estimator: Q is first applied to X1, · · · , Xn individually and p̂∗Q is then jointly applied to the outputs of Q. This
estimator achieves a risk of r`,ε,k,n(Q). Therefore, r`,k,n ≤ r`,ε,k,n(Q).

If there is no estimator that can achieve r`,ε,k,n(Q), then there exists a sequence of (potentially randomized) estimators
{p̂iQ} such that limi→∞ p̂iQ achieves the minimax risk. In other words, if ri`,ε,k,n(Q) represents the risk under p̂iQ, then
limi→∞ ri`,ε,k,n(Q) = r`,ε,k,n(Q). Using an argument similar to the one presented above, we get that r`,k,n ≤ ri`,ε,k,n(Q).
Taking the limit as i goes to infinity on both sides, we get that r`,k,n ≤ r`,ε,k,n(Q). This finishes the proof.
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B. Proof of Proposition 3
Fix Q to QKRR and p̂ to be the empirical estimator given in (6). In this case, we have that

E
Y n∼m(QKRR)

||p̂− p||22 = E
Y n∼m(QKRR)

∣∣∣∣∣∣∣∣eε + k − 1

eε − 1
m̂− 1

eε − 1
− p

∣∣∣∣∣∣∣∣2
2

= E
Y n∼m(QKRR)

∣∣∣∣∣∣∣∣eε + k − 1

eε − 1
(m̂−m)

∣∣∣∣∣∣∣∣2
2

=

(
eε + k − 1

eε − 1

)2

E
Y n∼m(QKRR)

||m̂−m||22

=

(
eε + k − 1

eε − 1

)2
1−

∑k
i=1m

2
i

n

=
1

n

(
eε + k − 1

eε − 1

)2
(
1−

∑k
i=1

{
(eε − 1)2p2i + 2(eε − 1)pi + 1

}
(eε + k − 1)2

)

=
(eε + k − 1)

2 − 2(eε − 1)− k − (eε − 1)2
∑k
i=1 p

2
i

n(eε − 1)2

=
((eε − 1) + k)

2 − 2(eε − 1)− k
n(eε − 1)2

− (eε − 1)
2

n (eε − 1)
2 +

1

n
−
∑k
i=1 p

2
i

n

=
(eε − 1)

2
+ 2k (eε − 1) + k2 − 2 (eε − 1)− k − (eε − 1)

2

n(eε − 1)2
+

1−
∑k
i=1 p

2
i

n

=
2 (k − 1) (eε − 1) + k (k − 1)

n(eε − 1)2
+

1−
∑k
i=1 p

2
i

n

=
k − 1

n

(
2 (eε − 1) + k

(eε − 1)
2

)
+

1−
∑k
i=1 p

2
i

n
,

and

E
Y n∼m(QKRR)

||p̂− p||1 =

(
eε + k − 1

eε − 1

)
E

Y n∼m(QKRR)
||m̂−m||1

=

(
eε + k − 1

eε − 1

) k∑
i=1

E |mi − m̂i|

≈
(
eε + k − 1

eε − 1

) k∑
i=1

√
2mi(1−mi)

πn

=
1

eε − 1

k∑
i=1

√
2((eε − 1)pi + 1)((eε − 1)(1− pi) + k − 1)

πn
.
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C. Proof of Proposition 4

Fix Q to Qk-RAPPOR and p̂ to be the empirical estimator given in (11), and let C = eε/2−1
eε/2+1

, B = 1
eε/2+1

, and A = eε/2 − 1.
Then C = BA, 1−B = eε/2B, and from Section 4.2 mi = piC +B. Using this notation, we have that

E
Y n∼m(Qk-RAPPOR)

||p̂− p||22 = E
Y n∼m(Qk-RAPPOR)

∣∣∣∣∣∣∣∣eε/2 + 1

eε/2 − 1
m̂− 1

eε/2 − 1
− p

∣∣∣∣∣∣∣∣2
2

= E
Y n∼m(Qk-RAPPOR)

∣∣∣∣∣∣∣∣eε/2 + 1

eε/2 − 1
(m̂−m)

∣∣∣∣∣∣∣∣2
2

=

(
eε/2 + 1

eε/2 − 1

)2

E
Y n∼m(Qk-RAPPOR)

||m̂−m||22

=
1

nC2

(
C + kB −

k∑
i=1

(piC +B)2

)

=
1

n

(
1−

k∑
i=1

p2i

)
+

1

nC2

(
C − C2 + kB − kB2 − 2CB

)
=

1

n

(
1−

k∑
i=1

p2i

)
+

1

nBA2

(
A−BA2 + k(1−B)− 2BA

)
=

1

n

(
1−

k∑
i=1

p2i

)
+

1

n

keε/2

(eε/2 − 1)2
,

and

E
Y n∼m(QKRR)

||p̂− p||1 =

(
eε/2 + 1

eε/2 − 1

)
E

Y n∼m(Qk-RAPPOR)
||m̂−m||1

=

(
eε/2 + 1

eε/2 − 1

) k∑
i=1

E |mi − m̂i|

≈
(
eε/2 + 1

eε/2 − 1

) k∑
i=1

√
2mi(1−mi)

πn

=

k∑
i=1

√
2((eε/2 − 1)pi + 1)((eε/2 − 1)(1− pi) + 1)

πn(eε/2 − 1)2
.

D. Proof of Proposition 5
We want to show that for all p ∈ Sk and all ε ≥ ln k,

E ||p̂KRR − p||22 ≤ E ||p̂RAPPOR − p||22 , (19)

where p̂KRR is the empirical estimate of p under k-RR, p̂RAPPOR is the empirical estimate of p under k-RAPPOR, and p̂ is
the empirical estimator under k-RAPPOR.

From propositions 3 and 4, we have that

E ||p̂KRR − p||22 =
1−

∑k
i=1 p

2
i

n
+
k − 1

n

(
2

eε − 1
+

k

(eε − 1)2

)
,

and

E ||p̂RAPPOR − p||22 =
1−

∑k
i=1 p

2
i

n
+

keε/2

n(eε/2 − 1)2
.
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Therefore, we just have to prove that

(k − 1)

(
2

eε − 1
+

k

(eε − 1)2

)
≤ keε/2

(eε/2 − 1)2
,

for ε ≥ ln k. Alternatively, we can show that

f(ε, k) =
k

k − 1

(
eε − 1

eε/2 − 1

)2
eε/2

2eε + k − 2
≥ 1,

for ε ≥ ln k. Observe that f(ε, k) is an increasing function of ε and therefore, it suffices to show that

f(ln k, k) =
k

k − 1

(
k − 1√
k − 1

)2 √
k

3k − 2
=

k

3k − 2

√
k(k − 1)

(
√
k − 1)2

≥ 1. (20)

As a discrete function of k ∈ {2, 3, ....}, f(ln k, k) admits a unique minimum at k = 7. Therefore, we just need to verify
that f(ln 7, 7) > 1. Indeed, f(ln 7, 7) = 3.1559 > 1.

E. Discrete Distribution Estimation
Consider the (k − 1)-dimensional probability simplex

Sk = {p = (p1, ..., pk)|pi ≥ 0,

k∑
i=1

pi = 1}.

The discrete distribution estimation problem is defined as follows. Given a vector p ∈ Sk, samples X1, ..., Xn are drawn
i.i.d according to p. Our goal is to estimate the probability vector p from the observation vector Xn = (X1, ..., Xn).

An estimator p̂ is a mapping from Xn to a point in Sk. The performance of p̂ may be measured via a loss function ` that
computes a distance-like metric between p̂ and p. Common loss functions include, among others, the absolute error loss
`1(p, p̂) =

∑k
i=1 |pi − p̂i| and the quadratic loss `22(p, p̂) =

∑k
i=1(pi − p̂i)2. The choice of the loss function depends on

the application; for example, `1 loss is commonly used in classification and other machine learning applications. Given a
loss function `, the expected loss under p̂ after observing n i.i.d samples is given by

r`,k,n(p, p̂) = E
Xn∼Multimial(n,p)

`(p, p̂). (21)

E.1. Maximum likelihood and empirical estimation

In the absence of a prior on p, a natural and commonly used estimator of p is the maximum likelihood (ML) estimator.
The maximum likelihood estimate p̂ML of p is defined as

p̂ML = argmax
p∈Sk

P (X1, ..., Xn|p)

In this setting, it is easy to show that the maximum likelihood estimate is equivalent to the empirical estimator of p, given
by p̂i = Ti/n where Ti is the frequency of element i. Observe that the empirical estimator is an unbiased estimator for p
because E[p̂i] = pi for any k, n, and i. Under maximum likelihood estimation, the `22 loss is the most tractable and simplest
to analyze loss function. Because Ti ∼ Binomial(pi, n), we have E[Ti] = npi, Var(Ti) = npi(1 − pi), and the expected
`22 loss of the empirical estimator is given by

r`22,k,n(p, p̂ML) = E||p̂ML − p||22 =

k∑
i=1

E
(
Ti
n
− pi

)2

=

k∑
i=1

Var(Ti)
n2

=
1−

∑k
i=1 p

2
i

n
.
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Let pU =
(
1
k , · · · ,

1
k

)
and observe that

r`22,k,n(p, p̂ML) ≤ r`22,k,n(pU, p̂ML) =
1− 1

k

n
. (22)

In other words, the uniform distribution is the worst distribution for the empirical estimator under the `22 loss. From
(Kamath et al., 2015), the asymptotic performance of the empirical estimator under the `1 loss functions is given by

r`1,k,n(p, p̂ML) ≈
k∑
i=1

√
2pi(1− pi)

πn
,

where an ≈ bn means limn→∞ an/bn = 1. As in the `22 case, notice that

r`1,k,n(p, p̂ML) ≤ r`1k,n(pU, p̂ML) ≈
√

2(k − 1)

πn
, (23)

for any p ∈ Sk. In other words, the uniform distribution is the worst distribution for the empirical estimator under the `1
loss as well. Observe that the `1 loss scales as

√
k/n whereas the `22 loss scales as 1/n.

E.2. Minimax estimation

Another popular estimator that is widely studied in the absence of a prior is the minimax estimator p̂MM. The minimax
estimator minimizes the expected loss under the worst distribution p:

p̂MM = argmin
p̂

max
p∈Sk

E
Xn∼p

`(p, p̂). (24)

The minimax risk is therefore defined as

r`,k,n = min
p̂

max
p∈Sk

E
Xn∼p

`(p, p̂).

For the `22 loss, it is shown in (Lehmann & Casella, 1998) that

p̂i =

√
n
k +

∑n
j=1 1{Xj=i}√
n+ n

=

√
n
k + Ti√
n+ n

, (25)

is the minimax estimator, and that the minimax risk is

r`22,k,n =
1− 1

k

(
√
n+ 1)2

. (26)

Observe that unlike the empirical estimator, the minimax estimator is not even asymptotically unbiased. Moreover, it
improves on the empirical estimator only slightly (compare Equations (22) to (26)), increasing the the denominator from
n to n+2

√
n+1 under the worst case distribution (the uniform distribution). This explains why the minimax estimator is

almost never used in practice.

The minimax estimator under `1 loss is not known. However, the minimax risk is known for the case when k is fixed and
n is increased. In this case, it is shown in (Kamath et al., 2015) that

r`1,k,n =

√
2(k − 1)

πn
+O

(
1

n3/4

)
. (27)

Comparing Equations (23) to (27), we see that the worst case loss under the empirical estimator is again roughly as good
as the minimax risk.
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F. Maximum Likelihood Estimation for k-ary Mechanisms
F.1. k-RR

Proposition 6 The maximum likelihood estimator of p under k-RR is given by

p̂i =

[
Ti
λ
− 1

eε − 1

]+
, (28)

where [x]+ = max(0, x), Ti is the frequency of element i calculated from Y n, and λ is chosen so that

k∑
i=1

[
Ti
λ
− 1

eε − 1

]+
= 1. (29)

Moreover, finding λ can be done in O(k log k) steps.

The proof of the above proposition is provided in Supplementary Section F.2.

F.2. Proof of Proposition 6

The maximum likelihood estimator under k-RR is the solution to

p̂ML = argmax
p∈Sk

P (Y1, ..., Yn|p) ,

where the Yi’s are the outputs of k-RR. Since the log(.) function is a monotonic function, the above maximum likelihood
estimation problem is equivalent to

p̂ML = argmax
p∈Sk

logP (Y1, ..., Yn|p) .

Given that

P (Y1, ..., Yn|p) =

n∏
i=1

P (Yi|p)

=

n∏
i=1

 k∑
j=1

QKRR(Yi|Xi = j)pj

 ,

we have that

logP (Y1, ..., Yn|p) =
n∑
i=1

log

 k∑
j=1

QKRR(Yi|Xi = j)pj

 .

Observe that

k∑
j=1

QKRR(Yi|Xi = j)pj = QKRR(Yi|Xi = Yi)pYi +
∑
j 6=Yi

QKRR(Yi|Xi = j)pj (30)

=
eε

eε + k − 1
pYi +

1

eε + k − 1
(1− pYi) (31)

=
1

eε + k − 1
((eε − 1)pYi

+ 1) , (32)

and therefore,
n∑
i=1

log

 k∑
j=1

QKRR(Yi|Xi = j)pj

 =

k∑
i=1

Ti log

(
1

eε + k − 1
((eε − 1)pi + 1)

)
,
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where Ti is the number of Y ’s that are equal to i (i.e., the frequency of element i in the observed sequence Y n). Thus, the
maximum likelihood estimation problem under k-RR is equivalent to

p̂ML = argmax
p∈Sk

k∑
i=1

Ti log ((e
ε − 1)pi + 1) .

The above constrained optimization problem is a convex optimization problem that is well studied in the literature under
the rubric of water-filling algorithms. From (Boyd & Vandenberghe, 2004), the solution to this problem is given by

p̂i =

[
Ti
λ
− 1

eε − 1

]+
,

where [x]+ = max(0, x) and λ is chosen so that

k∑
i=1

[
Ti
λ
− 1

eε − 1

]+
= 1.

Given the Ti’s, p is computed according to the empirical estimator. If all the p̂i’s are non-negative, then the maximum
likelihood estimate is the same as the empirical estimate. If not, p̂ is sorted, its negative entries are zeroed out, and lambda
is computed according to the above equation. Given lambda, a new p̂ can be computed and the above process can be
repeated until all the entries of p̂ are non-negative. Notice that sorting happens once and the process is repeated at most
k−1 times. Therefore, the computational complexity of this algorithm is upper bounded by k log k+k which isO(k log k).

F.3. k-RAPPOR

Proposition 7 The maximum likelihood estimator of p under k-RAPPOR is

argmax
p∈Sk

k∑
j=1

(n− Tj) log ((1− δ)− (1− 2δ)pj)

+ Tj log ((1− 2δ)pj + δ)

where Tj =
∑n
i=1 Y

(j)
i and δ = 1/(eε/2 + 1).

The proof of the above proposition is provided in Supplementary Section F.4. Observe that unlike k-RR, a k-dimensional
convex program has to be solved in this case to determine the maximum likelihood estimate of p.

F.4. Proof of Proposition 7

The maximum likelihood estimator under k-RAPPOR is the solution to

p̂ML = argmax
p∈Sk

P (Y1, ..., Yn|p) ,

where the Yi’s are the outputs of k-RAPPOR. Since the log(.) function is a monotonic function, the above maximum
likelihood estimation problem is equivalent to

p̂ML = argmax
p∈Sk

logP (Y1, ..., Yn|p) .

Recall that under k-RAPPOR, Yi = [Y
(1)
i , · · · , Y (k)

i ] is a k-dimensional binary vector, which implies that

P(Y (j)
i = 1) =

(
eε/2 − 1

eε/2 + 1

)
pj +

1

eε/2 + 1
, (33)
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for all i ∈ {1, · · · , n} and j ∈ {1, · · · , k}. Therefore,

logP (Y1, ..., Yn|p) = log

n∏
i=1

k∏
j=1

(
Y

(j)
i (pj(1− δ) + (1− pj)δ) + (1− Y (j)

i )(pjδ + (1− pj)(1− δ))
)

=

n∑
i=1

k∑
j=1

log
(
Y

(j)
i (pj(1− δ) + (1− pj)δ) + (1− Y (j)

i )(pjδ + (1− pj)(1− δ))
)

=

n∑
i=1

k∑
j=1

log
(
(1− 2δ)(2Y

(j)
i − 1)pj − Y (j)

i (1− 2δ) + (1− δ)
)
,

where δ = 1/(1 + eε/2). Therefore, under k-RAPPOR, the maximum likelihood estimation problem is given by

argmax
p∈Sk

k∑
j=1

(n− Tj) log ((1− δ)− (1− 2δ)pj) + Tj log ((1− 2δ)pj + δ)

where Tj =
∑n
i=1 Y

(j)
i .

G. Conditions for Accurate Decoding under k-RR
For accurate decoding, we must satisfy three criteria: (i) k and C must be large enough that the input strings to be
distinguishable, (ii) k and C must be large enough that the linear system in (18) is not underconstrained, and (iii) n must
be large enough that the variance on estimated probability vector p̂ is small.

Let us first consider string distinguishability. Each string s ∈ S is associated with a C-tuple of hashes it can produces
in the various cohorts: HASH

(k)
C (s) = 〈HASH

(k)
1 (s), HASH

(k)
2 (s), · · · , HASH

(k)
C (s)〉 ∈ XC . Two strings si ∈ S and

sj ∈ S are distinguishable from one another under the encoding scheme if HASH
(k)
C (si) 6= HASH

(k)
C (sj), and a string s is

distinguishable within the set S if HASH
(k)
C (s) 6= HASH

(k)
C (sj)∀sj ∈ S\s.

Because HASH
(k)
C (s) is distributed uniformly over XC , P(HASH

(k)
C (s) = xC) ≈ 1

kC
for all xC ∈ XC . It follows that the

probability of two strings being distinguishable is also 1
kC

. Furthermore, the probability that exactly one string from S
produces the hash tuple xC is:

Binomial(1;
1

kC
, S) =

S(kC − 1)S−1

(kC)S

Thus, the expected number of xC ∈ XC associated with exactly one string in S, which is also the expected number of
distinguishable strings in a set S is:

∑
xC∈YC

(
S(kC − 1)S−1

(kC)S

)
= S

(
kC − 1

kC

)S−1
(34)

and the probability that a string s is distinguishable within the set S is
(
kC−1
kC

)S−1
.

Consider a probability distribution p ∈ SS . The expected recoverable probability mass is the the mass associated with the

distinguishable strings within the set S is
∑
s∈S ps

(
kC−1
kC

)S−1
=
(
kC−1
kC

)S−1
Therefore, if we hope to recover at least

Pt of the probability mass, we require
(
kC−1
kC

)S−1
≥ Pt, or equivalently, kC ≥ 1

1−P
1

S−1
t

.

Now consider ensuring that the linear system in (18) is not underconstrained. The system has S variables and kC indepen-
dent equations. Thus, the system is not underconstrained so long as kC ≥ S.
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H. Supplementary Figures

Figure 4: The true input distribution p for open-set and closed-set experiments in sections 4.4 and 5 is the geometric
distribution with mean at |input alphabet|/5, truncated and renormalized. In the k-ary experiments of Section 4.4, the input
alphabet is size k; in the open alphabet experiments of Section 5, the input alphabet is size S = 256.

Figure 5: The improvement in `2 decoding of the projected k-RR decoder (left) and projected k-RAPPOR decoder (right).
This figure demonstrates that the same patterns hold in `2 as in `1 for the conditions shown in Figure 1.
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Figure 6: The improvement (negative values, blue) of the best k-RR decoder over the best k-RAPPOR decoder varying the
size of the alphabet k (rows) and privacy parameter ε (columns). This figure demonstrates that the same patterns hold in `2
as in `1 for the conditions shown in Figure 2.
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(a) Full ε range. (b) Low ε range.

Figure 7: `1 loss when decoding open alphabets using the O-RR and O-RAPPOR for n = 106 users with input drawn from
an alphabet of S = 256 symbols under a geometric distribution with mean=S/5, as depicted in Figure 4. Free parameters
are set via grid search over k ∈ [2, 4, 8, . . . , 2048, 4096], c ∈ [1, 2, 4, . . . , 512, 1024], h ∈ [1, 2, 4, 8, 16] to minimize the
median loss over 50 samples at the given ε value. Lines show median `1 loss while the (narrow) shaded regions indicate
90% confidence intervals (over 50 samples). Baselines indicate expected loss from (1) using an empirical estimator directly
on the input s and (2) using the uniform distribution as the p̂ estimate.

(a) Full ε range. (b) Low ε range.

Figure 8: `1 loss when decoding decoding a known alphabet using the O-RR and O-RAPPOR (via permutative perfect
hash functions) for n = 106 users with input drawn from an alphabet of S = 256 symbols under a geometric distribution
with mean=S/5, as depicted in Figure 4. Free parameters are set via grid search over k ∈ [2, 4, 8, . . . , 2048, 4096],
c ∈ [1, 2, 4, . . . , 512, 1024], h ∈ [1, 2, 4, 8, 16] to minimize the median loss over 50 samples at the given ε value. Lines
show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over 50 samples). Note that
the k-RAPPOR and O-RAPPOR lines in (b) are nearly indistinguishable. Baselines indicate expected loss from (1) using an
empirical estimator directly on the input s and (2) using the uniform distribution as the p̂ estimate.
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(a) `1 = 0.02 (b) `1 = 0.05

(c) `1 = 0.10 (d) `1 = 0.20

(e) `1 = 0.30

Figure 9: Taking `1 loss (the utility) and n (the number of users) as fixed requirements (as is the case in many practical
scenarios), we approximate the degree of privacy ε that can be obtained under O-RR and O-RAPPOR for open alphabets
(lower ε is better). Input is generated from an alphabet of S = 256 symbols under a geometric distribution with mean=S/5,
as depicted in Figure 4. Free parameters are set via grid search to minimize the median loss over 50 samples at the given ε
and fixed parameter values.
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(a) `1 = 0.02 (b) `1 = 0.05

(c) `1 = 0.10 (d) `1 = 0.20

(e) `1 = 0.30

Figure 10: Taking `1 loss (the utility) and n (the number of users) as fixed requirements (as is the case in many practical
scenarios), we approximate the degree of privacy ε that can be obtained under O-RR and O-RAPPOR for closed alphabets
(lower ε is better). Input is generated from an alphabet of S = 256 symbols under a geometric distribution with mean=S/5,
as depicted in Figure 4. Free parameters are set via grid search to minimize the median loss over 50 samples at the given ε
and fixed parameter values.
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(a) O-RR varying k (b) O-RAPPOR varying k

(c) O-RR varying C (d) O-RAPPOR varying C

(e) O-RAPPOR varying h

Figure 11: `1 loss when decoding open alphabets using O-RR and O-RAPPOR under various parameter settings, for n =
106 users with input drawn from an alphabet of S = 4096 symbols under a geometric distribution with mean=S/5.
Remaining free parameters are set via grid search to minimize the median loss over 50 samples at the given ε and fixed
parameter values. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over
50 samples for the optimal parameter settings.)
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(a) O-RR varying k (b) O-RAPPOR varying k

(c) O-RR varying C (d) O-RAPPOR varying C

(e) O-RAPPOR varying h

Figure 12: `1 loss when decoding closed alphabets using the O-RR and O-RAPPOR under various parameter settings, for
n = 106 users with input drawn from an alphabet of S = 4096 symbols under a geometric distribution with mean=S/5.
Remaining free parameters are set via grid search to minimize the median loss over 50 samples at the given ε and fixed
parameter values. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over
50 samples for the optimal parameter settings.)
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(a) n = 106 users (b) n = 108 users

Figure 13: `1 loss when decoding open alphabets using the O-RR and O-RAPPOR, with input drawn from an alphabet
of S = 4096 symbols under a geometric distribution with mean=S/5. Free parameters are set via grid search over
k ∈ [2, 4, 8, . . . , 8192, 16384], c ∈ [1, 2, 4, . . . , 512, 1024], h ∈ [1, 2] to minimize the median loss over 50 samples at the
given ε value. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over 50
samples). Baselines indicate expected loss from (1) using an empirical estimator directly on the input s and (2) using the
uniform distribution as the p̂ estimate.

(a) `1 = 0.10 (b) `1 = 0.20

(c) `1 = 0.30 (d) `1 = 0.40

Figure 14: Taking `1 loss (the utility) and n (the number of users) as fixed requirements (as is the case in many practical
scenarios), we approximate the degree of privacy ε that can be obtained under O-RR and O-RAPPOR for open alpha-
bets (lower ε is better). Input is generated from an alphabet of S = 4096 symbols under a geometric distribution with
mean=S/5, as depicted in Figure 4. Free parameters are set via grid search to minimize the median loss over 50 samples
at the given ε and fixed parameter values.
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(a) O-RR varying k (b) O-RAPPOR varying k

(c) O-RR varying C (d) O-RAPPOR varying C

(e) O-RAPPOR varying h

Figure 15: `1 loss when decoding open alphabets using O-RR and O-RAPPOR under various parameter settings, for n =
106 users with input drawn from an alphabet of S = 4096 symbols under a geometric distribution with mean=S/5.
Remaining free parameters are set via grid search to minimize the median loss over 50 samples at the given ε and fixed
parameter values. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over
50 samples for the optimal parameter settings.)
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(a) O-RR varying k (b) O-RAPPOR varying k

(c) O-RR varying C (d) O-RAPPOR varying C

(e) O-RAPPOR varying h

Figure 16: `1 loss when decoding open alphabets using O-RR and O-RAPPOR under various parameter settings, for n =
108 users with input drawn from an alphabet of S = 4096 symbols under a geometric distribution with mean=S/5.
Remaining free parameters are set via grid search to minimize the median loss over 50 samples at the given ε and fixed
parameter values. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over
50 samples for the optimal parameter settings.)
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