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Abstract. Is it possible to determine the location of a photo from just its pixels?
While the general problem seems exceptionally difficult, photos often contain
cues such as landmarks, weather patterns, vegetation, road markings, or archi-
tectural details, which in combination allow to infer where the photo was taken.
Previously, this problem has been approached using image retrieval methods. In
contrast, we pose the problem as one of classification by subdividing the sur-
face of the earth into thousands of multi-scale geographic cells, and train a deep
network using millions of geotagged images. We show that the resulting model,
called PlaNet, outperforms previous approaches and even attains superhuman ac-
curacy in some cases. Moreover, we extend our model to photo albums by com-
bining it with a long short-term memory (LSTM) architecture. By learning to
exploit temporal coherence to geolocate uncertain photos, this model achieves a
50% performance improvement over the single-image model.

1 Introduction

Photo geolocation is an extremely challenging task since many photos offer only few,
possibly ambiguous, cues about their location. For instance, an image of a beach could
be taken on many coasts across the world. Even when landmarks are present there can
still be ambiguity: a photo of the Rialto Bridge could be taken either at its original
location in Venice, Italy, or in Las Vegas which has a replica of the bridge! In the
absence of discriminative landmarks, humans can fall back on their world knowledge
and use cues like the language of street signs or the driving direction of cars to infer
the location of a photo. Traditional computer vision algorithms typically lack this kind
of world knowledge, relying on the features provided to them during training. Most
previous work has therefore focused on restricted subsets of the problem, like landmark
buildings [2,40,59], cities where street view imagery is available [10,29,57], or places
with enough photos to build structure-from-motion reconstructions that are used for
pose estimation [34,44]. In contrast, our goal is to localize any type of photo taken at
any location using just its pixels. Only few other works have addressed this task [19,20].
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Fig. 1. Given a query photo (top), PlaNet outputs a probability distribution over the surface of
the earth (bottom). Viewing the task as a classification problem allows PlaNet to express its un-
certainty about a photo. While the Eiffel Tower (a) is confidently assigned to Paris, the model
believes that the fjord photo (b) could be taken in either New Zealand or Norway. For the beach
photo (c), PlaNet assigns the highest probability to southern California (correct), but some prob-
ability is also assigned to places with similar beaches, like Mexico and the Mediterranean. (For
visualization purposes we use a model with a much lower spatial resolution than our full model)

We treat the task of geolocation as a classification problem and subdivide the sur-
face of the earth into a set of geographical cells which make up the target classes. We
then train a convolutional neural network (CNN) [49] using millions of geotagged pho-
tos. Given a query photo, our model outputs a discrete probability distribution over the
earth, assigning each geographical cell a likelihood that the input photo was taken inside
it. The resulting model, which we call PlaNet, is capable of localizing a large variety of
photos. Besides landmark buildings and street scenes, PlaNet can often predict the loca-
tion of nature scenes like mountains, waterfalls or beaches, with surprising accuracy. In
cases of ambiguity, it will often output a distribution with multiple modes corresponding
to plausible locations (Fig. 1). Despite being a much simpler and less resource-intensive
approach, PlaNet delivers comparable performance to Im2GPS [19,20] which shares a
similar goal. A small-scale experiment shows that PlaNet even reaches superhuman
performance at the task of geolocating street view scenes. Moreover, we show that the
features learned by PlaNet can be used for image retrieval and achieve state-of-the-art
results on the INRIA Holidays dataset [25]. Finally, we show that combining PlaNet
with an LSTM approach enables it to use context to predict the locations of ambiguous
photos, increasing its accuracy on photo albums by 50%.

2 Related Work

Im2GPS [19,20] (cf . Sec. 3) matches a query photo against millions of geotagged Flickr
photos using global image descriptors and assigns it the location of the closest match.
Because photo coverage in rural areas is sparse, [35,36] make additional use of satellite
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aerial imagery. [36] use CNNs to learn a joint embedding for ground and aerial im-
ages and localize a query image by matching it against a database of aerial images. [53]
take a similar approach and use a CNN to transform ground-level features to the feature
space of aerial images. Local feature based image retrieval [38,48] is effective at match-
ing buildings, but requires more space and lacks the invariance to match, e.g., natural
scenes or articulated objects. Most local feature based approaches therefore focus on lo-
calization within cities, using photos from photo sharing websites [8,39] or street view
[4,10,29,30,46,56,57]. Skyline2GPS [41] matches the skyline captured by an upward-
facing camera against a 3D model of the city. While matching against geotagged images
can provide the rough location of a query photo, pose estimation approaches determine
the exact 6-dof camera pose of a query image by registering it to a structure-from-
motion model [33,34,43,8,23,45]. PoseNet [28] is a CNN that regresses from a query
image to its 6-dof pose. However, because a structure-from-motion reconstruction is re-
quired for generating its training data, it is restricted to areas with dense enough photo
coverage. Landmark recognition systems [2,16,24,40,59] construct a database of land-
mark buildings by clustering internet photo collections and recognize the landmark in
a query image using image retrieval. Instead, [7,32] recognize landmarks using SVMs
trained on bags-of-visual-words of landmark clusters. [18] perform image geolocation
by training one exemplar SVM for each image in a dataset of street view images. CNNs
have previously been shown to work well for scene recognition. On the SUN database
[54], Overfeat [47], a CNN trained on ImageNet [12], consistently outperforms other
approaches, including global descriptors like GIST and local descriptors like SIFT, and
training on the task-specific Places Database [60] yields another significant boost.

In Sec. 4, we extend PlaNet to geolocate sequences of images using LSTMs. [9,32]
address this problem by first clustering the photo collection into landmarks and then
learning to predict the sequence of landmarks in a photo sequence. While [9] estimate
travel priors on a dataset of photo albums and use a Hidden Markov Model (HMM) to
infer the location sequence, [32] train a structured SVM that uses temporal information
as an additional feature. [27] also use an HMM, but instead of landmarks, their classes
are a set of geographical cells partitioning the surface of the earth, which is similar to
our approach. [31] train a CNN on a large collection of geotagged Flickr photos to pre-
dict geographical attributes like “population”, “elevation” or “household income”. In
summary, with few exceptions [20,19,35,36,53] most previous approaches to photo ge-
olocation are restricted to urban areas which are densely covered by street view imagery
and tourist photos. Prior work has shown that CNNs are well-suited for scene classifi-
cation [54] and geographical attribute prediction [31], but to our knowledge ours is the
first method that directly takes a classification approach to geolocation using CNNs.

3 Image Geolocation with CNNs

We pose the task of image geolocation as a classification problem and subdivide the
earth into a set of geographical cells making up the target classes. The training input
to the CNN are the image pixels and the target output is a one-hot vector encoding the
cell containing the image. Given a test image, the output of this model is a probability
distribution over the world. The advantage of this formulation over a regression from
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Fig. 2. Left: Adaptive partitioning of the world into 26,263 S2 cells. Middle, Right: Detail views
of Great Britain and Ireland and the San Francisco bay area

pixels to geo-coordinates is that the model can express its uncertainty about an image
by assigning each cell a confidence. A regression model would be forced to pinpoint a
single location and would have no natural way of expressing uncertainty, especially in
the presence of multi-modal answers (as are expected in this task).

Adaptive Partitioning using S2 Cells. We use Google’s open source S2 geometry
library1 to partition the surface of the earth into non-overlapping cells that define the
classes of our model. The S2 library defines a hierarchical partitioning of the surface of
a sphere by projecting the surfaces of an enclosing cube on it. The six sides of the cube
are subdivided hierarchically by six quad-trees. A node in a quad-tree defines a region
on the sphere called an S2 cell. Fig. 4 illustrates this in 2D. We chose this subdivision
scheme over a simple subdivision of lat/lon coordinates, because (i) lat/lon regions get
elongated near the poles while S2 cells keep a close-to-quadratic shape, and (ii) S2 cells
have mostly uniform size (the ratio between the largest and smallest S2 cell is 2.08).

A naive approach to define a tiling of the earth would use all S2 cells at a certain
fixed depth in the hierarchy, resulting in a set of roughly equally sized cells (see Fig. 1).
However, this would produce a very imbalanced class distribution since the geograph-
ical distribution of photos has strong peaks in densely populated areas. We therefore
perform adaptive subdivision based on the photos’ geotags: starting at the roots, we re-
cursively descend each quad-tree and subdivide cells until no cell contains more than
a certain fixed number t1 of photos. This way, sparsely populated areas are covered by
larger cells and densely populated areas are covered by finer cells. Then, we discard all
cells containing less than a minimum of t2 photos. Therefore, PlaNet does not cover
areas where photos are very unlikely to be taken, such as oceans or poles. We remove
all images from the training set that are in any of the discarded cells. This adaptive
tiling has several advantages over a uniform one: (i) training classes are more balanced,
(ii) it makes effective use of the parameter space because more model capacity is spent
on densely populated areas, (iii) the model can reach up to street-level accuracy in city
areas where cells are small. Fig. 2 shows the S2 partitioning for our dataset.

CNN Training. We train a CNN based on the Inception architecture [49] with batch
normalization [22]. The SoftMax output layer has one output for each S2 cell in the

1 https://code.google.com/p/s2-geometry-library/, https://goo.gl/vKikP6

https://code.google.com/p/s2-geometry-library/
https://goo.gl/vKikP6
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Fig. 3. Geolocation accuracy of the top-k most confident
predictions on 2.3M Flickr photos. (Lower right is best)

Fig. 4. S2 cell quantization in 2D. The
sides of the square are subdivided re-
cursively and projected onto the circle

Fig. 5. Example images drawn randomly from the Flickr test set

partitioning. We set the target output to 1.0 for the S2 cell containing the training image
and set all others to 0.0. We initialize the model weights with random values and train
to minimize the cross-entropy loss using AdaGrad [14] with a learning rate of 0.045.

Our dataset consists of 126M photos with Exif geolocations mined from all over the
web. We applied very little filtering, only excluding images that are non-photos (like
diagrams, clip-art, etc.) and porn. Our dataset is therefore extremely noisy, including
indoor photos, portraits, photos of pets, food, products and other photos not indicative
of location. Moreover, the Exif geolocations may be incorrect by several hundred meters
due to noise. We split the dataset into 91M training images and 34M validation images.

For the adaptive S2 cell partitioning (Sec. 3) we set t1 = 10, 000 and t2 = 50,
resulting in 26, 263 S2 cells (Fig. 2). Our Inception model has a total of 97,321,048
parameters. We train the model for 2.5 months on 200 CPU cores using the DistBelief
framework [11] until the accuracy on the validation set converges. The long training
time is due to the large variety of the training data and the large number of classes.

To ensure that none of the test sets we use in this paper have any (near-) duplicate
images in the training set, we use a CNN trained on near-duplicate images to compute a
binary embedding for each training and test image and then remove test images whose
Hamming distance to a training image is below an aggressively chosen threshold.

Geolocation Accuracy. We collected a test dataset of 2.3M geotagged Flickr pho-
tos from across the world. Other than selecting geotagged images with 1 to 5 textual
tags, we did not apply any filtering. Therefore, most of the images have little to no
cues about their location. Fig. 5 shows example images that illustrate how challenging
this benchmark is. We measure localization error as the distance between the center of
the predicted S2 cell to the original photo location. We note that this error measure is
pessimistic, because even if the ground truth location is within the predicted cell, the
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Fig. 6. Examples of images PlaNet localizes correctly. Our model is capable of localizing photos
of famous landmarks (top row), but often yields surprisingly accurate results for images with
more subtle geographical cues. The model learns to recognize locally typical landscapes, objects,
architectural styles and even plants and animals

error can still be large depending on the cell size. Fig. 3 shows what fraction of this
dataset was localized within a certain geographical distance of the ground truth loca-
tions. The blue curve shows the performance for the most confident prediction, and
the other curves show the performance for the best of the top-{2,3,4,5} predictions
per image. Following [20], we added approximate geographical scales of streets, cities,
regions, countries and continents. Despite the difficulty of the data, PlaNet is able to
localize 3.6% of the images at street-level accuracy and 10.1% at city-level accuracy.
28.4% of the photos are correctly localized at country level and 48.0% at continent
level. When considering the best of the top-5 predictions, the model localizes roughly
twice as many images correctly at street, city, region and country level.

Qualitative Results. An important advantage of our localization-as-classification paradigm
is that the model output is a probability distribution over the globe. This way, even if
an image cannot be confidently localized, the model outputs confidences for possible
locations. To illustrate this, we trained a smaller model using only S2 cells at level 4 in
the S2 hierarchy, resulting in a total of only 354 S2 cells. Fig. 1 shows the predictions
of this model for test images with different levels of geographical ambiguity.

Fig. 6 shows examples of the different types of images PlaNet can localize. Besides
landmarks, which can also be recognized by landmark recognition engines [2,40,59],
PlaNet can often correctly localize street scenes, landscapes, buildings of characteristic
architecture, locally typical objects like red phone booths, and even some plants and ani-
mals. Fig. 7 shows some failure modes. Misclassifications often occur due to ambiguity,
e.g., because certain landscapes or objects occur in multiple places, or are more typical
for a certain place than the one the photo was taken (e.g., the Chevrolet Fleetmaster in
the first image is mostly found in Cuba nowadays). To give a visual impression of the
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Fig. 7. Examples of incorrectly localized images

Fig. 8. The top-5 most confident images from the Flickr dataset for the S2 cells on the left, show-
ing the diverse visual representation of places that PlaNet learns

representations PlaNet has learned for individual S2 cells, Fig. 8 shows the test images
that the model assigns to a given cell with the highest confidence. The model learns
a very diverse visual representation of each place, assigning highest confidence to the
landmarks, landscapes, or animals that are typical for a specific region.

Comparison to Im2GPS. One of the few approaches that, like ours, aims at geolocat-
ing arbitrary photos is Im2GPS [19,20]. However, instead of classification, Im2GPS is
based on nearest neighbor matching. The original Im2GPS approach [19] matches the
query image against a database of 6.5M Flickr images and returns the geolocation of the
closest matching image. Images are represented by a combination of six different global
image descriptors. The data was collected by downloading Flickr images that have GPS
coordinates and whose tags contain certain geographic keywords including city, coun-
try, territory and continent names. To filter out irrelevant content, images tagged with
keywords such as “birthday” or “concert” were removed.

A recent extension of Im2GPS [20] uses both an improved image representation and
a more sophisticated localization technique. It estimates a per-pixel probability of being
“ground”, “vertical”, “sky”, or “porous” and computes color and texture histograms for
each of these classes. Additionally, bag-of-visual-word vectors of length 1k and 50k
based on SIFT features are computed for each image. The geolocation of a query is
estimated by retrieving nearest neighbors, geo-clustering them with mean shift, training
1-vs-all SVMs for each resulting cluster, and finally picking the average GPS coordinate
of the cluster whose SVM gives the query image the highest positive score.

In contrast, PlaNet is a much simpler pipeline. We performed only little filtering to
create our input dataset (see above), localization is performed as a straightforward n-
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Fig. 9. (a) Performance for different resolutions of S2 discretization representing different trade-
offs between the number of classes and the number of training images per class (Tab. 1b). (b)
Performance for different numbers of model parameters. The full model has 97.3M parameters.
(c) Comparison of PlaNet with image retrieval based on local features and CNN embeddings

Method
Street
1 km

City
25 km

Region
200 km

Country
750 km

Continent
2500 km

Im2GPS (orig) [19] 12.0% 15.0% 23.0% 47.0%
Im2GPS (new) [20] 2.5% 21.9% 32.1% 35.4% 51.9%
PlaNet (900k) 0.4% 3.8% 7.6% 21.6% 43.5%
PlaNet (6.2M) 6.3% 18.1% 30.0% 45.6% 65.8%
PlaNet (91M) 8.4% 24.5% 37.6% 53.6% 71.3%

(a)

med. imgs #model
t1 #classes per class params

100k 214 21,039 23.9M
10k 2,056 2,140 29.1M
5k 3,852 1,225 34.2M
1k 16,307 320 69.3M

(b)

Table 1. (a) Comparison of PlaNet with Im2GPS. Percentages are the fraction of images from the
Im2GPS test set that were localized within the given radius. (Numbers for the original Im2GPS
are approximate as they were extracted from a plot in the paper.) (b) Parameters of PlaNet models
with different spatial resolutions

way classification, and image features are jointly learned with the classifier parameters
during the training process instead of being hand-engineered.

We evaluate PlaNet on the Im2GPS test dataset [19] that consists of 237 geotagged
photos from Flickr, curated such that most photos contain at least a few geographical
cues. Tab. 1a compares the performance of three versions of PlaNet trained with dif-
ferent amounts of training data to both versions of Im2GPS. The new Im2GPS version
is a significant improvement over the old one. However, the full PlaNet model outper-
forms even the new version with a considerable margin. In particular, PlaNet localizes
236% more images accurately at street level. The gap narrows at coarser scales, but
even at country level PlaNet still localizes 51% more images accurately. The ’PlaNet
6.2M’ model is more directly comparable to Im2GPS, which uses a database of 6.5M
images. While Im2GPS wins on city and region levels, ’PlaNet 6.2M’ still outperforms
Im2GPS on street, country and continent levels. Using similar amounts of input data,
PlaNet shows performance comparable to Im2GPS. However, we note that Im2GPS
has an advantage over PlaNet in this experiment, because PlaNet’s training set comes
from random websites and is thus much more noisy and of lower quality than the Flickr
images Im2GPS uses (Flickr is targeted at amateur and professional photographers and
thus hosts mainly high quality images). Moreover, because Im2GPS is based on Flickr
photos, it has an advantage on this test set which is also mined from Flickr. PlaNet’s



PlaNet - Photo Geolocation with Convolutional Neural Networks 9

(a) (b) (c)

Fig. 10. Left: Input image, right: Heatmap of the probability of the correct class when sliding
an occluding window over the image [58]. (a) Grand Canyon - Occluding the region containing
the distinctive mountain formation makes the confidence in the correct location drop the most.
(b) Norway - The snowy mountain range on the left is the most important cue. (c) Hong Kong -
Confidence in the correct location increases if the palm trees in the foreground are covered since
they are not typical for Hong Kong

training data are general web photos which have a different geographical distribution
and a higher fraction of irrelevant images with no geographical cues (Fig. 5).

Regardless of accuracy, PlaNet has several advantages over Im2GPS: PlaNet is
a single model trained end-to-end, while Im2GPS is a manually engineered pipeline
that uses a carefully selected set of features. Furthermore, PlaNet uses much less re-
sources than Im2GPS: Since the Im2GPS feature vectors have a dimensionality of
100,000, Im2GPS would require 8.3TB to represent our corpus of 91M training ex-
amples (577GB for 6.2M images), assuming one byte per descriptor dimension. In con-
trast, PlaNet uses only 377 MB, which even fits into the memory of a smartphone.

Effect of S2 Discretization. An important meta-parameter of PlaNet is the resolution of
the S2 cell discretization. A finer discretization means that the number of target classes
increases, while the number of training examples per class decreases. At the same time,
the number of model parameters increases due to the final fully-connected layer. We
trained models with different levels of discretization by varying the t1 parameter that
determines the maximum number of images in a cell, while leaving t2 fixed at 50 im-
ages. We used the same subset of 6.2M training images we used above for comparability
with Im2GPS. Tab. 1b shows the parameters of the different models used and Fig. 9a
shows the results. As expected, the lower the resolution, the fewer images can be lo-
calized at street accuracy. Interestingly, while the 1k model performs similar to the 5k
model at region level and above, it performs significantly better at street level, localizing
4.2% of the images correctly, while the 5k model only localizes 1.3% of images at street
level. This is surprising since this model has the highest number of parameters and the
lowest number of training images per class, making it prone to overfitting. However, it
still performs well since the images it can localize at street level are from dense city
centers with a fine S2 discretization, where sufficient training examples exist.

Effect of Model Size. To analyze how many model parameters are required, we trained
models with reduced numbers of parameters. As Fig. 9b shows, a model with 74.7M
parameters performs almost as well as the full model which has 97.3M parameters, but
when reducing the number of parameters further, performance starts to degrade.
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Comparison to Image Retrieval. We compare the PlaNet 6.2M model with two im-
age retrieval baselines that assign each query photo the location of the closest matching
image from the PlaNet 6.2M training data (Fig. 9c). ’Local Features’ retrieves images
using an inverted index and spatially verifies tentative matches [48,39]. ’CNN embed-
dings’ represents each image as a 256 byte vector extracted with a CNN trained on a
landmark dataset using the triplet loss [52]. Matching is performed w.r.t. the L2 dis-
tance. ’Local Features’ work well on rigid objects like landmarks, but fail to match,
similar scenes, causing its low recall. ’CNN embeddings’ outperform PlaNet at street
level (9.28% vs. 6.33%), but fall behind at region level (23.63% vs. 29.96%) and above.
PlaNet’s disadvantage on street level is that its geolocations are quantized into cells,
while the retrieval model can use the exact geolocations. Using the same quantization
for retrieval (’CNN embeddings quant.’) has the same performance as PlaNet on street
and city level. This suggests that both retrieval and classification are well-suited for
recognizing specific locations inside cities, but classification seems more suitable for
recognizing generic scenes and subtle location cues. We also note that the embeddings
use 1.5GB for 6.2M images and would use 21.7GB for the full 91M images while the
PlaNet model uses only 377MB regardless of the amount of training data.

Model Analysis. To analyze which parts of the input image are most important for
the classifier’s decision, we employ a method introduced by Zeiler et al. [58]. We plot
an activation map where the value of each pixel is the classifier’s confidence in the
ground truth geolocation if the corresponding part of the image is occluded by a gray
box (Fig. 10). The first two examples show that the image regions that would be most
useful for a human are also most important for the decision of the model. However, as
the last example shows, the model can also be fooled by misleading cues.

Comparison to Human Performance. To find out how PlaNet compares with hu-
man intuition, we let it compete against 10 well-traveled human subjects in a game of
Geoguessr (www.geoguessr.com). Geoguessr presents the player with a random street
view panorama (sampled from all street view panoramas across the world) and asks
them to place a marker on a map at the panorama’ location. We used the game’s “chal-
lenge mode” where two players are shown the same set of 5 panoramas. We entered the
PlaNet guesses manually by running inference on a screenshot of the view presented by
the game and entering the center of the highest confidence S2 cell as its guess. We did
not allow the human players to pan, zoom or navigate, so they did not use more infor-
mation than the model. For each player we used a different set of panoramas, so humans
and PlaNet played a total of 50 different rounds. PlaNet won 28 of the 50 rounds with
a median localization error of 1131.7 km, while the median human localization error
was 2320.75 km. Neither humans nor PlaNet were able to localize photos below street
or city level, showing that this task was even harder than the Flickr dataset and the
Im2GPS dataset. PlaNet was able to localize twice as many photos at region level (4 vs.
2), 1.54x as many photos at country level (17 vs. 11), and 1.23x as many photos at con-
tinent level (32 vs. 26). Fig. 11 shows example panoramas with the guessed locations.
Most panoramas were taken in rural areas containing little to no geographical cues.

When asked what cues they used, human subjects said they looked for any type
of signs, the types of vegetation, the architectural style, the color of lane markings
and the direction of traffic on the street. Furthermore, humans knew that street view

http://www.geoguessr.com
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Fig. 11. Top: GeoGuessr panorama, Bottom: Ground truth location (yellow), human guess
(green), PlaNet guess (blue)

is not available in certain countries such as China allowing them to further narrow
down their guesses. One would expect that these cues, especially street signs, together
with world knowledge and common sense should give humans an unfair advantage
over PlaNet, which was trained solely on images and geolocations. Yet, PlaNet was
able to outperform humans by a considerable margin. For example, PlaNet localized 17
panoramas at country granularity (750 km) while humans only localized 11 panoramas
within this radius. We think PlaNet has an advantage over humans because it has seen
many more places than any human can ever visit and has learned subtle cues of different
scenes that are even hard for a well-traveled human to distinguish.

Features for Image Retrieval. A recent study [42] showed that the activations of Over-
feat [47], a CNN trained on ImageNet [12] can serve as powerful features for several
computer vision tasks, including image retrieval. Since PlaNet was trained for location
recognition, its features should be particularly suited for image retrieval of touristic pho-
tos. To test this, we evaluate the PlaNet features on the INRIA Holidays dataset [25],
consisting of 1,491 personal holiday photos, including landmarks, cities and natural
scenes and the and Oxford5k dataset [39], consisting of 5,062 images of historic build-
ings in Oxford. We extract image embeddings from the final layer below the SoftMax
layer (a 2048-dim. vector) and rank images by the L2 distance between their embedding
vectors. As can be seen in Tab. 2a, the PlaNet features outperform the Overfeat fea-
tures. Using the spatial search and augmentation techniques described in [42], PlaNet
even outperforms state-of-the-art local feature based image retrieval approaches on the
Holidays dataset. PlaNet is not as competitive on Oxford since the query images of
this dataset are small cut-out image regions, requiring highly scale-invariant matching,
which gives local feature based approaches an advantage. We note that the Euclidean
distance between these image embeddings is not necessarily meaningful as PlaNet was
trained for classification. We expect Euclidean embeddings trained for image retrieval
using a triplet loss [52] to deliver even higher mAP.

4 Sequence Geolocation with LSTMs

While PlaNet is capable of localizing a large variety of images, many images are am-
biguous or do not contain enough information that would allow to localize them. How-
ever we can exploit the fact that photos naturally occur in sequences, e.g., photo albums,
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Method Holidays Oxford
BoVW 57.2 38.4 [26]
Hamming Embedding 77.5 56.1 [26]
Fine Vocabulary 74.9 74.2 [37]
ASMK+MA 82.2 81.7 [51]
GIST 37.6 [13]
Overfeat 64.2 32.2 [42]
Overfeat+aug+ss 84.3 68.0 [42]
AlexNet+LM Retraining 79.3 54.5 [6]
CNN+aug+ss 90.0 79.0 [3]
Aggr. local CNN features 80.2 58.9 [5]
Pooled CNN features+QE 66.9 [50]
NetVLAD 83.1 71.6 [1]
NBNN on CNN features 88.7 [55]
PlaNet (this work) 73.3 34.9
PlaNet+aug+ss 89.9

(a)

Method
Street
1 km

City
25 km

Region
200 km

Country
750 km

Continent
2500 km

PlaNet 14.9% 20.3% 27.4% 42.0% 61.8%
PlaNet avg 22.2% 35.6% 51.4% 68.6% 82.7%
PlaNet HMM 23.3% 34.3% 47.1% 63.2% 79.5%
LSTM 32.0% 42.1% 57.9% 75.5% 87.9%
LSTM off1 30.9% 41.0% 56.9% 74.5% 85.4%
LSTM off2 29.9% 40.0% 55.8% 73.4% 85.9%
LSTM rep 34.5% 45.6% 62.6% 79.3% 90.5%
LSTM rep 25 28.3% 37.5% 49.9% 68.9% 82.0%
BLSTM 25 33.0% 43.0% 56.7% 73.2% 86.1%

(b)

Table 2. (a) Image retrieval mAP using PlaNet features compared to other methods. (b) Results
of PlaNet LSTM on Google+ photo albums. Percentages are the fraction of images in the dataset
localized within the respective distance.

(a) (b) (c) (d)

Fig. 12. Time-unrolled diagrams of the PlaNet LSTM models. (a) Basic model. (b) Label offset.
(c) Repeated sequence. The first pass is used to generate the state inside the LSTM, so we only
use the predictions of the second pass (red box). (d) Bi-directional LSTM

with a high geographical correlation. Intuitively, if we can confidently localize some of
the photos in an album, we can use this information to also localize the photos with un-
certain location. Assigning each photo in an album a location is a sequence-to-sequence
problem which requires a model that accumulates a state from previously seen exam-
ples and makes the decision for the current example based on both the state and the
current example. Therefore, long-short term memory (LSTM) architectures [21] seem
like a good fit for this task. Moreover, using LSTMs allows us to express the entire
pipeline as a single neural network. While previous works [9,27] have used HMMs, our
results indicate that LSTMs are better suited for this problem.

Training Data and Model Architecture. We collected a dataset of 29.7M public photo
albums with geotags from Google+, which we split into 23.5M training albums (490M
images) and 6.2M testing albums (126M) images. We use the S2 quantization scheme
from the previous section. The basic structure of our model is as follows (Fig. 12a):
Given an image, we extract an embedding vector from the final layer before the SoftMax
layer in PlaNet. This vector is fed into the LSTM unit. The output vector of the LSTM
is then fed into a SoftMax layer that performs the classification into S2 cells. We feed
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the images of an album into the model in chronological order. For the Inception part, we
re-use the parameters of the single-image model. During training, we keep the Inception
part fixed and only train the LSTM units and the SoftMax layer.

Results. We compare our LSTM results to three baselines: ’PlaNet’ is our single-image
model, ’PlaNet avg’ assigns each image in the album the average of the confidences of
the single-image model, ’PlaNet HMM’ is a Hidden Markov Model on top of PlaNet.
Like [27,9], we estimate the HMM class priors and transition probabilities by counting
and compute the emission probabilities by applying Bayes’ rule to the class posterior
probabilities of PlaNet. Unlike [27], we do not incorporate time or distance into the tran-
sition probability, but use a much finer spatial resolution (26,263 bins vs. 3,186 bins).
We determine the maximum likelihood state sequence using the Viterbi algorithm.

The results are shown in Tab. 2b. ’PlaNet avg’ already yields a significant improve-
ment over single-image PlaNet (49.0% relative on street level), since it transfers more
confident predictions to ambiguous images. Interestingly, the HMM does not perform
much better than the simple averaging approach. This is surprising since ’PlaNet avg’
predicts the same location for all images. However, its advantage over HMMs is that it
sees the whole sequence, while the HMM only uses the images before the current one.

The LSTM model clearly outperforms the averaging and HMM (44.1% and 37.3%
relative improvement over single-image on the street level, respectively). Visual in-
spection of results showed that if an image with high location confidence is followed
by several images with lower location confidence, the LSTM model assigns the low-
confidence images locations close to the high-confidence image. Thus, while the orig-
inal PlaNet model tends to “jump around”, the LSTM model tends to predict close-by
locations unless there is strong evidence of a location change. The LSTM model out-
performs the averaging baseline because averaging assigns all images in an album the
same confidences and can thus not produce accurate predictions for albums that include
different locations (such as albums of trips). The LSTM model outperforms the HMM
model, because it is able to capture long-term relationships. For example, at a given
photo, HMMs will assign high transition probabilities to all neighboring locations due
to the Markov assumption, while LSTMs are capable of learning specific tourist routes
conditioned on previous locations. A problem with this simple LSTM model is that
many albums contain a number of images in the beginning that contain no helpful visual
information. Due to its unidirectional nature, this model cannot fix wrong predictions
that occur in the beginning of the sequence after observing a photo with a confident
location. For this reason, we now evaluate a model where the LSTM ingests multiple
photos from the album before making its first prediction.

Label Offset. The idea of this model is to shift the labels such that inference is post-
poned for several time steps (Fig. 12b) The main motivation under this idea is that this
model can accumulate information from several images in a sequence before making
predictions. Nevertheless, we found that using offsets does not improve localization ac-
curacy (Tab. 2b, LSTM off1, LSTM off2). We assume this is because the mapping from
input image to output labels becomes more complex, making prediction more difficult
for all photos, while improving predictions just for a limited amount of photos. More-
over, this approach does not solve the problem universally: For example, if we offset
the label by 2 steps, but the first image with high location confidence occurs only after
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3 steps, the prediction for the first image will likely still be wrong. To fix this, we now
consider models that condition their predictions on all images in the sequence instead
of only previous ones.

Repeated Sequences. We first evaluate a model that was trained on sequences that
had been constructed by concatenating two instances of the same sequence (Fig. 12c)
For this model, we take predictions only for the images from the second half of the
sequence (i.e. the repeated part). Thus, all predictions are conditioned on observations
from all images. At inference time, passing the sequence to the model for the first
time can be viewed as an encoding stage where the LSTM builds up an internal state
based on the images. The second pass is the decoding stage where the LSTM makes
predictions based on its state and the current image. Results show that this approach
outperforms the single-pass LSTMs (Tab. 2b, ’LSTM rep’), achieving a 7.8% relative
improvement at street level, at the cost of a twofold increase in inference time. However,
visual inspection showed a problem with this approach: if there are low-confidence
images at the beginning of the sequence, they tend to get assigned to the last confident
location in the sequence, because the model learns to rely on its previous prediction.
Therefore, predictions from the end of the sequence get carried over to the beginning.

Bi-directional LSTM. A well-known neural network architecture that conditions the
predictions on the whole sequence are bi-directional LSTM (BLSTM) [17]. This model
can be seen as a concatenation of two LSTM models, where the first one does a forward
pass, while the second does a backward pass on a sequence (Fig. 12d). Bi-directional
LSTMs cannot be trained with truncated back-propagation through time [15] and thus
require to unroll the LSTMs to the full length of the sequence. To reduce the computa-
tional cost of training, we had to limit the length of the sequences to 25 images. This
causes a decrease in total accuracy since longer albums typically yield higher accuracy
than shorter ones. Since our experiments on this data are not directly comparable to the
previous ones, we also evaluate the repeated LSTM model on sequences truncated to 25
images. As the results show (Tab. 2b: ’LSTM rep 25’, ’BLSTM 25’), BLSTMs clearly
outperform repeated LSTMs (16.6% relative improvement on street level). However,
because they are not tractable for long sequences, the repeated model might still be
preferable in practice.

5 Conclusion

We presented PlaNet, a CNN for image geolocation. Regarding the problem as one of
classification, PlaNet produces a probability distribution over the globe. This allows it
to express its uncertainty about the location of a photo and assign probability mass to
potential locations. While previous work mainly focused on photos taken inside cities,
PlaNet is able to localize landscapes, locally typical objects, and even plants and an-
imals. Our experiments show that PlaNet far outperforms other methods for geoloca-
tion of generic photos and even reaches superhuman performance. We further extended
PlaNet to photo album geolocation by combining it with LSTMs, achieving 50% higher
performance than the single-image model.
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