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Abstract

Consider predicting a response using an additive model. A gamut is an additional,
usually continuous variable that can segment data and any associated estimates; the
underlying model varies smoothly. Examples of gamuts: (a) for disease, ages of sub-
jects, their initial severity status, and/or cumulative exposure doses; (b) for learning,
measures of cumulative experience and/or engagement; and (c) for economic activity,
levels of income and/or spending. In previous work, gamuts have helped identify metric
changes, detect coefficient shifts, and formulate statistical narratives.

Gamuts can be classified into four types: (1) gamuts exogenously specified and
known a priori; (2) those endogenously constructed and therefore latent; (3) gamuts
derived from an auxiliary model’s predictions; (4) gamuts chosen to optimize a pre-
dictive model. Here we use gamuts of type (3) to parametrize model coefficients. By
construction, the in-sample goodness-of-fit is always improved, so we focus on out-of-
sample cross-validating methods. We also address computational issues.

key words: deconstruction, lowess, nonparametric regression, regression diagnostics,
statistical narrative, varying-coefficient models.

1 Gamuts
The term gamut derives from Middle English. The medieval hexachordal music system
has three octaves and assigns unique case-sensitive letter names to each. The lowest note
of the lowest octave was called Γ ut. By elision, this name collapsed to gamut. Through
synecdoche, its meaning shifted from referring to this particular lowest note to encompass
the entire three-octave range, just as today we refer to the alphabet as our ABCs.

In modern usage, a gamut now implies an entire range or spectrum. The present paper
uses the term gamut in this sense, as the name of a one-dimensional spectrum, the meaning
of which can change from one application to another. We consider here models whose
coefficients vary as a function of the gamut.

1.1 The Predictor-Response Model with Gamuts
Consider this n-observation dataset with response, J predictors, and a gamut dimension:
{(yi, xi, gi) : i = 1, ..., n}. The values yi and gi are scalars, while xi is a J-vector. For
standard reasons, our error structure assumes observations i and j are uncorrelated when
i 6= j : C{yi, yj |xi, xj} = 0. The gamut-based model asserts this semi-linear model:

E{yi|xi} = xTi β(gi) (1)

In this paper, the gamut gi = g(xi), that is, gi is the evaluation of the auxiliary function
g(·). Alternative formulations are conceivable: Conventionally, equation (1) is modeled by
including interaction terms, either among the x variables or between the x variables and the
measured gamut g.
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Figure 1: Example of a CART-derived tree, from Zola (2015).

1.2 Sources of Gamuts
By their origin, four types of gamuts seem available:

a␣priori: Some applications have a readily available dimension that functions as a gamut.
For example, in medical applications, one can use treatment subjects’ before-treatment
disease severity. For college achievement, one can use students’ pre-college SAT scores.

exogenous␣composite: Rankings of colleges, for instance, have multiple measures that are
combined by suitable weights. Formally, g(x) = xTw, where the weights w are selected by
some rationale. In the case of US News college rankings, the weights are hand-curated. In
other applications, the choice of the weights w more resemble the first eigenvector. Gamuts
of this form are quite interesting, and subject to a companion paper.

endogenous␣composite: Such gamuts have the same formal structure as exogenous ones,
in that g(x) = xTw. The difference is that the weights of the endogenous form are derived
directly from the dataset {(yi, xi) : i = 1, ..., n}. Gamuts of this type are the focus of this
paper.

jointly␣optimized␣composite: In this formulation, two equations,

g(x) = xT γ, (2)

E{yi|xi} = xTi β(g(xi)) (3)

are posed to hold simultaneously, and (2) and (3) are jointly optimized with respect to
(γ, β(·)) subject to the usual regularity and smoothness requirements. For example, in
predicting first-year college performance, one might take into account high school GPA, SAT
scores, and financial aid package. Further, one can imagine the coefficients for GPA to be
somewhat different for high-SAT students than for low-SAT students: for low-SAT students,
the GPA may discriminate more strongly, because the grades might track more strongly with
an underlying non-intelligence-related latent variable such as work ethic (“grit”).

These four gamut types themselves comprise a spectrum. At one end, a priori gamuts are
conceptually simple and easily interpreted. At the other end, jointly optimized gamuts have
the best empirical fits at the expense of both simplicity and interpretation ease. From
an application point of view, the exogenous and endogenous composites strike an interesting
compromise: improving model accuracy while maintaining plausible narratives.

Here we focus on the case of the endogenous composite; the exogenous case merits a
separate treatment. Like its exogenous cousin, both in applications and in statistical theory
the gamut approach gives rise to interesting analyses. As we shall see below, working out
the details for the endogenous case has enough depth that such focus is merited.



1.3 Motivating Gamuts
From at least two points of view, one can intuit from statistical practice the underlying
concept of gamuts.

(a)Consider a tree-based classification model such as that from Zola (2015) presented in
Figure 1. The first split finds a single variable that sheers off a relatively small subset of high
purity, and this is repeated with two more small cuts from the remaining majority branch.
As one proceeds into the body of the data, ever more features are used for partitioning. This
says that the edges of the predictive range may require or support fewer features and simpler
models, while the middle tiers of the predictive range, with a greater mix of categories, may
require more features and richer models.

(b)Consider the case of physical constants, such as the speed of light and Avogadro’s
number. These constants correspond to coefficients of particular proportional systems. It
is a statement of profound physics that these coefficients are constant, that is, invariant
across a wide range of experimental conditions. So if in the physical sciences the strongest
and deepest statements assert constant model coefficients, then it follows that, scientifically
speaking, the corresponding scientific null hypothesis should assert that coefficients vary
from context to context.

Of course, argument (b) conflicts with Occam’s razor, which uniformly favors simple
models over more complex ones. For our purposes, it is sufficient to note the tension between
these two points of view. As will unfold below, gamuts constitute a simple, one-dimensional
formulation in which this tension can be contemplated without premature commitment to
a constant-coefficient model.

1.4 Examples of Gamuts
Figure 2 (a) presents a numerator-denominator plot from Heavlin and Koslov (2008). The
quantity by·x =

∑
yixi/

∑
x2i estimates the regression coefficient of a zero-intercept model.

In Figure 2 (a), the y-axis plots cumsum yixi versus cumsum x2i . As a consequence, the slope
of the line between the origin and the last point (

∑
yixi,

∑
x2i ) is by·x, the overall simple

regression coefficient. Were the summands of Figure 2 (a) sorted at random, the slope of
the cumsum-cumsum curve would also be linear, on average, with slope approximately by·x.
However, the actual order of the summands in Figure 2 (a) sorts by xi, so xi ≤ xi+1, that
is, the gamut is g(x) ≡ x. As a result, locally, the slope between any two points with
gamut labels g1 and g2 on the curve in Figure 2 (a) corresponds to an estimate of by·x
specific to that gamut interval:

∑
yixi/

∑
x2i , where the summation takes place over the

set {i : g1 < gi ≤ g2}. Observe that the slope of Figure 2 (a)’s curve is largest for the
lower values of x. Heavlin and Koslov report that y consists of a hard-to-measure ground
truth, while x is a proposed clickstream-based calculation of quality. From Figure 2 (a), we
conclude that low values of x strongly imply non-quality, and that going from low x-values to
medium x-values corresponds to a greater improvements in quality than going from medium
x-values to high ones.

The analysis of Figure 2 (a) embodies two concepts: (a) that a coefficient can change
over the range of the feature space, and (b) that one-dimensional curves can describe these
changes. Heavlin and Koslov (2008) describe generalizations of ND plots to various ra-
tio statistics. Heavlin (2012) connects Hill’s (1965) causality criteria to particular gamut
choices.

Figure 2 (b), from Heavlin (2014), presents another ND plot, now corresponding to a one
coefficient byx in a regression model with other predictors in addition to x. Here, the data
are stratified by the ads exposure volume; the strata are indexed by g. A set of coefficients
is calculated for each stratum separately; in stratum g denote the coefficient of interest by
byx[g]. Plotted are the weighted cumsums of byx[g], cumsum byx[g]w[g]; the weights, w[g],
which sum to 1, are proportional to reciprocals of squared standard errors. The last plotted
point, with value of 0.89, is the (weighted) average coefficient, averaged over all exposure
doses. By construction, the slope from the origin to the last plotted point is also 0.89.



Figure 2: (a) ND plot of a simple regression coefficient, from Heavlin and Koslov (2008). The
gamut consists of the regressor xi. (b) ND plot of a stratified multiple regression coefficient,
from Heavlin (2014). The gamut consists of the tertiary variable, exposure dose.

The J-shape in Figure 2 (b) tells us that for low values of g, the coefficients byx[g] are near
zero, while for higher values of g, the slopes run somewhat above 1.0. Observe the change in
structure at about 12 to 17 points from the left: this corresponds to exposure levels above
which users become progressively more sensitive to their quality experience. Ads exposure
therefore acts as a dose, and after a certain amount of this dose, users become sensitized to
the quality of their ads experience. In the terminology of the present paper, ads exposure
defines a gamut, and we identify an important effect as a function of this gamut. (Note also
that the gamut of exposure dose essentially counts users’ learning opportunities.)

For each point plotted in Figure 2 (b), the data volume is sufficient to calculate a full
multiple regression with each unique value of ads exposure dose. In that sense, the ND plot
merely displays many separately calculated regression coefficients while respecting their
relative precisions. A natural question arises of how to handle the case of a smaller amount
of data. A related question is how to proceed when the gamut is measured on a continuous
scale, and we have, unlike the integer gamut values in Figure 2 (b), no natural discrete strata.
Section 2.2 offers a concrete proposal to this question: generalizing gamut-dependent model
coefficients to finer-grained, continuous-scale gamuts and/or to smaller data volumes.

2 Primary Example

2.1 Prices of 505 California Homes
Our dataset consists of the selling prices of 505 homes around San Luis Obispo, California,
sold in 2009 (Statcrunch, 2016, dataid=1758729). As extracted, we have each home’s 2009
sales price, its community, square footage, and numbers of bed- and bathrooms. To this we
supplement the 2016 median sales prices for each corresponding community by searching
on zillow.com in early 2016; this allows us to measure on a continuous scale the otherwise
categorical variable designating community; in what follows, we refer to the terms making
use of median home price as location.

The 2009 sales prices, the square footages, and locations are all transformed to log scale.
Table 1 presents the coefficients of an ordinary least squares fit of sales price, on the four
terms of square footage, location, number of bathrooms, and number of bedrooms. The
coefficients of square-footage and location, with values of 1.01 and 0.70, can be interpreted
as elasticities. The out-of-sample R2, resulting from a cross-validation scheme detailed in
section 3.3, is 0.52.

These California home prices range from a low of $27,000 to a high of $2.8 million; the
first quartile is just below $200,000, the third quartile somewhat above $400,000. One can



Table 1: Coefficients of ordinary least squares fit.

term estimate std error t-value p-value
(Intercept) -3.52 0.991 −3.55 0.0004
ln square footage 1.01 0.098 10.32 < 2× 10−16

ln median home price 0.70 0.069 10.13 < 2× 10−16

number bedrooms −0.11 0.037 −2.89 0.0040
number bathrooms 0.03 0.044 0.748 0.4558

reasonably ask how constant are the elasticities with respect to square footage and location.
The implication can be quite practical: In California, homes constitute the primary family
investment: a home remodel that enlarges the square footage by 20 percent increases a
home’s value by 20 percent when the elasticity of price to square footage is 1.0, but by
only 13 percent when the elasticity is 0.7. The difference between a 20 percent return and
one of 13 percent can be substantial, as the higher rate of return may justify financing the
improvement while the lower one may not.

2.2 Lowess-based Gamut Model
Consider now this gamut-labeled dataset: {(yi, xi, gi) : i = 1, ..., n}; the yi are all scalar
responses, the xi are J-vectors, and the gi are the gamut scalars sorted in ascending order:
that is, gi ≤ gi+1 for all indices i.

For a given scalar value for the gamut g0, let us form the n-element weight vector w0

based on the closeness of gj to g0. Following Cleveland (1979), consider the tricube function

T (x) ≡ (1− |x|3)3 × 1{|x| < 1}. (4)

We define the j-th element of w0, wj0, by the relation wj0 = T ((gj−g0)/τ0), for some positive
scalar τ0. In this paper, we take τ0 = τ(g0) to be 2×median{|gj − g0|}, the median being
calculated over all indices j. (A cross-validation-based exercise indicates that a multiplier
of 1.13 is slightly better than a multiplier of 2.0.) Given n such weights, the weighted least
squares estimate of the coefficients solves these linear equations with respect to b0 :

XTDw0
X b0 = XTDw0

y, (5)

where X consists of n rows, each of the form (1, xi), y is the n-vector (y1, y2, . . . , yn),
and Dw0 =diag(w10, w20, . . . , wn0) are the weights around gamut value g0. Because the
coefficients b0 depend ultimately on g0, we can shift the notation somewhat and denote
b0 = b(g0). Further, one can sweep the gamut scalar g0 over all values gi, i = 1, 2, . . . , n, and
obtain coefficient vectors b(gi), i = 1, 2, . . . , n. b(g0) is essentially a smoothed estimate of
the coefficients using the neighborhood of observations near g0; this neighborhood is defined
implicitly, using the lowess weight system defined by the functions (T, τ).

To summarize, once the gamut values {gi : i = 1, 2, . . . , n} are set, one can calculate
coefficients b(gi) for all values gi. In the present work, we take gi to be the fitted values from
the Table 1 model.

Figure 3 draws the corresponding coefficient estimates b(gi) on the y-axis versus gamut
values gi on the x-axis. The most visible feature is the shift in structure about 40 percent
across the gamut range: The elasticity with respect to square footage rises above 1.0, while
that with respect to location falls from about 0.7 to about 0.6. The coefficients with respect
to bath- and bedroom counts similarly shift: for the higher gamut values, bathroom count
offer some incremental value, while enclosing additional space into bedrooms imposes a
slightly negative effect on price.

As one might expect, the corresponding out-of-sample R2 rises from 0.52 to 0.68.



Figure 3: Gamut-based regression coefficients for the 505 California homes, as described in
section 2.2.

The remainder of this paper deals with the statistical issues raised by this gamut-based
calculation. Before we turn to that discussion, we note the two apparent virtues of gamuts:
(a)The goodness-of-fit increases. This seems quite plausible, since gamut-based models have
rather more parameters. (b)The narrative associated with the model becomes richer: For
example, rather than interpret the elasticity of price with respect to square footage, Figure
3 suggests two domains, lower- and higher-end homes. The higher-end homes have a higher
elasticity with respect to changes in square footage. Were this otherwise, the prospect of
a constant elasticity with respect to square footage would be profound—suggesting com-
parisons to other coefficients observed to be constant over a wide range, analogous to the
constancy of physical constants as discussed in section 1.3 (b).

3 Statistical Issues with Gamuts

3.1 Related Literature
Gamut-based methods fall under the general topic of nonparametric regression. Anscombe
and Tukey (1963) plot residuals of a linear model against their corresponding fitted values.
They note that visible curvature in this plot can often be mitigated by transforming the
response, for instance, by taking logarithms or a related power transformation. In modern
terminology, Anscombe and Tukey assess goodness of fit relative to the estimated mean
function.

Cleveland (1979) introduces local weights for smoothing scatterplots. His proposed
lowess weight system includes the tricube function, and the practice of smoothing with re-
spect to robust scale estimates. Cleveland and Devlin (1988) directly generalize the lowess
algorithm to the case of multiple predictors; their weight function operates directly over the
covariate (feature) space in RJ . Friedman and Stuetzle (1981) offer another generalization,



projection pursuit regression. In this scheme, a given direction in the covariate space, Xγ
say, is lowess smoothed; γ is chosen to maximize goodness of fit; the fitting process was
iterated over the residuals from previous fits. Wahba (1978) establish spline-based meth-
ods. Friedman (1991) proposes an adaptive, spline-based, continuous modeling approach
that dispenses with the single-direction, take-residuals-and-repeat approach of projection
pursuit regression. Hastie and Tibshirani (1993) note that a wide range of predictive ap-
proaches can be expressed as varying-coefficient models. Their work relies on posing rich
spaces of potential covariates and exploiting the L1-lasso technology to select that feature
subsets well supported by the data. Out of the machine learning tradition, Garcia and Gupta
(2009) develop elegant prediction algorithms that consist of additive, usually monotone sur-
faces over regular grids of spline-like knots. Their applications fit well while preserving
interpretability.

Against this background, gamut-based approaches postulate interactions of each term
with the gamut direction. In the case of the endogenous gamut considered here, the gamut
direction is a coarse estimate of the mean function. In doing so, it preserves the interpretabil-
ity not only of the predictions, but of the coefficients themselves. In this regard, gamuts
share the underlying visual esthetic of Anscombe and Tukey (1963), Cleveland (1979), and
Friedman and Stuetzle (1981).

3.2 Regularization and Overfitting
To avoid overfitting, nonparametric regression methods have two strategies. One is to modify
the objective function, so that models with more parameters are suitably penalized. The
second is to divide the data into training and test sets, and evaluate goodness of fit on tests
sets. Ridge regression (Hoerl and Kennard, 1970) and, later, the lasso (Tibshirani, 1996) are
examples of the former strategy, while Wahba (1978), Breiman et al. (1984), and Friedman
and Stuetzle (1981) use the latter extensively.

3.3 Confidence Intervals
For gamuts, the training-test strategy can be computationally convenient. Among other
reasons, test sets are easily represented by injecting zero weights into the gamut calculations.
In particular, we find the strategy of cross-validation well suited. Cross-validation methods
are widely used to assess goodness of fit by calculating directly the lack of fit in the out-
of-sample test set. By systematically assigning all observations to some training sets and
to some test sets, the estimates of cross-validation come to resemble leave-out-k jackknife
samples.

Denote the set of all n observations by S, and that leaving out subsample j by S−j .
Further, denote the respective sizes of sets S and S−j by n and n−j , respectively. Consider
an estimator G that operates on sets like S and S−j . Let us denote the variance operator by
V. By elementary methods, and assuming S−j is the result of random without-replacement
subsampling from S, one can show that V{G(S−j) − G(S)} = V{G(S)} ×(n − n−j)/n−j .
Rearranging terms, we arrive at this result:

V{
√

n−j

n− n−j
× (G(S−j)−G(S))} = V{G(S)}. (6)

The righthand side of the latter expression is our quantity of interest, the squared standard
error of our estimate using the whole dataset. The lefthand side is something we can
calculate from our calculated set of cross-validated estimates {(G(S−j), n−j) : ∀j}: how
close are our cross-validation sample estimates to the estimate using all data S. Note that
the square-root factor tells us how to adjust the observed differences for the relative size of
in-sample (training) data S−j of cardinality n−j and the out-of-sample data, of cardinality
n−n−j . The case of equal-sized training and test samples can be computationally convenient,
because in this case the square-root factor becomes exactly 1.



Figure 4: (a) Confidence intervals for the gamut-based coefficients, based on the 101 cross-
validation subsamples, as described in section 3.3. (b) For k = 6 knots, the gamut coefficients
and their ±2 standard error bars, as described in section 4.1.

Table 2: The efficiencies of the four coefficients relative to those of the constant-coefficient
model.

Label relative efficiency
ln square footage 0.68
ln median house price 0.55
number bedrooms 0.57
num bathrooms 0.84

In the application of 505 homes, we assign each observation to one and only one of 101 sets
of 5 observations each. Each of these in turn can act as a test sample, and the corresponding
training sample consists of the remaining 500 observations. For each such training sample,
which we might designate as S−j , j = 1, 2, . . . , 101, we calculate the gamut coefficient curves
b−j(·). These estimates are available for each observation i, i = 1, 2, . . . , 505, and for each
i we have 101 coefficient estimates. We calculate the standard error of these coefficients,
using the multiplier

√
500/5=10. Figure 4 (a) draws the ±2 standard error (and pointwise)

confidence intervals. The plausibility of separate coefficients for low- and high-end homes is
generally reinforced.

3.4 Statistical Efficiency
This cross-validation framework also allows us to compare the relative efficiency of gamut-
based models to, say, a constant-coefficient model if one reduces the standard errors of the
gamut coefficients to a typical value. Likewise, the same estimation pipeline that generates
gamut curves can be constrained so that all weights wij are equal, and the standard errors
of the now-constant coefficient recorded.

The results are quantified in Table 2. The gamut model has wider standard errors by
a factor of about 1.3×, or 60 percent relative efficiency. This implies that each gamut
coefficient is typically estimated from the equivalent of a dataset with 303 observations.



4 Computational Issues with Gamuts

4.1 Memory Compression
Contemporary large-scale computing environments consist of a distributed file system (Ghe-
mawat, et al, 2003) and a MapReduce programming model (Dean and Ghemawat, 2004).
Compatible algorithms require less-than-linear memory scaling and a parallel computing
strategy.

For gamuts, the memory requirement appears particularly pressing: at first blush,
gamuts seem to require a set of coefficients for every observation, or at least a set of
coefficients for each unique gamut value. However, the most straightforward of memory
compression schemes works well: Suppose we constrain the space of coefficients to have not
dimension n × J but rather dimension k × J, where k is some modest number like 5 or 6.
This allows us to estimate a gamut curve that is constant below the 100/(1 + k) percentile,
constant above the 100k/(1 + k) percentile, and by linear interpolation in between. By
analogy with spline fitting, we can refer to these particular k gamut values as knots.

Figure 4 (b) displays the estimated gamut coefficients, with standard errors, for the 6
knots. As one might expect, the smaller number of parameter estimates imparts some
virtues of parsimonious models: out-of-sample R2 increases slightly from 0.68 to 0.71. The
coefficient-specific efficiencies relative to the constant-coefficient model also improve, from
roughly 0.60 to about 0.65 — equivalent to an effective sample size n of about 330 out of
505. And, of course, the number of estimated parameters is reduced from 505 × 4 = 2020
to 6× 4 = 24.

4.2 Parallel Computing
Gamuts enable a particular strategy for parallel computation, based on sorting the data with
respect to the gamut. Very large datasets are typically partitioned into multiple physical
disk files called shards. Suppose we reshard by gamut value: we rewrite the shards to
a new file system such that each shard has approximately the same gamut value. If a file
system consists of Q = 100 shards, each shard implicitly labels a particular gamut percentile.
This allows us to build a gamut-local estimate by reading one shard and, say, its two gamut
neighbors. This corresponds to each shard being read by three non-dependent processes. For
file systems that restrict reading to one process at the time, this implies a read throughput
of around Q/3. In this sense, when resharding is feasible, gamuts can facilitate parallel
processing. For model serving, one can calculate the equivalent of one knot for every shard,
achieving a parameter count of Q×J, small enough to conform to the requirements of most
memory-resident models.

This strategy of sharding by gamut value is generic and applicable across predictive
modeling approaches. Further, among nonparametric regression approaches, only gamuts
support this property of shardability.

5 Summary
The principal aim of ND plots is to deconstruct ratio estimates; they use gamuts to segment
the underlying data meaningfully. The endogenous gamut-based models described here
preserve the rich data-driven narratives of ND plots while using their underlying principles
to improve model goodness of fit. In the author’s experience, goodness of fit is most improved
in relatively low-dimensional, non-sparse feature spaces.

In common with most nonparametric regression methods, we rely on cross-validation
methods to calibrate our model fitting. We exploit the ready availability of cross-validation’s
without-replacement sub-samples, and their estimates, to supply appropriate standard er-
rors. Further, we sketch two-part computational strategy to conform with the contemporary
sharded MapReduce computing environment; gamuts have some synergy with file sharding.



The example described here is compelling: gamuts identify a structural change to an
economic pricing model, one quite plausible in economic theory but not easily seen by
standard modeling methods. Thus, Figure 3 suggests a rather rich explanatory narrative.
This narrative remains a primary virtue of gamut-based methods.

We have deliberately not addressed the case of exogenous gamuts raised in section 1.2.
This case is deeply interesting, and the topic of a parallel effort.
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