
Full Resolution Image Compression with Recurrent
Neural Networks

George Toderici
Google Inc.

gtoderici@google.com

Damien Vincent
Google Inc.

damienv@google.com

Nick Johnston
Google Inc.

nickj@google.com

Sung Jin Hwang
Google Inc.

sjhwang@google.com

David Minnen
Google Inc.

dminnen@google.com

Joel Shor
Google Inc.

joelshor@google.com

Michele Covell
Google Inc.

covell@google.com

Abstract

This paper presents a set of full-resolution lossy image compression methods based
on neural networks. Each of the architectures we describe can provide variable
compression rates during deployment without requiring retraining of the network:
each network need only be trained once. All of our architectures consist of a
recurrent neural network (RNN)-based encoder and decoder, a binarizer, and a
neural network for entropy coding. We compare RNN types (LSTM, associative
LSTM) and introduce a new hybrid of GRU and ResNet. We also study “one-shot”
versus additive reconstruction architectures and introduce a new scaled-additive
framework. We compare to previous work, showing improvements of 4.3%–8.8%
AUC (area under the rate-distortion curve), depending on the perceptual metric
used. As far as we know, this is the first neural network architecture that is able to
outperform JPEG at image compression across most bitrates on the rate-distortion
curve on the Kodak dataset images, with and without the aid of entropy coding.

1 Introduction

Image compression has traditionally been one of the tasks which neural networks were suspected
to be good at, but there was little evidence that it would be possible to train a single neural network
that would be competitive across compression rates and image sizes. Toderici et al. [2016] showed
that it is possible to train a single recurrent neural network and achieve better than state of the art
compression rates for a given quality regardless of the input image, but was limited to 32×32 images.
In that work, no effort was made to capture the long-range dependencies between image patches.

Our goal is to provide a neural network which is competitive across compression rates on images of
arbitrary size. There are two possible ways to achieve this: 1) design a stronger patch-based residual
encoder; and 2) design an entropy coder that is able to capture long-term dependencies between
patches in the image. In this paper, we address both problems and combine the two possible ways to
improve compression rates for a given quality.

In order to measure how well our architectures are doing (i.e., “quality”), we cannot rely on typical
metrics such as Peak Signal to Noise Ratio (PSNR), or Lp differences between compressed and
reference images because the human visual system is more sensitive to certain types of distortions
than others. This idea was exploited in lossy image compression methods such as JPEG. In order
to be able to measure such differences, we need to use a human visual system-inspired measure
which, ideally should correlate with how humans perceive image differences. Moreover, if such

E-Conv
Conv
3×3×64
Stride: 2×2

E-RNN#1
RNN Conv
3×3×256
Stride: 2×2

E-RNN#2
RNN Conv
3×3×512
Stride: 2×2

E-RNN#3
RNN Conv
3×3×512
Stride: 2×2

Encoder

Input (floats)

Size 32×32×3

B-Conv
Conv
1×1×32
Stride: 1×1

Binarizer

Encoded (floats)

Size 2×2×512

D-Conv#1
Conv
1×1×512
Stride: 1×1

D-RNN#1
RNN Conv
2×2×512
Stride: 1×1

Depth
to
Space

D-RNN#2
RNN Conv
3×3×512
Stride: 1×1

Depth
to
Space

D-RNN#3
RNN Conv
3×3×256
Stride: 1×1

Depth
to
Space

D-RNN#4
RNN Conv
3×3×128
Stride: 1×1

Depth
to
Space

D-Conv#2
Conv
1×1×3
Stride: 1×1

Decoder

Binary Code (bits), Size 2×2×32

It (floats)

Size 32×32×3

Figure 1: A single iteration of our shared RNN architecture.

a metric existed, and were differentiable, we could directly optimize for it. Unfortunately, in the
literature there is a wide variety of metrics of varying quality, most of which are non-differentiable.
For evaluation purposes, we selected two commonly used metrics, PSNR-HVS [Gupta et al., 2011]
and MS-SSIM [Wang et al., 2003], as discussed in Section 4.

1.1 Previous Work

Autoencoders have been used to reduce the dimensionality of images [Hinton and Salakhutdinov,
2006], convert images to compressed binary codes for retrieval [Krizhevsky and Hinton, 2011],
and to extract compact visual representations that can be used in other applications [Vincent et al.,
2012]. More recently, variational (recurrent) autoencoders have been directly applied to the problem
of compression [Gregor et al., 2016] (with results on images of size up to 64×64 pixels), while
non-variational recurrent neural networks were used to implement variable-rate encoding [Toderici
et al., 2016].

Most image compression neural networks use a fixed compression rate based on the size of a
bottleneck layer. This work extends previous methods by supporting variable rate compression while
maintaining high compression rates beyond thumbnail-sized images.

2 Methods

In this section, we describe the high-level model architectures we explored. The subsections provide
additional details about the different recurrent network components in our experiments. Our compres-
sion networks are comprised of an encoding network E, a binarizer B and a decoding network D,
where D and E contain recurrent network components. The input images are first encoded, and then
transformed into binary codes that can be stored or transmitted to the decoder. The decoder network
creates an estimate of the original input image based on the received binary code. We repeat this
procedure with the residual error, the difference between the original image and the reconstruction
from the decoder.

Figure 1 shows the architecture of a single iteration of our model. While the network weights are
shared between iterations, the states in the recurrent components are propagated to the next iteration.
Therefore residuals are encoded and decoded in different contexts in different iterations. Note that
the binarizer B is stateless in our system.

We can compactly represent a single iteration of our networks as follows:

bt = B(Et(rt−1)), x̂t = Dt(bt) + γx̂t−1, rt = x− x̂t, r0 = x, x̂0 = 0 (1)

where Dt and Et represent the decoder and encoder with their states at iteration t respectively, bt is
the progressive binary representation; x̂t is the progressive reconstruction of the original image x
with γ = 0 for “one-shot” reconstruction or 1 for additive reconstruction (see Section 2.2); and rt
is the residual between x and the reconstruction x̂t. In every iteration, B will produce a binarized
bit stream bt ∈ {−1, 1}m where m is the number of bits produced after every iteration, using the
approach reported in Toderici et al. [2016]. After k iterations, the network produces m · k bits in total.
Since our models are fully convolutional, m is a linear function of input size. For image patches of
32×32, m = 128.

2

The recurrent units used to create the encoder and decoder include two convolutional kernels: one
on the input vector which comes into the unit from the previous layer and the other one on the state
vector which provides the recurrent nature of the unit. We will refer to the convolution on the state
vector and its kernel as the “hidden convolution” and the “hidden kernel”.

In Figure 1, we give the spatial extent of the input-vector convolutional kernel along with the output
depth. All convolutional kernels allow full mixing across depth. For example, the unit D-RNN#3
has 256 convolutional kernels that operate on the input vector, each with 3×3 spatial extent and full
input-depth extent (128 in this example, since the depth of D-RNN#2 is reduced by a factor of four as
it goes through the “Depth-to-Space” unit).

The spatial extents of the hidden kernels are all 1×1, except for in units D-RNN#3 and D-RNN#4
where the hidden kernels are 3×3. The larger hidden kernels consistently resulted in improved
compression curves compared to the 1×1 hidden kernels exclusively used in Toderici et al. [2016].

During training, a L1 loss is calculated on the weighted residuals generated at each iteration (see
Section 4), so our total loss for the network is:

β
∑
t

|rt| (2)

In our networks, each 32×32×3 input image is reduced to a 2×2×32 binarized representation per
iteration. This results in each iteration representing 1/8 bit per pixel (bpp). If only the first iteration is
used, this would be 192:1 compression, even before entropy coding (Section 3).

We explore a combination of recurrent unit variants and reconstruction frameworks for our compres-
sion systems. We compare these compression results to the results from the deconvolutional network
described in Toderici et al. [2016], referred to in this paper as the Baseline network.

2.1 Types of Recurrent Units

In this subsection, we introduce the different types of recurrent units that we examined.

2.1.1 LSTM

One recurrent neural-network element we examine is a LSTM [Hochreiter and Schmidhuber, 1997]
with the formulation proposed by Zaremba et al. [2014]. Let xt, ct, and ht denote the input, cell, and
hidden states, respectively, at iteration t. Given the current input xt, previous cell state ct−1, and
previous hidden state ht−1, the new cell state ct and the new hidden state ht are computed as

[f, i, o, j]T = [σ, σ, σ, tanh]T
(
(Wxt + Uht−1) + b

)
, (3)

ct = f � ct−1 + i� j, (4)
ht = o� tanh(ct), (5)

where � denotes element-wise multiplication, and b is the bias. The activation function σ is the
sigmoid function σ(x) = 1/(1 + exp(−x)). The output of an LSTM layer at iteration t is ht.

The transforms W and U , applied to xt and ht−1, respectively, are convolutional linear transforma-
tions. That is, they are composites of Toeplitz matrices with padding and stride transformations. The
spatial extent and depth of the W convolutions are as shown in Figure 1. As pointed out earlier in
this section, the U convolutions have the same depths as the W convolutions.

2.1.2 Associative LSTM

Another neural network element we examine is the Associative LSTM [Danihelka et al., 2016].
Associative LSTM extends LSTM using holographic representation. Its new states are computed as

[f, i, o, j, ri, ro]
T = [σ, σ, σ, bound,bound,bound]T

(
(Wxt + Uht−1) + b

)
, (6)

ct = f � ct−1 + ri � i� j, (7)
ht = o� bound(ro � ct), (8)

h̃t = (Reht, Imht). (9)

3

The output of an Associative LSTM at iteration t is h̃t. The input xt, the output h̃t, and the gate
values f, i, o are real-valued, but the rest of the quantities are complex-valued. The function bound(z)
for complex z is z if |z| ≤ 1 and is z/|z| otherwise. As in the case of non-associative LSTM, we use
convolutional linear transformations W and U .

Experimentally, we determined that Associative LSTMs were effective only when used in the decoder.
Thus, in all our experiments with Associative LSTMs, non-associative LSTMs were used in the
encoder.

2.1.3 Gated Recurrent Units

The last recurrent element we investigate is the Gated Recurrent Unit [Chung et al., 2014] (GRU).
The formulation for GRU, which has an input xt and a hidden state/output ht, is:

zt = σ(Wzxt + Uzht−1), (10)
rt = σ(Wrxt + Urht−1), (11)
ht = (1− zt)� ht−1 + zt � tanh(Wxt + U(rt � ht−1)). (12)

As in the case of LSTM, we use convolutions instead of simple multiplications. Inspired by the core
idea from ResNet [He et al., 2015], we can think of GRU as a computation block and pass residual
information around the block in order to speed up convergence. Since GRU can be seen as a doubly
indexed block, with one index being iteration and the other being space, we can formulate a residual
version of GRU which now has two residual connections. In the equations below, we use hot to denote
the output of our formulation, which will be distinct from the hidden state ht:

ht = (1− zt)� ht−1 + zt � tanh(Wxt + U(rt � ht−1)) + αhWhht−1, (13)
hot = ht + αxWoxxt. (14)

where we use αx = αh = 0.1 for all the experiments in this paper.

This idea parallels the work done in Higher Order RNNs [Soltani and Jiang, 2016], where linear
connections are added between iterations, but not between the input and the output of the RNN.

2.2 Reconstruction Framework

In addition to using different types of recurrent units, we examine three different approaches to
creating the final image reconstruction from our decoder outputs. We describe those approaches in
this subsection, along with the changes needed to the loss function.

One-shot Reconstruction: As was done in Toderici et al. [2016], we predict the full image after each
iteration of the decoder (γ = 0 in (1)). Each successive iteration has access to more bits generated by
the encoder which allows for a better reconstruction. We call this approach “one-shot reconstruction”.
Despite trying to reconstruct the original image at each iteration, we only pass the previous iteration’s
residual to the next iteration. This reduces the number of weights, and experiments show that passing
both the original image and the residual does not improve the reconstructions.

Additive Reconstruction: In additive reconstruction, which is more widely used in traditional image
coding, each iteration only tries to reconstruct the residual from the previous iterations. The final
image reconstruction is then the sum of the outputs of all iterations (γ = 1 in (1)).

Residual Scaling: In both additive and “one shot” reconstruction, the residual starts large, and we
expect it to decrease with each iteration. However, it may be difficult for the encoder and the decoder
to operate efficiently across a wide range of values. Furthermore, the rate at which the residual
shrinks is content dependent. In some patches (e.g., uniform regions), the drop-off will be much more
dramatic than in other patches (e.g., highly textured patches).

To accommodate these variations, we extend our additive reconstruction architecture to include
a content-dependent, iteration-dependent gain factor. Figure 2 shows the extension that we used.
Conceptually, we look at the reconstruction of the previous residual image, rt−1, and derive a gain
multiplier for each patch. We then multiply the target residual going into the current iteration by the
gain that is given from processing the previous iteration’s output. Equation 1 becomes:

gt = G(rt) bt = B(Et(rt−1 � ZOH(gt−1))), r̂t−1 = Dt(bt)� ZOH(gt−1), (15)
x̂t = x̂t−1 + r̂t−1, rt = x− x̂t, g−1 = 1, r0 = x. (16)

4

rt−1

gt−1

× Encode
& Decode

scaled
residual

÷ Gain
Estimator

r̂t−1 gt

−
rt

Figure 2: Adding content-dependent, iteration-dependent residual scaling to the additive reconstruc-
tion framework. Residual images are of size H×W×3 with three color channels, while gains are of
size 1 and the same gain factor is applied to all three channels per pixel.

Short range features:
7×7 masked convolution

c 0 0 0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

Raster order

One line

z0

Input to state

LSTM Logic

s
LSTM state

1×2 Conv

1×3 Conv Update

Line LSTM

1×1
Conv

1×1
Conv

P̂ (c | T)

Figure 3: Binary recurrent network (BinaryRNN) architecture for a single iteration. The gray area
denotes the context that is available at decode time.

where � is element-wise division and ZOH is spatial upsampling by zero-order hold. G(·) estimates
the gain factor, gt, using a five-layer feed-forward convolutional network, each layer with a stride
of two. The first four layers give an output depth of 32, using a 3×3 convolutional kernel with an
ELU nonlinearity [Clevert et al., 2015]. The final layer gives an output depth of 1, using a 2×2
convolutional kernel, with an ELU nonlinearity. Since ELU has a range of (−1,∞) a constant of 2 is
added to the output of this network to obtain gt in the range of (1,∞).

3 Entropy Coding

The entropy of the codes generated during inference are not maximal because the network is not
explicitly designed to maximize entropy in its codes, and the model does not necessarily exploit
visual redundancy over a large spatial extent. Adding an entropy coding layer can further improve the
compression ratio, as is commonly done in standard image compression codecs.

The lossless entropy coding schemes considered here process binary codes in progressive order and for
a given encoding iteration in raster-scan order. All of our image encoder architectures generate binary
codes of the form c(y, x, d) of size H ×W ×D, where H and W are integer fractions of the image
height and width and D is m × the number of iterations. We consider a standard lossless encoding
framework that combines a conditional probabilistic model of the current binary code c(y, x, d) with
an arithmetic coder to do the actual compression. More formally, given a context T (y, x, d) which
depends only on previous bits in stream order, we will estimate P (c(y, x, d) | T (y, x, d)) so that
the expected ideal encoded length of c(y, x, d) is the cross entropy between P (c | T) and P̂ (c | T).
We do not consider the small penalty involved by using a practical arithmetic coder that requires a
quantized version of P̂ (c | T).

5

3×3
Conv

3×3
Conv

1×1
Conv LSTM

1×1
Conv

1×1
Conv

Codes
from the
previous
iteration

64 64 64 64
z1

Figure 4: Description of neural network used to compute additional line LSTM inputs for progressive
entropy coder. This allows propagation of information from the previous iterations to the current.

3.1 Single Iteration Entropy Coder

We leverage the PixelRNN architecture [Oord et al., 2016] and use a similar architecture (BinaryRNN)
for the compression of binary codes of a single layer. In this architecture (shown on Figure 3), the
estimation of the conditional code probabilities for line y depends directly on some neighboring
codes but also indirectly on the previously decoded binary codes through a line of states S of size
1 ×W × k which captures both some short term and long term dependencies. The state line is a
summary of all the previous lines. In practice, we use k = 64. The probabilities are estimated and
the state is updated line by line using a 1×3 LSTM convolution.

The end-to-end probability estimation includes 3 stages. First, the initial convolution is a 7×7
convolution used to increase the receptive field of the LSTM state, the receptive field being the set
of codes c(i, j, ·) which can influence the probability estimation of codes c(y, x, ·). As in [Oord
et al., 2016], this initial convolution is a masked convolution so as to avoid dependencies on future
codes. In the second stage, the line LSTM takes as input the result z0 of this initial convolution and
processes one scan line at a time. Since LSTM hidden states are produced by processing the previous
scan lines, the line LSTM captures both short- and long-term dependencies. For the same reason,
the input-to-state LSTM transform is also a masked convolution. Finally, two 1×1 convolutions are
added to increase the capacity of the network to memorize more binary code patterns. Since we
attempt to predict binary codes, the Bernoulli-distribution parameter can be directly estimated using
a sigmoid activation in the last convolution.

We want to minimize the number of bits used after entropy coding, which leads naturally to a
cross-entropy loss. In case of {0, 1} binary codes, the cross-entropy loss can be written as:∑

y,x,d

−c log2(P̂ (c | T))− (1− c) log2(1− P̂ (c | T)) (17)

3.2 Progressive Entropy Coding

When dealing with multiple iterations, a baseline entropy coder would be to duplicate the single
iteration entropy coder as many times as there are iterations, each iteration having its own line LSTM.
However, such an architecture would not capture the redundancy between the iterations. We can
augment the data that is passed to the line LSTM of iteration #k with some information coming
from the previous layers: the line LSTM in Figure 3 receives not just z0 like in the single iteration
approach but also z1 estimated from the previous iteration using a recurrent network as shown on
Figure 4. Computing z1 does not require any masked convolution since the codes of the previous
layers are fully available.

4 Results

Training Setup: In order to evaluate the recurrent models we described, we used two sets of training
data. The first dataset is the “32×32” dataset gathered in Toderici et al. [2016]. The second dataset
takes a random sample of 6 million 1280×720 images on the web, decomposes the images into
non-overlapping 32×32 tiles and samples 100 tiles that have the worst compression ratio when using
the PNG compression algorithm. By selecting the patches that compress the least under PNG, we
intend to create a dataset with “hard-to-compress” data. The hypothesis is that training on such
patches should yield a better compression model. We will refer to this dataset as the “High Entropy
(HE)” dataset.

All network architectures were trained using the Tensorflow [Abadi et al., 2015] API, with the
Adam [Kingma and Ba, 2014] optimizer. Each network was trained using learning rates of [0.1, ..., 2].

6

The L1 loss (see Equation 2) was weighted by β = (s× n)−1 where s is equal to B ×H ×W × C
where B = 32 is the batch size, H = 32 and W = 32 are the image height and width, and C = 3 is
the number of color channels. n = 16 is the number of RNN unroll iterations.

Evaluation Metrics: In order to assess the performance of our models, we use a perceptual, full-
reference image metric for comparing original, uncompressed images to compressed, degraded ones.
It is important to note that there is no consensus in the field for which metric best represents human
perception so the best we can do is sample from the available choices while acknowledging that each
metric has its own strengths and weaknesses. We use Multi-Scale Structural Similarity (MS-SSIM)
[Wang et al., 2003], a well-established metric for comparing lossy image compression algorithms,
and the more recent Peak Signal to Noise Ratio - Human Visual System (PSNR-HVS) [Gupta et al.,
2011]. We apply MS-SSIM to each of the RGB channels independently and average the results, while
PSNR-HVS already incorporates color information. MS-SSIM gives a score between 0 and 1, and
PSNR-HVS is measured in decibels. In both cases, higher values imply a closer match between the
test and reference images. Both metrics are computed for all models over the reconstructed images
after each iteration. In order to rank models, we use an aggregate measure computed as the area under
the rate-distortion curve (AUC).

We collect these metrics on the widely used Kodak Photo CD dataset [Kodak]. The dataset consists of
24 768×512 PNG images (landscape/portrait) which were never compressed with a lossy algorithm.

Architectures: We ran experiments consisting of {GRU, Residual GRU, LSTM, Associative LSTM}
× {One Shot Reconstruction, Additive Reconstruction, Additive Rescaled Residual} and report the
results for the best performing models after 1 million training steps.

It is difficult to pick a “winning” architecture since the two metrics that we are using don’t always
agree. To further complicate matters, some models may perform better at low bit rates, while others
do better at high bit rates. In order to be as fair as possible, we picked those models which had the
largest area under the curve, and plotted them in Figure 5 and Figure 6.

The effect of the High Entropy training set can be seen in Table 1. In general models benefited from
being trained on this dataset rather than on the 32×32 dataset, suggesting that it is important to train
models using “hard” examples. For examples of compressed images from each method, we refer the
reader to the supplemental materials.

When using the 32×32 training data, GRU (One Shot) had the highest performance in both metrics.
The LSTM model with Residual Scaling had the second highest MS-SSIM, while the Residual
GRU had the second highest PSNR-HVS. When training on the High Entropy dataset, The One
Shot version of LSTM had the highest MS-SSIM, but the worst PSNR-HVS. The GRU with “one
shot” reconstruction ranked 2nd highest in both metrics, while the Residual GRU with “one shot”
reconstruction had the highest PSNR-HVS.

Entropy Coding: The progressive entropy coder is trained for a specific image encoder, and we
compare a subset of our models. For training, we use a set of 1280×720 images that are encoded
using one of the previous image encoders (resulting in a 80×45×32 bitmap or 1/8 bits per pixel per
RNN iteration).

Figure 5 and Figure 6 show that all models benefit from this additional entropy coding layer. Since
the Kodak dataset has relatively low resolution images, the gains are not very significant – for the
best models we gained between 5% at 2 bpp, and 32% at 0.25 bpp. The benefit of such a model is
truly realized only on large images. We apply the entropy coding model to the Baseline LSTM model,
and the bit-rate saving ranges from 25% at 2 bpp to 57% at 0.25 bpp.

5 Discussion

We have presented a general architecture for compressing with RNNs, content-based residual scaling,
and a new variation of GRU, which provided the highest PSNR-HVS out of the models trained on
the high entropy dataset. Because our class of networks produce image distortions that are not well
captured by the existing perceptual metrics, it is difficult to declare a best model. However, we have
provided a set of models which perform well according to these metrics, and on average we achieve
better than JPEG performance on both AUC MS-SSIM and AUC PSNR-HVS both with and without
entropy coding.

7

Table 1: Performance on the Kodak dataset measured as area under the curve (AUC) for the specified
metric, up to 2 bits per pixel. All models are trained up for approximately 1,000,000 training steps.
No entropy coding was used. The actual AUC will be higher for the network-based approaches, after
entropy coding.

Trained on the 32×32 dataset.

Model Rank MS-SSIM AUC Rank PSNR-HVS AUC

GRU (One Shot) 1 1.8098 1 53.15
LSTM (Residual Scaling) 2 1.8091 4 52.36
LSTM (One Shot) 3 1.8062 3 52.57
LSTM (Additive Reconstruction) 4 1.8041 6 52.22
Residual GRU (One Shot) 5 1.8030 2 52.73
Residual GRU (Residual Scaling) 6 1.7983 8 51.25
Associative LSTM (One Shot) 7 1.7980 5 52.33
GRU (Residual Scaling) 8 1.7948 7 51.37

Baseline [Toderici et al., 2016] 1.7225 48.36

Trained on the High Entropy dataset.

LSTM (One Shot) 1 1.8166 8 48.86
GRU (One Shot) 2 1.8139 2 53.07
Residual GRU (One Shot) 3 1.8119 1 53.19
Residual GRU (Residual Scaling) 4 1.8076 7 49.61
LSTM (Residual Scaling) 5 1.8000 4 51.25
LSTM (Additive) 6 1.7953 5 50.67
Associative LSTM (One Shot) 7 1.7912 3 52.09
GRU (Residual Scaling) 8 1.8065 6 49.97

Baseline LSTM [Toderici et al., 2016] 1.7408 48.88

JPEG

YCbCr 4:4:4 1.7748 51.28
YCbCr 4:2:0 1.7998 52.61

Figure 5: Rate distortion curve given as MS-SSIM vs. bit per pixel (bpp). Dotted lines: before
entropy coding, Plain lines: after entropy coding. Left: Two top performing models trained on the
32x32 dataset. Right: Two top performing models trained on the High Entropy dataset.

8

Figure 6: Rate distortion curve given as PSNR-HVS vs. bit per pixel (bpp). Dotted lines: before
entropy coding, Plain lines: after entropy coding. Left: Two top performing models trained on the
32x32 dataset. Right: Two top performing models trained on the High Entropy dataset.

The next challenge will be besting compression methods derived from video compression codecs,
such as WebP (which was derived from VP8 video codec), on large images since they employ tricks
such as reusing patches that were already decoded.

Additionally training the entropy coder (BinaryRNN) and the patch-based encoder jointly and on
larger patches should allow us to choose a trade-off between the efficiency of the patch-based encoder
and the predictive power of the entropy coder. In the current framework, the efficiency of the patch-
based encoder is determined first during its training, and the efficiency the BinaryRNN is limited by
the entropy of the patch-based encoder.

Lastly, it is important to emphasize that the domain of perceptual differences is still very much in
active development. None of the available perceptual metrics truly correlate with human vision very
well, and if they do, they only correlate for particular types of distortions. If one such metric were
capable of correlating with human raters for all types of distortions, we could incorporate it directly
into our loss function, and optimize directly for it.

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). CoRR, abs/1511.07289, 2015. URL http://arxiv.
org/abs/1511.07289.

I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves. Associative long short-term
memory. In ICML 2016, 2016.

K. Gregor, F. Besse, D. Jimenez Rezende, I. Danihelka, and D. Wierstra. Towards Conceptual
Compression. ArXiv e-prints, 2016.

Prateek Gupta, Priyanka Srivastava, Satyam Bhardwaj, and Vikrant Bhateja. A modified psnr metric
based on hvs for quality assessment of color images. IEEEXplore, 2011.

9

http://tensorflow.org/
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8), 1997.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
URL http://arxiv.org/abs/1412.6980.

Eastman Kodak. Kodak lossless true color image suite (PhotoCD PCD0992). URL http://r0k.
us/graphics/kodak/.

A. Krizhevsky and G. E. Hinton. Using very deep autoencoders for content-based image retrieval. In
European Symposium on Artificial Neural Networks, 2011.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016.

Rohollah Soltani and Hui Jiang. Higher order recurrent neural networks. arXiv preprint
arXiv:1605.00064, 2016.

George Toderici, Sean M O’Malley, Sung Jin Hwang, Damien Vincent, David Minnen, Shumeet
Baluja, Michele Covell, and Rahul Sukthankar. Variable rate image compression with recurrent
neural networks. ICLR 2016, 2016.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. Journal of Machine Learning Research,
2012.

Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality
assessment. In Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh
Asilomar Conference on, volume 2, pages 1398–1402. Ieee, 2003.

W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

10

http://arxiv.org/abs/1412.6980
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/

	Introduction
	Previous Work

	Methods
	Types of Recurrent Units
	LSTM
	Associative LSTM
	Gated Recurrent Units

	Reconstruction Framework

	Entropy Coding
	Single Iteration Entropy Coder
	Progressive Entropy Coding

	Results
	Discussion

