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1 Introduction

The field of computer vision has been growing steadily and attracting the interest of
both researchers and the industry. Especially in the last decade, enormous advances
have been made with regard to automated and reliable recognition of image or video
content, such as face, object and motion recognition [1–3] and gesture and activity
recognition [4, 5]. Additionally, recent advances in 3D scene acquisition, such as
the Microsoft Kinect depth sensor, represent a huge leap forward, enabling 3D mod-
elling and body pose estimation in real time with low cost and mostly simple setup
solutions. Such advances are very relevant to the field of active and assisted living
(AAL). Traditionally binary sensors have been employed to provide the infrastruc-
ture of a smart home upon which services can then be provided to assist people and
provide comfort, safety and eHealth services, among others. However, binary sen-
sors reach their limits when complex scenarios have to be taken into account that
require a broader knowledge of what is happening and what a person is doing. One
or more visual sensors can provide very detailed information about the state of the
environment and its inhabitants when combined with the aforementioned pattern
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recognition and machine learning techniques. For this reason, computer vision is
becoming more and more popular for assisted living solutions.

In this chapter, we are going to review how cameras are employed in AAL and
what the current state of the art is related to applications and recognition techniques.
We will distinguish between traditional RGB cameras and depth sensors (or multi-
modal approaches, where both techniques are combined), whose recent great impact
in the field deserves an individual overview. With the goal of introducing profes-
sionals of other AAL fields to computer vision in general and specifically to its
application to assisted living, we will review the image processing pipeline, from
different camera types that can be installed in care centres and people’s homes to
recent advances in image and video feature extraction and classification. For depth
sensors, specific applications, feature estimation techniques and the most successful
data representations are reviewed to detail how these differentiate from the tradi-
tional RGB approaches.

The remainder of this chapter is structured as follows: Section 2 reviews the most
common applications of computer vision in AAL and related projects and works,
and provides then an overview of the different stages of a traditional image process-
ing pipeline including insights about its application to AAL. Section 3 introduces
depth sensors and their main advantages that have made them so popular, it then
continues with the data representations that are used among the state of the art for
skeletal human motion analysis. Finally, Section 4 confronts the observed progress
and advantages with the concerns of continuous monitoring and private spaces and
related limitations, and concludes this chapter.

2 Using RGB cameras

Even though the idea of using cameras to monitor older or impaired people easily
raises privacy concerns, computer vision has been considered widely for AAL [6, 7].
This is due to the multiple types of AAL scenarios in which the use of cameras
would still be acceptable, such as in public facilities, i.e. nursing centres and hospi-
tals, and during specific activities or events, such as tele-rehabilitation or safety as-
sessment. Since image and video can provide very rich data about a person’s activity,
research has also been carried out to enhance monitoring systems with security [8]
and privacy protection techniques [9, 10]. In this sense, cameras can provide rich
sensor data for human monitoring, not only complementing systems with networks
of binary sensors, but potentially replacing them in a near future.

2.1 Applications

In this section, we will briefly go through the main applications that video cam-
eras have enabled in AAL scenarios. These applications go from event detection to
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person-environment interaction, support to people with cognitive impairment, affec-
tive computing and assistive robots. However, the following applications stand out
among the state of the art.

Human behaviour analysis From basic motion tracking [11], through human ac-
tion and activity recognition [12–14] to long-term behaviour analysis [7], these
fields have been studied extensively for AAL applications. Greatest interest re-
ceives the potential recognition of activities of daily living (ADLs), which can
lead to monitor habits and routines related to a person’s health, as well as to
abnormal behaviour detection, which is of special interest for early detection of
mental impairment. In this sense, performing an ADL, such as a kitchen task, can
serve as a functional measure of cognitive health [15]. Recently, there is also an
increasing interest in the use of wearable cameras for recognising ADLs [16–18].

Fall detection Over a decade of work can be found on using RGB cameras for
fall detection. Early work from Nait-Charif and McKenna relies on tracking and
ellipse modelling techniques to detect falls as unusual activities [19]. A very sim-
ilar work can be found in [20], and multi-camera networks have been employed
in [21] and [22] among multiple others [23].

Tele-rehabilitation Therapies based on rehabilitation exercises or gaming can
benefit from visual monitoring allowing to apply semi-automated evaluations of
the performed tasks. For instance, exergames have been developed for stroke
rehabilitation [24] or to rehabilitate dynamic postural control for people with
Parkinson’s disease [25].

Gait analysis The uniqueness of human gait has traditionally led to its applica-
tion to human identification [26]. Nonetheless, human gait is also a valuable in-
dicator of the mobility and health of a person. Interestingly, due to the complex
mental coordination process involved, physical frailty can also be associated to
an increased risk of cognitive impairment [27]. Automatic visual gait analysis
has also been employed for fall prevention by assessing the risk [28, 29].

Physiological monitoring Image processing techniques have recently been de-
veloped to measure some physiological variables without direct contact with the
user, e.g. heart rate [30] and respiratory motion [31]. Monitoring over time the
semeiotic face signs have also been uses to assess cardio-metabolic risks [32].

2.2 Image processing stages

In order to take advantage of image and video based data from one or multiple RGB
cameras, the image streams have to be analysed. For this purpose, different pattern
recognition and machine learning techniques are commonly applied depending on
the targeted application and the level of temporal and semantic complexity of the
event that has to be detected. For this purpose, the video stream is processed through
a pipeline of processing stages that allow to apply computer vision techniques from
person identification to activity recognition. In this chapter, these have been divided
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based on the objective of each processing stage, namely image acquisition, image
pre-processing, and feature extraction and classification.

In the following, each of these processing stages will be described focusing on
how these are applied to AAL scenarios and the related works that can be found
among the state of the art.

2.2.1 Image acquisition

Nowadays, a variety of video cameras can be found for monitoring and surveil-
lance purposes. Cameras can be divided by their intended place of installation, such
as outdoors or indoors, their mechanical capacities, such as bullet type or pan-tilt-
zoom cameras, or their in-built features, such as motion detection or night vision,
among others. Specifically, in AAL scenarios, mostly traditional indoor bullet type
cameras have been used, along with omnidirectional cameras. The latter have the
advantage of having an increased field of view by means of a fish-eye lens. This
allows to cover, for instance, a complete room as shown in Figure 1 from a centric
view point of the ceiling, if its height and the camera’s field of view are sufficient.
Omnidirectional cameras have been proposed for example in [33] for a home-care
robotic systems. However, capturing naturally-occurring activities is challenging
due to the inherently-limited field of view of fixed cameras, the occlusions created
by a cluttered environment, and the difficulty of keeping all relevant body parts vis-
ible, mainly hands, as the torso and head may create occlusions. This is the reason
why wearable cameras, such as GoPro R© or Google GlassTM, are beginning to be
employed in assisted living applications.

Besides RGB cameras, several other image capturing technologies have been
employed for assisted living scenarios. Depth cameras, based either on time of flight
(TOF) or structured light have been very popular recently. Computer vision methods
can take advantage of depth data enabling, for example, 3D scene understanding
and markerless human body pose estimation. This has led to a significant amount
of research effort and results in the state of the art. For this reason, depth sensors
are considered separately in Section 3. Thermal cameras, which acquire the infrared
radiation of the scene, also facilitate person segmentation and pose estimation.

Although for video surveillance the traditional CCTV is still employed in most
cases, in AAL scenarios these have been replaced for internet protocol (IP) cameras,
where the image transition occurs over local area networks, which are typically used
in smart homes also for other purposes, such as binary sensor networks and internet-
based services. A central point of processing, either inside the building or remotely,
receives the camera streams for their storage and analysis. Additionally, cameras
can provide features such as on-camera recording, and some basic image analysis,
as the aforementioned motion detection, which can trigger the recording if desired.

Using networks of multiple cameras leads to additional constraints, since multi-
view calibration and multi-camera geometry have to be taken into account. The
work from Aghajan & Cavallaro [38] analyses these topics, along with distributed
camera networks, multi-camera topologies and optimal camera placement. How-
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(a) Bullet type camera [34] (b) Pan-tilt-zoom camera [35]

(c) Image from a night vision camera [36] (d) Image from a wearable camera

(e) Image from a thermal camera [37] (f) Image from an omnidirectional camera

Fig. 1 These figures show respectively different types of cameras and images.

ever, in AAL scenarios, like smart homes or care centres, other environmental sen-
sors are also employed, which typically rely on a middleware, i.e. the interplatform
service-oriented software that integrates sensor and actuator protocols of different
manufacturers [39]. As a consequence, the system architecture will also constrain
how a multi-camera network can be deployed and where the image streams can be
analysed.

In [40], several recent assistive smart home projects are reviewed and it can be
observed that RGB cameras are used widely in AAL for applications as activity
recognition and fall detection.
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2.2.2 Image pre-processing

Since for the applications mentioned in Section 2.1 the main interest is focused
on the recorded people, the part of the image that contains the human silhouette,
i.e. the region of interest (ROI), has to be extracted. Blob detection techniques make
it possible to identify these ROI based on colour, brightness, shape or texture. In this
stage, sensor-specific image pre-processing methods can be applied to filter noise,
increase contrast or enhance colours. In order to separate the ROI from the rest
of the image, most frequently motion segmentation techniques are applied, which
rely on the fact that the people in the image are in motion whereas the background
is rather static. Image segmentation techniques as codebook representation [41],
Gaussian mixture learning [42] and GrabCut [43] are frequently used among the
state of the art. However, alternative approaches can be found too. For example,
in [44] silhouettes are obtained based on contour saliency combining both colour
and thermal images.

After the foreground pixels have been identified, blob detection techniques group
neighbouring pixels based on different criteria such as connectivity, colour, shape
and width and height ratios, and identify the image regions that should be considered
as a single object (namely a blob). Once a region of interest is obtained, the con-
taining pixels have to be described and normalised in a suitable manner in order to
apply pattern recognition techniques or learn and classify them with machine learn-
ing algorithms. Additionally, a dimensionality reduction is usually desirable, since
the increasing spatial and temporal resolution of video data would otherwise make
real-time methods infeasible. Figure 2 shows examples of different pre-processing
techniques that are typically performed before the feature extraction and recognition
stages can be initiated.

For example, in [47] a view-invariant fall detection system is developed relying
on view-invariant human pose estimation. The video stream provided by a monoc-
ular camera is first downsampled (or upsampled if necessary) to 15 fps to ensure
stable real-time execution and then converted to 8-bit greyscale images. As part of
the pre-processing, foreground extraction is performed based on the work of the
W 4 system [48] using a non-parametric background model that learns greyscale
levels and variations on a pixel-by-pixel basis assuming an empty background. The
foreground is then detected based on the deviation of the learned model. An ero-
sion filter is employed to delete noise and blobs are obtained based on connectivity
and a minimum size. Additionally, a temporal segmentation based on motion energy
boundaries is performed to segment the continuous stream in individual sequences
that can be analysed in isolation. This processing then allows to continue with pose
modelling and recognition.

2.2.3 Feature extraction and recognition

Once the necessary pre-processing stages have been executed, image representa-
tions based either on the whole image or on the detected regions of interest are
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(a) Image enhancement based on contrast correction [45] (b) Pedestrian detection [46]

(c) Person segmentation obtained from Figure 1(f)(d) Human silhouettes corresponding to different activities.

Fig. 2 Result examples of image pre-processing methods are shown respectively for noise reduc-
tion, blob detection, background segmentation and silhouette extraction techniques.

generated in order to obtain the characteristic information that defines the event to
be detected. These are the so-called visual features. Image and video features can be
distinguished as dense features, which represent the data with a global (also known
as holistic) descriptor, or sparse features, which use a set of local representations of
the region of interest or even of the whole image.

A very popular feature for human detection are histograms of oriented gradients
(HOG). Dalal and Triggs [49] proposed to evaluate normalised local histograms of
image gradient orientations in a dense grid on a gamma and colour normalized im-
age. In [50], the authors combined this approach with a similar feature for oriented
optical flow (histogram of oriented flow –HOF–) in order to capture both shape and
motion, leading to the state of the art standard for human detection. In [51], this
method is used in addition to holistic features extracted from raw trajectory cues for
recognition of ADL of healthy subjects and people with dementia using the URADL
dataset [52].

Another well-established image representation are motion history images (MHI)
[53], where in this case both shape and motion are captured in a single bidimensional
feature. First, background segmentation is applied to a sequence of images, which
are typically downsampled in both size and frame rate. The segmented foreground
of each image of the sequence is then combined by assigning to each coordinate of
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the feature vector a value that represents the recentness of the motion in that pixel.
These values can then be mapped to greyscale intensities, where pixels with more
recent motion appear brighter. This allows to encode the temporal evolution of the
motion as well as its spatial location. This feature is used for example in [20] to
detect different types of falls and activities.

SIFT [54], SURF [55], and other local descriptors are widely used to detect and
characterise objects and persons. SIFT is a gradient-based algorithm that detects and
describes local features in images; it is invariant to image translation, scaling, and ro-
tation. This are usually clustered into different classes, named visual words, building
a codebook. Then, an image can be characterised with a bag of words [56] (BoW),
a vector counting the occurrence or frequency of each visual word.

Fig. 3 Centred silhouettes from two viewpoints (respectively in red and green) used for contour-
based multi-view pose representation in [57].

Since in the aforementioned pre-processing stage can include silhouette extrac-
tion, it is also common to build a holistic descriptor of the individual’s silhouette.
Seeing that the shape of the silhouette is defined by its boundary, contour repre-
sentations can lead to very summarised and descriptive features. In [58], such a
representation is proposed for the recognition of human actions. The feature is built
using the distances between the contour points and the centroid of the silhouette in
order to obtain location invariance. The vector of distances is then downsampled to
a fixed size and normalized to unit sum to obtain also scale invariance. This feature
has been used successfully in [57] combining also multiple view points by means of
feature concatenation (see Figure 3). It has been further improved in [59], where the
silhouette is divided into radial sectors, and the statistical range of distances to the
contour is used as characteristic value, leading to further dimensionality reduction
and reduced noise sensitivity. Finally, the work is applied to a visual monitoring
system that enables multi-view recognition of human actions to provide care and
safety services, such as detection of home accidents and telerehabilitation [10].

Sparse features, such as key points have also been used extensively, as in [52],
where a proposal is made based on velocity histories of tracked key points. The
obtained key points are tracked with a KLT tracker and their velocity histories are
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computed. The features are also augmented with additional data, including the ab-
solute initial and final positions of the key points and the relative positions with
respect to the position of an unambiguously detected face if present. The local ap-
pearance information is encoded relying on horizontal and vertical gradients and
PCA-SIFT [60], and also colour information of the same area is encoded based on
PCA-reduced colour histograms. Both texture and colour information are not used
directly, instead a codebook is obtained using K-means clustering and the nearest
neighbour element is assigned to represent each key point.

These features are then classified with different recognition techniques based on
learning and data analysis methods, such as the aforementioned BoW technique,
or others. These can be classified in two categories, data-driven approaches, which
learn generative or discriminative models from user data and infer the corresponding
class, or knowledge-driven approaches, which take advantage of domain-specific
knowledge and rules. Analysing these is out of scope in this chapter, however it
is covered extensively in the present book and we refer the reader to consult the
corresponding chapters.

3 Using depth sensors

Advances in the development of 3D sensors motivate their use instead of cameras
or wearable sensors, since they provide advantages like privacy protection and im-
proved robustness when it comes to behaviour modelling, gesture recognition or
activity recognition. In contrast to RGB based analysis, depth based approaches do
not process RGB colour images, but depth or range images measuring distances
from objects to the sensor. Figure 4 shows a RGB camera image together with its
corresponding depth image: depth images do not visualize the scene with colours,
but the grey level indicates the distance of the objects and its surrounding to the sen-
sor. The darker the colour, the closer the object is to the sensor. On the other hand,
brighter colours are used for objects at a higher distance. Black holes within the
depth image indicate reflecting or absorbing areas where no valid depth measure-
ment is available and are caused due to the functionality of the sensor. In contrast
to RGB based approaches, only the silhouette is detected and thus no conclusions
whether the person is wearing clothes or the emotional state can be obtained since
neither the clothes, nor the face are visible. Hence, the appearance of the person
is fully protected. However, this is only the case if processing is solely based on
depth images. RGB-D based approaches combine depth information together with
appearance information in order to obtain and combine more details. Although these
approaches reduce the privacy of elderly, colour information can be taken into con-
sideration, thus allowing to perform a more in depth analysis.

The use of depth sensors became popular due to the introduction of the Microsoft
Kinect in 2010 as an add-on for the Xbox console. It was the first low-cost 3D
sensor and thus received a lot of attention from the research community [61]. The
first version of the Kinect consists of a RGB camera, an infrared projector as well
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Fig. 4 RGB camera image and its corresponding depth image.

as an infrared camera. The functionality of the Kinect is based on structured light
imaging, where the projector emits a pre-defined infrared light pattern to the scene
[62, 63]. Due to the spatial arrangement of the pattern and its varying sizes, as well
as distortions depending on the distance to the camera, the depth camera captures
the light pattern and an on-board chip calculates a depth map. In contrast to the first
versions of the Kinect, the functionality of the Kinect for Windows v2 is not based
on structured light, but on Time-of-Flight (ToF) in order to achieve more accurate
results1.

The main advantages of depth based sensors, especially within the context of
AAL, can be summarized as follows:

• No additional light source needed: due to the use of infrared light, sensors also
work during the night (e.g., when falls of elderly people occur).

• Sensor is robust to changing lighting conditions: switching the lights on and off
does not affect the results of the depth images. However, direct sunlight interferes
with the projected infrared pattern and thus, no depth value can be calculated.
This restricts the use of the sensors to indoor environments only.

• No calibrated camera setup is needed: in contrast to the use of a calibrated mul-
tiple camera setup in order to calculate a 3D reconstruction, no calibration is
needed.

• Standard algorithms can be applied to depth information: standard algorithms
from computer vision (e.g. foreground/background segmentation, tracking) can
be applied to depth data directly.

• Protection of privacy: if only depth information is processed, privacy is protected
since the appearance of the person is not recognized in depth images. However,
if a combined analysis of RGB and depth images is performed, privacy is not
protected.

Typical applications of RGB-D approaches within the context of AAL are:

• Fall detection
1 http://blogs.microsoft.com/blog/2013/10/02/collaboration-expertise-produce-enhanced-sensing-
in-xbox-one/, accessed 09-September-2015
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• Rehabilitation
• Serious Gaming
• Pose analysis
• Gesture based interfaces
• Robotics

Behavior modeling or activity recognition of humans depends on the correct de-
tection of humans and their pose in the scene. Person detection and tracking is a
complex problem due to the non-rigid nature of persons, complex motion, and oc-
clusions, among others [64]. Kinect and other depth sensors allow for a partial re-
construction of the scene geometry, which facilitates the problem. This section lists
a selection of recent methods designed for or applicable to Kinect sensors, catego-
rized based on the data representation they operate on (Skeletal, depth maps, point
clouds, or plan-view maps).

3.1 Skeletal

Fig. 5 Skeleton tracking.

Human pose estimation is proposed by Shotton et al. [65], allowing to extract
body parts and skeleton joints based on depth images. Figure 5 depicts the pipeline
for the skeleton joint calculation [66]: foreground detection is performed at the be-
ginning in order to separate humans from the background. The use of a randomized
forest allows to label different body parts in the depth image. Clustering of pixels
hypothesize body joint positions, which are refined using a skeleton model exploit-
ing temporal and kinematic constraints.

The skeleton tracking algorithm is optimized for people facing the sensor, either
standing or sitting in front of the sensor. Hence, it can fail, if the person is not
directly facing the sensor. The number and type of detected joints depends on the
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SDK to be used - two SDK are mainly used together with the Kinect [63]: the official
SDK provided by Microsoft, being able to track 20 respectively 25 skeleton joints
(Kinect v1 and Kinect v2) and the OpenNI 2 provided by PrimeSense, allowing to
track 15 different skeleton joints [63]. PrimeSense developed the first sensor of the
Kinect for Microsoft and introduced, in cooperation with Asus, their own 3D sensor
3: Asus Xtion pro, offering almost the same hardware specification as the Microsoft
Kinect, but built in a smaller case. In contrast to the Microsoft Kinect, the Asus
Xtion pro does not contain a RGB camera, but only a depth sensor and thus allows
to fully respect the privacy within the context of AAL, since it is technically not
possible to obtain a RGB image from this sensor.

Fig. 6 Skeleton joints of Kinect v1 (left) and Kinect v2 (right).

Figure 6 depicts an overview of the estimated skeleton joints for both versions
of the Kinect. In the first version, 20 skeleton joints are estimated whereas in the
second version of the Kinect, 25 skeleton joints are estimated. Five skeleton joints
were added and hands are modeled in more detail in order to allow a more accurate
gesture control.

3.2 Depth maps

Methods operating on depth maps frequently utilize histogram-based features and
supervised learning for person detection [67–69]. Conceptually, these methods are
similar to seminal work by Dalal and Triggs [49] that introduced histograms of ori-

2 http://www.openni.org, accessed 10-April-2014
3 https://www.asus.com/de/Multimedia/Xtion PRO/, accessed 04-August-2015
3 Image Source: https://msdn.microsoft.com/en-us/library/jj131025.aspx,
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx; accessed 03-August-
2015
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ented gradients as powerful features for person detection in greyscale images. These
features model the local appearance of objects by means of gradient distribution and,
when consolidated to larger blocks, constitute powerful feature descriptors. These
descriptors are then classified as (not) representing a person using a support vector
machine. Spinello and Arras [67] as well as Wu et al. [69] proposed similar descrip-
tors for depth maps, which model the local distribution depth gradient orientations.

3.3 Point Clouds

Another approach is to first reproject depth map pixels to world coordinates and to
operate on the resulting point cloud. Kelly et al. [70] follow this approach, clustering
the point cloud using an iterative top-down approach based on 3D proximity tests.
Thresholds are computed dynamically from the observed maximum height and the
golden ratio, which allows for estimating the proportion of persons based on their
height. Subsequently the obtained clusters are analysed with respect to under- and
over-segmentation via ellipse fitting on shoulder and head height, respectively. This
method is able to cope with significant occlusions but is prohibitively slow (less
than 1fps including tracking).

Hegger et al. [71] compute surface normals from subsampled point clouds and
cluster points using an efficient top-down method that results in small clusters of
adjacent points.

3.4 Plan-View Maps

A reason why methods operating on point clouds are slow is the large number of
points (up to 307200) and the fact that clustering is a complex task. Hegger et al.
[71] alleviate this problem by subsampling the point cloud. This is accomplished by
discretising the continuous space into cubic cells, which significantly reduces the
number of points at the expense of resolution. A similar yet more extreme approach
to data reduction is to utilize so-called plan-view maps, two-dimensional represen-
tations of the scene as viewed from the top and under orthographic projection [72].

3.5 Accuracy

The resolution of a measuring device describes the smallest details it is able to re-
solve. With regard to depth sensors it is desirable to distinguish between depth res-
olution and spatial resolution. In this text, the term depth resolution denotes the
smallest difference in distance the sensor can distinguish, while spatial resolution
refers to the minimum size of reliably detectable objects.
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The depth resolution of the sensor restricts detectable scene changes. If the depth
resolution is too low, fallen persons or parts thereof may not be distinguishable from
the floor. Kinect sensors can distinguish between two object distances only if their
difference is large enough. This is because the sensor can derive disparities with only
limited accuracy. In fact, the sensor distinguishes between 1024 distinct disparities
and thus distances [73], while the measuring range spans approximately 10m.

Fig. 7 Illustration of the effect of limited depth resolution on fall detection

Figure 7 depicts a person lying flat on the floor at a distance of approximately 6m
from the sensor. Distances are colour-coded, blue colours represent closer distances.
Due to the limited depth resolution, limbs are only partially distinguishable from
the floor. This is illustrated by the fact that colours in regions of arms or legs do not
always differ from those of the floor beneath them (left side of the vertical line). The
minimum size objects must have in order to be reliably (i.e. continuously) detectable
from a certain distance depends on the spatial resolution of the sensor. According
to a datasheet by the developer of the depth sensing technology of the Kinect, the
spatial resolution is 3.4mm at an object distance of 2m.

The precision describes the variability between multiple measurements of the
same object under stable conditions [74]. With regard to the Kinect, the precision in-
dicates the closeness of repeated distance measurements. This criteria is particularly
important with respect to background subtraction algorithms, as their performance
depends on data stability. Knowledge of the sensor precision allows for estimating
the performance of such algorithms and aids in proper configuration.

Smisek et al. [61] evaluated the accuracy of the Kinect sensor (first version),
by analyzing its depth resolution. The depth resolution of the Kinect is within the
range between 0.65 mm at a distance of 0.5 meters and up to 685 mm at a distance
of 15.7 m. These results indicate that the use of the Kinect for indoor environments
is feasible, although the accuracy decreases with higher distance. Results show that
the depth resolution within a range up to ten meters is below 300 mm. Moreover, the
performance of the Kinect is compared to the performance of a stereo-camera (two
Nikon D60 SLR) as well as a ToF (SwissRanger SR-4000) system. Smisek et al. [61]
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showed that the Kinect performs similar to a stereo system with medium resolution
and outperforms the ToF system in terms of accuracy and costs. Stoyanov et al. [75]
evaluated the Kinect and two ToF sensors based on ground truth data obtained by a
laser sensor. For short distances, the Kinect slightly outperformed both ToF sensors
and performed similarly to the accuracy of the laser sensor. However, no sensor
achieved the accuracy of the laser sensor on longer distances.

Ditta [76] compared the skeleton tracking of the Kinect with a marker based
system from Vicon and showed, that the errors of the Kinect are approximately 5
mm within a range of 1-3 meters in comparison to the Vicon system. Galna et al.
[25] evaluated the use of the Kinect for the detection of movement symptoms for
people with Parkinson’s disease and compared their results with a Vicon system.
Normal actions (standing, walking and reaching) are combined with actions from
the Unified Parkinson’s disease Scale and include, amongst others, hand clasping
and finger tapping. The timing of movement is measured accurately as well as ex-
tensive movements are detected accurately. Only when monitoring fine movement,
the Kinect is not able to obtain accurate results and thus is outperformed by the Vi-
con system. Overall, Galna et al. [25] conclude that the Kinect can accurately detect
most movements related to Parkinson’s Disease. The accuracy of the Kinect within
exergames is evaluated and compared to a Vicon system by van Diest et al. [77]. The
outcome of their evaluation shows that the Kinect accurately detects movements of
the trunk, but does not detect the movement of hands and feet accurately, resulting
in a difference of up to 30% in comparison to the Vicon system. The reasons for the
lower accuracy of the Kinect is the reduced resolution (640x480) in comparison to
the Vicon system (4704x3456) and the low and irregular sampling frequency [77].

Plantard et al. [78] propose a framework to simulate 500 000 poses at a work-
place in combination with different positions of the Kinect, in order to perform an
automatic large scale evaluation of the accuracy of the Kinect. The results show
that the accuracy depends on the specific pose as well as the position of the Kinect.
Although most results are accurate (e.g.. error of the shoulder position is 2.5 cm),
positions with partial occlusions results in the failure of the skeleton tracking algo-
rithm.

Moreover, the performance of the skeleton tracking system during six different
exercises is evaluated by Obdrzalek et al. [79]. Again, a marker based tracking sys-
tem provides ground truth data and it is shown that the Kinect has a great potential.
However, since exercises are performed either sitting or while touching a chair, the
skeleton tracking algorithm fails when body parts are occluded or a chair is pre-
sented. Although problems with the skeleton tracker are reported, Obdrzalek et al.
[79] state that within a more controlled environment, tracking results are better. They
conclude that during general postures a variability of about 10 cm can be observed
in comparison to the marker based tracking system. Nevertheless, these results show
that the use of a Kinect is feasible, but depends on the application and context. Due
to its low costs in comparison to other 3D sensors and its accuracy, the Kinect is
used in computer vision for achieving different and diverse tasks: approaches using
the Kinect for object tracking and recognition, human activity analysis, hand gesture
analysis and 3D mapping of indoor environments are just few of them [63].
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4 Conclusion

Over the course of the last years, vision-based solutions gained of interest within
the field of AAL. However, since AAL solutions are used in private spaces (e.g..
bedrooms, bathrooms), privacy issues need to be considered. The use of cameras in
private spaces without any privacy protection mechanisms yields in low acceptance
by the end user. Hence, privacy needs to be protected either by design, or by ex-
plicitly taking appropriate measures in order to prevent subjects from carrying out
camera-avoiding techniques to sabotage the monitoring [80]. Although using depth
sensors results in 3D data where the person cannot be identified, the location of the
sensor provides information about the person itself. Especially when being used in
homes for older adults, the connection between the depth image (where the per-
son cannot be identified) and the room number (where the system is placed) allows
to implicitly identify the person on the depth image. Again, appropriate protection
need to be considered in order to ensure that only authorized personal has access
to this personal data. Moreover, when using data from different sources, the aggre-
gation of data might result in private information, violating the privacy of the user.
Especially if a person is being tracked over multiple cameras/sensors, his or her
whole trajectory is available and thus information about the behaviour of the person
is gathered.

Although vision-based systems need to be designed carefully in order to protect
the privacy, their flexibility and adaptability is one of their biggest advantages. The
application of AAL systems can be extended easily, since only software needs to
be updated in order to provide additional features and no installation of additional
sensors is needed. Thus allows to install vision-based systems according to the spe-
cific needs of the current context and the possibility to adopt the system to changing
needs later on. Moreover, using vision-based systems results in a big amount of
information to be processed, allowing to analyse complex scenarios and offering
possibilities for various applications within the field of AAL.
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