Web Browser Workload Characterization for Power
Management on HMP Platforms

Nadja Peters', Sangyoung Park!, Samarjit Chakraborty®,
Benedikt Meurer?, Hannes Payer?, Daniel Clifford?
Technical University of Munich', Google Inc?
{nadja.peters, sangyoung.park, samarjit}@tum.de, {bmeurer, hpayer, danno}@google.com

ABSTRACT

The volume of mobile web browsing traffic has significantly
increased as well as the complexity of the mobile websites
mandating high-performance web page rendering engines to
be used on mobile devices. Although there has been a sig-
nificant improvement in performance of web page rendering
on mobile phones in recent years, the power consumption
reduction has not been addressed much. A main contri-
bution of this work is a thread level analysis of the work-
load generated by Google’s Chrome browser on a hetero-
geneous multi-processing (HMP) platform found in many
smartphones. We analyze the detailed traces of the thread
workload generated by the web browser, especially the ren-
dering engine, and discuss the power saving potentials in
relation to power management policies in Android. More-
over, we propose power management strategies based on
the results. All trace data and measurement results have
been collected on a real HMP platform integrating the Sam-
sung Exynos5422 SoC, also used in the Samsung Galaxy S5
smartphone. Our work shows that there is a considerable
scope for power savings and outlines directions for future
research. We believe that it will lead to development of
practical power management techniques considering thread
allocation, dynamic voltage and frequency scaling (DVFS)
and power gating.

Keywords

Power Management; DVF'S; Heterogeneous Multi-Processing;
big. LITTLE; Mobile Web Brower; JavaScript Engine

1. INTRODUCTION

The number of mobile users has increased rapidly over
the past few years and is reported to surpass desktop web
browsing traffic. Google reports that already more searches
take place on mobile devices than on desktops in major ten
countries including US and Japan [8]. This trend is likely to
accelerate with the exploding sales of tablet devices which
has grown ever faster than PCs [12]. Not only the mobile

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODES/ISSS '16 October 01-07 2016, Pittsburgh, PA, USA
© 2016 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4483-8/16/10.
DOL: http://dx.doi.org/10.1145/2968456.2968469

N

User Space
Web Browser

—Renderer

Browser Ul

Android

\

E crlapIa)
-

Figure 1: Web Browser with processes and threads running
on an HMP platform.

web traffic, but also computation demand of the mobile web
pages is significantly increasing [17].

Mobile web browsing is enabled by mobile browsers such
as Chrome, Safari, etc. A browser consists of multiple com-
ponents such as the user interface, browser engine, layout
engine, display components, and networking. The most
time and power consuming component while rendering a
web page depends on the type of the web page. But in
most cases, the rendering engine and the JavaScript engine
beneath it are the key components affecting performance
and power consumption [13]. In order to meet the grow-
ing computational demand of mobile web pages, there has
been a race by browser developers to enhance the processing
speed. For example, Google’s JavaScript engine V8 boosted
JavaScript performance of Google Chrome by implement-
ing a number of performance optimization techniques such
just-in-time (JIT) compilation, inline caching, etc [6]. How-
ever, mobile web browsers are still designed assuming desk-
top conditions, that is, for performance, and little attention
has been paid to power consumption for mobile scenarios.

Hence, existing power management techniques for web
browsing workload on state-of-the-art Android systems leave
much room for power optimization. Power management on
Android systems is performed in collaboration between the
Android governor which manages operating voltage and fre-
quency, the scheduler which allocates and schedules threads
to each CPU core, and the power control unit which man-
ages the power state of each CPU such as power down.
However, the components are not designed in a way to mini-
mize the power consumption, nor collaborate closely to reach
a system-wide optimal solution. For example, the power
control unit does not turn off unused CPU cores unless
the whole device is left unused for a time being, and the
scheduler allocates and schedules tasks based on CPU us-
age thresholds not specifically taking into consideration the

power consumption. Further, the Android default CPU gov-
ernors are not aware of the performance requirements from
the user so that they can conservatively reduce the operating
frequency in order to optimize the response time. As a re-
sult, perhaps the most precious resource in a mobile system,
the battery energy, is wasted in many real usage scenarios.

The poor interplay between power managing components
becomes more distinctive when it comes to HMP platforms
incorporating the big. LITTLE architecture as shown in Fig-
ure 1. This architecture is adopted in state-of-the-art smart-
phones like the Nexus 5X with its Qualcomm Snapdragon 808
processor [7, 14] and the Samsung Galaxy S6 with its Exynos
Octa 7420 [16, 15]. The figure gives a complete overview of
our evaluated system including the Exonys5422 SoC also
based on ARM big.LITTLE architecture. It consists of two
quad-core CPUs, of which one is a performance-oriented big
CPU, and the other a power-saving little CPU. Individual
CPU cores cannot be powered down due to complications
in handing shared-cache, but the big CPU can be powered
down as a whole. However, even if only one big core is on,
all the other big cores have to idle which constitutes a signif-
icant portion of the total power consumption. Further, the
thread allocation problem among the performance-oriented
big cores, and power-saving little cores is not trivial. The
default schedulers available in commercial products seek a
rather simple solution based on setting a threshold value
for CPU utilization. The HMP scheduler does not consider
the full span of possible thread allocation and scheduling
options such as consolidating workload on one CPU operat-
ing at high frequency and powering down the other cores as
opposed to many cores running at low frequency.

In view of the previous discussion, to evaluate possible
power saving potentials, this paper provides a non-trivial,
detailed analysis of the actual thread workload generated
by the web browser for a number of web pages. These new
findings enable us to explore the potentials of power reduc-
tion on a real HMP platform. As we focus on the behavior of
mobile web browsers, the web page rendering and JavaScript
processing in particular, we use a trimmed-down version of
the full Chrome browser, the Chrome content shell, which
contains only the core components of the full browser and
is referred to as browser in the following. The contributions
of this paper are as follows:

e We give a detailed analysis and characterization of the
mobile web browser workload for loading a web page by
breaking down the browser CPU time and CPU energy
based on the main browser processes and their threads
for representative web pages. Here, loading refers to
downloading, rendering and displaying the web page.
We identify the process consuming most energy which
is the renderer (up to 70%) and further break down its
energy consumption by the website components Hy-
pertext Markup Language (HTML), Cascading Style
Sheets (CSS) and JavaScript. Moreover, we find that
different web pages have different workload distribu-
tions between the most relevant renderer threads.

e Based on the non-trivial analysis, we look into poten-
tials of power saving for mobile web browsing workload
on HMP platforms using core allocation of individual
threads, DVFS, and power gating. Considering the
fact that we cannot power down individual cores of
one CPU, we make the non-intuitive observation that

not exploiting parallelism but consolidating all browser
threads to one instead of all available big cores can lead
to power savings with only small performance drop.
Further, we show in a first attempt that we can save
up to 39.21% of the CPU power consumption when
we power gate the big CPU after a web page has fin-
ished loading. Finally, we explore the DVFS power
savings potential without performance loss during the
web page loading using a power model. We find that
we could save up to 26.6% of energy consumption by
applying more aggressive frequency down-scaling com-
pared to the default power manager.

e We outline potential power saving techniques, such as
the need for an integrated power management unit on
HMP platforms which combines scheduler, governor,
and power control and suggest potential architectures.

e We report a measurement infrastructure that we have
developed for logging all the performance and power
relevant information such as the core utilization, CPU
frequency, power consumption, thread allocation, func-
tion tracing, etc, for the underlying HMP hard- and
software platform. This infrastructure is a prerequisite
for all analysis and characterization work as it enables
us to find which CPU a thread is scheduled on - the
most relevant information in case of HMP systems. It
was used for all measurements presented in this work.

The rest of the paper is organized as follows: Section 2
gives an overview of related work in the area of browser
power management. In Section 3, we give details on browser
internals and web browser application characteristics. Then,
we discuss drawbacks of the Android power management ac-
cording to web browsing on the HMP platform in Section 4.
We introduce our hardware and software measurement in-
frastructure in Section 5. In Section 6, we give a detailed
analysis of the browser thread workloads and their energy
consumption. Based on our results, we combine HMP plat-
form specific power management with the workload charac-
teristics of web browsers in Section 7. We discuss potentials
for future work in Section 8.

2. RELATED WORK

Although attention has mostly been paid to the perfor-
mance of the mobile web browsers, researchers have recently
begun paying attention to the power consumption of mo-
bile web browsing. There has been works putting emphasis
on the network power consumption during web browsing.
In [19], it has been found that the coordination of the CPU’s
operating frequency and the network latency has significant
impact on the energy consumption during web page loading
as one has to idle wait for the other to complete its exe-
cution or transmission. Another work successfully reduces
the power consumption by grouping the data transmissions
during page loading and letting the 3G radio interface sleep
more [4]. However, recent work reveals that due to the sig-
nificantly increased network speed, the complexity of the
mobile web pages, and adoption of high-performance power
hungry application processors to mobile platforms, the pro-
cessor is becoming the major player in mobile web brows-
ing both in terms of power and performance, and thus we
focus on it. The measurements of mobile website rendering
power consumption show that downloading and parsing CSS

as well as JavaScript consumes a significant amount, up to
50%, of total power [13].

There has been some research that characterize the energy
consumption of mobile web browsing according to web page
primitives such as HTML, CSS and JavaScript. WebChar, a
tool for analyzing browsers to discover properties of HTML
and CSS that affect performance and power consumption,
takes snapshots of a large number of websites and mines
the model to produce a ranked list of expensive features in
HTML and CSS [1]. It focuses on showing up energy pitfalls
for web page design. In [13], the authors propose power sav-
ing techniques based on web page modification and browser
computation offloading to a remote proxy. However, they
do not study browser workload characterization and power
consumption on thread-level granularity, but a courser level
of granularity, mostly according to web page primitives such
as HTML, CSS and JavaScript.

There has been an advanced line of work on this topic
that studies web browsing power consumption on HMP plat-
forms. In [17], a predictive model based on web page prim-
itives is introduced. This model is used to find the appro-
priate core and operating frequency according to web pages
in a heterogeneous system. However, they use a setup that
consists of two separate platforms incorporating a big and
a little CPU to validate their approach, which poses as a
weakness. Another work identifies quality of service (QoS)
requirements of different mobile web applications by event-
profiling to perform DVFS on a big.LITTLE platform [18].
Again, they do not observe actual thread-level workloads of
web browsers. We take a cue from these studies and analyze
the different processes and their threads with the JavaScript
engine to evaluate their power consumption.

In summary, the main contribution of this work is a de-
tailed, non-trivial characterization of the web browser work-
load and energy consumption at thread-level granularity,
whereas previous work operates at a more course-grained
application level. The workload analysis of the browser at
that level of granularity cannot be translated directly into
power management policies as we are able to do in this paper
- e.g., determining power-aware thread allocation schemes
to CPU cores. Moreover, to the best of our knowledge, we
are the first to show up power saving potentials and propose
power management techniques for web browsers on an HMP
platform by exploiting all available mechanisms on this plat-
form, such as power gating, DVFS and HMP scheduling.

3. PAGE RENDERING IN WEB BROWSERS

This section gives an overview of the elements of a web
page, the structure of a web browser and the role of the
JavaScript engine. Further, we discuss the workload char-
acteristics that are specific for web browsers and need to be
considered for power management.

3.1 Components of a Web Page

A web page consists of static and dynamic elements. Static
elements are described by HTML and CSS. HTML describes
the basic structure of a web page whereas CSS defines its lay-
out. Scripting languages like PHP and JavaScript are used
for dynamic and interactive elements such as user inputs or
slide shows. Among the scripting languages, we focus on Ja-
vaScript as research has already shown its large impact on
web browser power consumption [13]. JavaScript intensive
phases occur during the loading of a page or user interaction.

3.2 Components of a Browser

The main components of a browser are the browser en-
gine, rendering engine and JavaScript engine as shown in
Figure 2 [5]. The browser engine acts as interface between
user inputs and the rendering engine. When a web page is
parsed, the rendering engine creates a so-called Document
Object Model (DOM) tree from the HTML. It also parses
the CSS into style rules. DOM tree and style rules are com-
bined to the render tree, the internal representation of a
web page. Hereafter, the exact positions of the render tree
components are determined. Finally, the web page can be
drawn on the screen. JavaScript code is processed by the
JavaScript engine and manipulates nodes of the DOM tree.

JavaScript Engine

DOM Tree](l—[JavaScript]
A
[User Input]-T[Web Page] R?f;rrilgg [Layout]—)[Painting]
Browser ¢ f

Engine Style Rules]—)(Render Tree]

Figure 2: Schematic structure of a browser.

3.3 JavaScript Engine V8

As our experiments were performed using the Chrome
browser, we focus on describing the internals of V8 [6], the
JavaScipt engine used in this browser. The browser itself
executes three main processes of which one corresponds to
the browser engine, one to the rendering engine and one to
the painting task that communicates with the GPU. V8 exe-
cutes as part of the renderer. Our measurements have shown
that the rendering process consumes up to 70% of the total
CPU time, depending on the web page, where up to 60% of
the rendering energy is due to the JavaScript engine.

JavaScript is an untyped script language. The code needs
to be downloaded, parsed, compiled and executed. V8 can
perform all these stages partly concurrently. It is a com-
pile-only JavaScript virtual machine consisting of a quick,
one-pass (baseline) compiler and a more aggressive optimiz-
ing compiler. The baseline compiler performs compilation
on the main thread whereas optimized code is compiled by
concurrent compilation threads. Finally, V8 incorporates a
multi-generational garbage collection mechanism that can
be triggered in parallel to the main thread execution.

3.4 Web Page Rendering

The browsing process can be separated into a loading
phase and a post loading phase as depicted in Figure 4.
The loading phase is defined as the phase before the loadE-
ventEnd function call of the main frame occurs. During the
loading phase, the website needs to be downloaded, rendered
and displayed. These steps are highly resource intensive.
For this phase, JavaScript plays an important role as it is
used in most of the popular websites and consumes a large
amount of energy [13]. The goal during the loading phase
is to download, render and display the page as fast as pos-
sible spending as little energy as possible. During the post
loading phase, the resource requirements vary from website
to website. Among the 25 most popular websites based on
rankings from Alexa Internet [2], a company which provides
commercial web traffic analytics, are search engines, social
networks, online shops, and encyclopedias such as wikipedia.
The workload highly depends on the type of web page and
its degree of interaction with the user, e.g. scrolling. Other

aspects can be the amount of JavaScript executed in the
background, animations or video streaming.

The corresponding browsing phase and website charac-
teristics could be exploited to design a web browser specific
CPU power management unit that performs in an optimized
way compared to the standard Android power manager.

4. HETEROGENEOUS MPSOC ARCHITEC-

TURE AND POWER MANAGEMENT

In this section, we describe the HMP hardware platform
used in this work, how the Android operating system power
management works for this kind of architecture and why
the current Android power management strategy does not
perform optimally in terms of power consumption.

4.1 Hardware Platform

The underlying hardware platform that we evaluate is
the Odroid-XU3 board which features an Exynos5422 SoC
also used in the Samsung Galaxy S5 phone [10]. As dis-
cussed before, the heterogeneous MPSoC is based on ARM
big.LITTLE architecture which incorporates two different
CPU clusters. One is a power-optimized Cortex-A7 quad-
core CPU (A7) and the other is a performance-optimized
Cortex-A15 quad-core CPU (A15). In the following, we re-
fer to a CPU cluster as CPU while we refer to single CPU
cores of a CPU cluster as core. CPU voltage and frequency
values can be adjusted independently per CPU but not per
core. The A7 supports a frequency range from 1.0 to 1.4 GHz
and the A15 from 1.2 to 2.0 GHz. The platform also sup-
ports power gating, but it is only available at CPU clus-
ter granularity. The platform runs an Android Kitkat 4.4.4
with a Linux kernel version 3.10.9. The setup features HMP
scheduling which allows to distribute tasks over all big and
little cores at the same time. The HMP scheduler prefers
the small cores first, and then migrates threads to the big
cores if the CPU utilization goes above a certain threshold.

4.2 Power Management on HMP Platforms

The power management in Android is handled by three
individual components, mainly residing in the Linux ker-
nel: (1) the scheduler, (2) the frequency governor and (3)
the wakelock mechanism. The three of them work indepen-
dently of each other as depicted in Figure 3.

Scheduler

frequency
scaling
per CPU

global scheduling for all CPUs

power state
control
II

- per CPU

Figure 3: Traditional Android power management with in-
dependent control units.

Governor

The scheduler distributes tasks based on their priorities,
allocating them to cores while the governor is a part of the
cpufreq driver regulating the CPU frequency. The Android
Open Source Project (AOSP) by Google contains different
governors of which the most widely used are the ondemand
and the interactive governors. They both periodically mon-
itor the CPU load and adaptively adjust the operating fre-
quency. Note that different CPUs can have different gover-
nors. When the CPU load exceeds a certain threshold (in
our setup 95%), ondemand governor ramps up to the max-

imum frequency. The interactive governor is developed for
mobile devices and designed to react to user inputs faster.
Whenever the CPU wakes up from idle mode, the CPU load
is monitored to ramp up the frequency immediately if nec-
essary. The wakelock mechanism which is a part of Android
and not the Linux kernel keeps the device in a wake-state
as long as an application is executing. When the device be-
comes idle, the processor is put in a power-saving sleep state
as soon as possible. However, the A15 is not power gated
when it is not utilized, but the device is in use. Moreover,
state-of-the-art power-aware scheduling techniques such as
consolidating the workload on one A1l5 core and shutting
down the other cores are not reflected by the Android de-
fault governors. This is due to the above mentioned imprac-
ticality of turning off separate A15 cores, because of which
this strategy is not applicable for this platform.

Limits of Android Power Management: The division
described above works well for traditional hardware architec-
tures with one CPU, but not for heterogeneous MPSoCs as
used in this work. While wakelock mechanism and cpufreq
work for both CPUs independently, the scheduler has to
distribute the tasks over all available cores. Therefore, the
heterogeneous multiprocessing scheduler is offered by Sam-
sung [9]. It monitors the individual load of each process.
When the load surpasses an upper threshold, the process is
migrated to a big core and vice versa. At the same time, the
CPU governor which works independently from the sched-
uler rises the frequency because of the increasing load. This
causes maximum power consumption for all CPU intensive
applications. An example for this situation is shown in Fig-
ure 4. It shows the loading of the ebay web page on the
target platform using the regular Android settings.

g 5 & Loading finish .
T4 ' Al5] T
e 3 -
°§2 A7 |]
21T, -
0 " =
0 1 2 3 4 5 6 7
500 . . -
éggg § Als]]
& 200 I A7 |
< :
2 100 ’,J" =l 1,—"L._|
0 L 1 1o 1 1 1 1
0 1 2 3 4 5 6 7
<) Hﬂ Al5
o1 A7 | 1
< AN Py (icd
o 1 H
8 L L 1 n n 1 n
&9

0 1 2 3 4 5 6 7
Time [s]

Figure 4: Loading eBay web page (regular Android settings).

From this figure we can draw multiple important observa-
tions about the Android power management: (1) Although
the workload on the A15 is clearly below 100% and the CPU
is not fully utilized during the first two seconds, the fre-
quency is at the maximum value of 2 GHz. Hence, DVFS
could have been applied to reduce the frequency and gener-
ate a higher workload on the CPU. (2) The loading phase
generates a high workload, and consequently, the A15 was
enabled. Although neither of the CPUs are fully loaded, one

can see that the corresponding clock frequencies are switched
between the minimum and maximum values. More impor-
tant, even when the CPU utilization is less than 100%, which
means that even a single core is not fully utilized, the CPU
is at its maximum frequency. The DVFS granularity for
both CPUs is at 0.1 GHz though. Therefore, these results
show a considerable scope for power savings. (3) In the post
loading phase, the utilization of the A15 drops to zero and
its frequency to the lowest value of 1.2 GHz. Still, the idle
power of the A15 is at the same level as the power consump-
tion of the A7 although the A7 is still in use. So, even when
not in use, the A15 consumes about 50% of the total CPU
power. At this point, the A15 could be put into a deeper
power-saving state or rather power gated. This is possible
on a CPU cluster basis for the A15.

We believe that an approach that combines the three power
management components can lead to significant power sav-
ings. For example, the scheduler could turn off the A15 since
it knows which cores all threads are scheduled on. Therefore,
we study the power saving potential of these components for
web browsing in a the following chapters. Based on these
observations and an analysis of the web browser workload,
we propose potential power management techniques for web
browsing on HMP platforms.

S. MEASUREMENT SETUP

We have implemented a software measurement framework
on top of the commercially available Odroid-XU3 hardware
platform. The framework is capable of capturing the power
consumption of CPU clusters with a granularity of 1kHz,
and the CPU usage of individual threads running on each
core with a granularity of 20 Hz. With this setup, we can
not only study the overall power consumption, but also the
detailed internal traces of web browser threads.

% [User Space [Logging Applications]]
= r r

o T T

z [Kernel Space(cpufreq Driver}[Sensor Driver jfm
| o (cPU (Cortex-A15) JH{ Shunt {INA23 1HH
% % (LCPU (Cortex-A7) }{ Shunt HINA23 1}
2] e -

& £ (L GPU (Mali-T628) JH{ Shunt HINA23 1}
©1%(2GBDRAM Shunt HINA23 1}t

Figure 5: Exynos5422-based measurement setup.

5.1 Hardware Infrastructure

The Odroid-XU3 board provides a built-in power mea-
surement interface which has been utilized in our experimen-
tal setup as shown in Figure 5. Shunt resistors are placed in
front of both CPUs, the GPU and the memory. INA231 sen-
sors measure voltage and current at the shunts of the target
component while the kernel driver calculates the power.

5.2 Software Infrastructure

Our software setup is a combination of three different log-
ging environments as shown in Figure 6, (1) the power log-
ger, (2) the process logger and (3) the Chrome:trace envi-
ronment. Combining all these information, we are able to

n‘mm

Chrome:trace

Power ljogger _ Process loggér

Post-Processing Software

[CPU Time and Energy Characterization]

Figure 6: Software setup for data acquirement.

get a detailed profile of which thread was running when, on
which core and how much energy it consumed at that point
in time. We exploit this data to identify the effects of DVFS
and thread allocation on the performance of the browser.
Power Logger: For the power measurement, we have de-
veloped a logger which instruments the underlying kernel
driver of the sensors. It acquires the power of both the A7
and the A15, GPU and RAM. Besides the power, it enables
us to measure A7 and A15 CPU utilization for each of the
individual cores at a sampling frequency of approximately
1kHz. Further, we log the frequency of each CPU by instru-
menting the cpufreq driver.

Process Logger: Moreover, we have developed a process
tracer for capturing information about the individual pro-
cesses and sub-processes of applications. The logger is a
C-program capturing the accumulated CPU time and the
core a process is currently scheduled on. This is necessary
to identify which threads are running on the A15 and which
on the A7. Without this information it is not possible to
create a power profile on an HMP platform. While the core
allocation for traditional chips including only one CPU is
not relevant to extract power information per thread, it is
crucial for the big. LITTLE architecture.

Chrome:trace: To get deeper insight into the logged pro-
cesses during the execution of the browser, we instrumented
the Chrome:trace framework. It gives detailed stack traces
of which functions were executed when and which process
they belong to. In this way, we can identify the threads that
are executing HTML, CSS or JavaScript. Chrome:trace does
not give any information on the thread core allocation.

6. WEB BROWSER WORKLOAD CHARAC-
TERIZATION

In this section, we present a detailed analysis of the web
browser workload for the loading and post loading phase on
the underlying HMP platform. We look into the CPU time
and energy consumption of the browser threads to identify
power saving potentials by thread-to-core allocation, DVFS
and power gating. To the best of our knowledge, this is the
first work to analyze the actual thread workload generated
by web browsers for power management. Further, we look
more closely on rendering and JavaScript-related power con-
sumption. The representative websites we have chosen based
on rankings from Alexa Internet are eBay, Amazon, Reddit,
Facebook, Wikipedia and CNN. We initiate the loading of
the web page and wait for 10 seconds in each experiment.

6.1 Breakdown Analysis of Browser Threads

As discussed before, the chosen browser consists of three
main processes: (1) the browser process itself, which han-
dles user inputs, (2) the rendering process, which sets up the

frames, and (3) the GPU process, which triggers the GPU
to draw frames on the screen. All of them create a set of
threads, of which the two most important ones in terms of
the workload they generate are the main renderer thread,
CrRendererMain, and the compositor tile worker, Compos-
itorTileW. Both belong to the renderer process. The main
renderer thread sets up the web page including HTML, CSS
and JavaScript while the compositor tile worker deals with
GPU communication. It is of major importance to iden-
tify the critical threads related to energy consumption. This
knowledge enables us to apply advanced power management
strategies such as power-aware thread to core allocation.

Al15 A7 A1S A7 Al5 A7 Al1S A7 AlS A7 Al5 A7

1

Relative CPU time
- G

eBay Amazon Facebook Reddit Wiki CNN
B Browser I GPU Process [Misc.
[CrRendererMain [___] CompositorTileW

Figure 7: Relative CPU time of web browser threads for
representative websites per A15 and A7 cluster.

1 Al15 A7 Al5 A7 Al15S A7 Al15 A7 Al5 A7 AlS A7

Relative Energy
[=]
W

S

eBay Amazon Facebook Reddit — Wiki CNN

I Browser I GPU Process [Misc.
[CrRendererMain [___] CompositorTileW

Figure 8: CPU energy consumption of threads per A15 and
AT cluster for representative websites.

Figure 7 shows the time distribution of the three main
browser processes for A15 and A7, respectively, loading the
representative web pages with the default Android settings.
The bars are split up among the three processes of the
browser where the renderer process is further split up into
the main renderer thread, the compositor tile worker and
other miscellaneous threads. The relative CPU time is nor-
malized to the total A15 CPU time on a per web page basis
for visualization purposes, as the absolute values of the CPU
time, e.g., for CNN and eBay, are significantly different. The
main observation is that the renderer process, which mainly
consists of the CrRendererMain and the CompositorTileW
threads, takes up most of the A15 time, and hence, con-
tributes the most to the energy consumption as depicted in
Figure 8. This is the first work to perform per-thread anal-
ysis of a mobile web browsing workload, which explicitly
shows different levels of parallelism among different threads.
This important information enables us to target the major
power consuming browser threads for energy reduction.

Furthermore, we observe from Figure 7 that different web
pages exhibit different degree of thread-level parallelism. For
example, the time spent on the main renderer thread and the
compositor tile worker thread is almost the same for eBay.
In case of Amazon and Facebook, compositor tile worker
thread time is only 20-25% of the main renderer thread time.
In case of CNN and Wikipedia, the main renderer thread

dominates the execution time. The power saving technique
should be aware of the thread-level parallelism and perform
core allocation and workload consolidation accordingly, as
we are considering an HMP platform comprising multiple
CPUs. In Section 7.2, we are able to show how the num-
ber of schedulable cores affects the page loading time and
energy consumption according to web pages exhibiting dif-
ferent degree of thread-level parallelism based on our ob-
servations. Also, we observe that the CPU time spent on
the A15 is only between 50-70%, whereas it contributes be-
tween 80-90% towards the total energy consumption. This
is expected because the A15 is designed in a performance-
oriented way. Figure 8 shows that the A15 is approximately
3 times more power consuming than the A7. Therefore, in
order to save power, it is preferable to only allocate threads
on the A15 that are the bottleneck for achieving the per-
formance requirement. We also investigate the impact of
deferring thread execution on A15 on power consumption
and web page loading time in Section 7.2.

6.2 Rendering Process

As shown in the previous section, the rendering process is
the most time and energy consuming process. In this sec-
tion, we further analyze the energy and time contribution of
different web page components handled by the renderer, es-
pecially focusing on JavaScript since it contributes most to
the rendering energy consumption. As mentioned before, for
the Chrome browser we are experimenting with, JavaScript
code is handled by the JavaScript Engine V8. Therefore,
we refer to all JavaScript related calls as V8 in the follow-
ing. Figure 9 depicts the energy consumption of the render-
ing process divided by the main web page components CSS,
HTML and V8 described in Section 3.1. The figure shows
that V8 consumes a significant part of energy, depending on
the website. For eBay, V8 takes up about 25% of the total
rendering energy while it takes up to 60% for CNN.

Component Energy
(=]
O

(=}

eBay Amazon Facebook Reddit Wiki CNN
. Vs I css |] HTML [] Others

Figure 9: Relative energy distribution of the web page com-
ponents HTML, CSS and JavaScript.

V8 function and thread time analysis: We have found
that V8-related functions consume a significant amount of
energy during web page rendering. To identify bottlenecks
and power optimization potentials, we have investigated the
time distribution of different V8 execution stages as de-
scribed in Section 3.3 and studied the distribution of V8
workload over threads within the rendering process.

Figure 10 shows the relative time V8 spends in its work-
ing stages parsing, compilation, execution and garbage col-
lection. For most of the pages, the time distribution is very
similar. We see that V8 spends up to 40% in parsing and
compilation while it spends 50-60% in the execution stage.
The stages alternately occur on a time-scale of micro- to mil-
liseconds. The results show that a large amount of time and,
consequently, energy is spent on preparing the JavaScript

code for execution rather than actually executing it. In other
words, the reason why parsing and compilation takes that
much time should be investigated further. Our results em-
phasize the importance of designing the JavaScript engine in
a power-aware fashion. For example, information which can
be gathered about the execution at parsing and compilation
stage could be later exploited for power management.

1

0.5

Function Time

0
eBay Amazon Facebook Reddit Wiki CNN

B rorsc I Compile [Execute
[Jcc [Misc

Figure 10: Relative time distribution of V8-related function
calls by category.

Moreover, we have looked into separate threads that are
executing V8-related work and their distribution across the
CPU cores. We have found that between 83-96% of V8 is
executed within the main renderer thread for the represen-
tative websites. Further, note that 1-13% of the thread time
is used by a ScriptStreamerThread which parses JavaScript
code. This is important as this is the only other V8-related
thread running on the A15 besides the main renderer thread,
hence, one of the most energy consuming V8 threads. It
takes up to 5% of the total A15 energy consumed by V8.
Other threads that are, e.g., responsible for recompilation
of the JavaScript code use at maximum 4% of the execution
time. These information can be exploited for power saving
by thread allocation, for example moving the ScriptStream-
erThread to the A7 considering its penalty on performance.

7. POWER MANAGEMENT FOR WEB
BROWSERS

The default Android power management, which is de-
signed for a wide range of applications, leaves much room
for further power reduction in case of the web browsing
workload in specific. First, the HMP scheduler distributes
threads over as many CPU cores as possible to exploit par-
allelism whereas the power-optimized thread core alloca-
tion depends on the performance requirements of a web
page. Second, the most popular Android default governors
such as interactive and ondemand governors are biased to-
wards the performance requirements of the web browser,
and, hence, the operating frequency is reduced too conser-
vatively. Third, the default power management policy is
not tuned for HMP platforms such that it does not consider
power gating while an application is running. In the fol-
lowing, we apply different power management strategies for
the mobile Chrome browser. Based on our characterization
results in Section 6, we show a non-intuitive power-aware
thread-to-core allocation strategy in Section 7.2 and outline
the potential for energy savings in Sections 7.3 and 7.4.

7.1 Power-Performance Trade-off Analysis

In this section, we investigate the trade-off relationship
between the power consumption and the loading time of
the representative websites. We limit the maximum CPU
frequency of the A15 to various values and let the default

governor control the operating frequency below that value.
As explained in Section 3, the loading time of a web page
is defined as the time duration from the start of loading the
page until the loadEventEnd function is called.

8 T T T T T T T

6

Loading time (s)

1.2 1.3 14 1.5 1.6 1.7 1.8 1.9 2
CPU frequency (GHz)

—~A— Amazon —%— eBay
—+— Reddit —— Wikipedia

Facebook

Figure 11: Web page loading time according to different A15
frequency cap.

18

161 —A— Amazon
—¥— eBay
Facebook
141 | —— Reddit 1
——>¢— Wikipedia

Energy (J)
IS

=

e}

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
CPU frequency (GHz)

Figure 12: A1l5 energy consumption according to different
A15 frequency cap.

Figure 11 and 12 show the loading time and energy con-
sumption for the test scenario described in Section 6 where
all A15 and A7 cores are schedulable and the maximum
operating frequency of the A15 CPU is capped to the cor-
responding values on the z axis. In case of eBay, by cap-
ping the maximum frequency to 1.2 GHz, the total energy
consumption is reduced by 34.6% while the loading time is
increased only by 16.7% (0.6 s), which is marginally perceiv-
able by the user. In case of Wikipedia web page loading,
sacrificing only 1s of loading time saves over 30% of energy.

7.2 Constraints for Core Allocation

In this section, we look into the effect of thread allo-
cation to cores. Therefore, we investigate three different
cases: Running the browser threads on all A15 and A7 cores
(case 1), on one A15 core and all four A7 cores (case 2), and
the four A7 cores only (case 3). Controlling the number of
schedulable cores is done by setting the the processor affin-
ity of the threads such that the HMP scheduler allocates the
threads solely to the desired cores. In this analysis, we select
two web pages, eBay and Wikipedia, that exhibit different
characteristics in terms of thread-level parallelism. As can
be seen in Figure 7, eBay exhibits even CPU time distribu-
tion among the two threads CrRendererMain and Compos-
itorTileW, while only the CrRendererMain dominates the
CPU time for Wikipedia. We observe that consolidating
the workload into a smaller number of cores is more effi-
cient in terms of energy consumption than distributing the
workload over multiple cores.

Loading finish

Als
A7

Power [W]
O =N WA WU

B —————

= : AlS
5 300 | : A7 | T

&0 200 | L (TR 1
e A ‘

0 2 4 6 8 10

- -é Loadmg finis

AlS5

%
ﬂ“\ W L=

= :
= 300 : Al
&0200 | : AT] 4
S Y v—— '
D 0 1 al ___J_hl.‘l
0 2 4 6 8 10
Time [s]

Figure 13: Power consumption and CPU utilization for load-
ing eBay for case 1 (top, energy: 13.31J) and case 2 (bottom,
energy: 11.577J).

Comparison of case 1 and case 2 for eBay: Figure 13
shows the eBay loading phase for case 1 (top) and for case 2
(bottom). Obviously, the A15 CPU utilization goes up to
to 200% for case 1, while the value is limited to 100% for
case 2. The power consumption of the A15 is coupled to
the CPU utilization changes. The A15 power consumption
goes up to 5 W for case 1 while it is clamped around 2W
for case 2. This computes to the significant difference in
total energy consumption, which is 13.31J for case 1, but
only 11.57J for case 2, 13.1% less. However, the increase in
loading time is marginal from 3.6s to 3.8s (5.6%), which is
not significantly perceivable by the users. Besides the effect
on the energy consumption for case 2, it is also important
to investigate the effect of smoothing the power curve on
the overall battery lifetime. It is well known that high peak
current flows have a negative impact on the battery lifetime.
We leave such an analysis as a future work.

Comparison of case 1 and case 2 for Wikipedia: The
power consumption and CPU utilization while loading the
Wikipedia web page is shown in Figure 14. In contrast to
eBay, less degree of thread parallelism exists in Wikipedia
rendering workload, and, hence, the usage stays consistent
around 100% for both test cases. This fact is also reflected in
the power graph such that the power consumption remains
around 2W for both cases, which differs significantly from
the eBay web page rendering. The energy consumption and
the loading times are also very similar, 15.40J and 5.4s for
case 1 and 15.26J and 5.4 s for case 2.

The comparison between case 1 and case 2 for eBay and
Wikipedia web page rendering shows that controlling the
number of utilized A15 cores has different impacts on power
consumption depending on the degree of thread-level par-
allelism. Nevertheless, using less number of performance
oriented A15 cores is generally preferred even if there is suf-
ficient thread-level parallelism because of potential savings

Loading finish % sl
: A7

Power [W]
O—= N WA U

500 ; ; — .
§400 r Al5] T
o 300 F : A7 |]
2200 h : .

2w [R

0
0 2 4 6 8 10

L fi h 1
oading finis +— 15]

m« " W ‘ A7 |7
_ 500

2 400 : .

Power [W]
O'—‘I\)wbm@

S :
2 300 t : Al
&0200 + i AT] 4
@ - - —— ~ .
5 109 S

0 2 4 6 8 10
Time [s]

Figure 14: Power consumption and CPU utilization for load-
ing Wikipedia for case 1 (top, energy: 15.40J) and case 2
(bottom, energy: 15.26J).

in energy consumption (13.1%) compared to a marginal in-
crease in loading time (0.2s, 5.6%). This is a notable and
non-intuitive observation as it is natural to expect significant
performance improvement if more cores are utilized.
Case 3 for eBay: In this case, we power gate the complete
A15 and use only the four A7 cores to load the web pages.
The A15 utilization is zero all the time because all threads
run on the A7 as shown for eBay in Figure 15. The power
consumption of the A7 is nearly the double of the cases 1
and 2, but its absolute value is significantly smaller com-
pared with the A15 power consumption in the above cases.
We observe that the A7 consumes around 0.5 W during the
loading phase and 0.3 W during the post loading phase.
The overall results are summarized in Table 1. As we have
described in above analysis, comparing case 1 and case 2, the
loading times increase marginally if less number of A15 cores
are utilized, but there could be more reduction in energy
consumption depending on the thread-level parallelism of
web pages. As for case 3, the loading time roughly increases
by a factor of 2 compared to the cases 1 and 2, but even more
energy could be saved by using A7 only. If we make a careful
evaluation of the user requirement during web page loading,
core allocation could be used to leverage power consumption
at cost of a marginal loading time increase.

7.3 Power Savings by DVFS without Perfor-
mance Compromise

As discussed in Section 4.2, default governors for Android
often fail to assign energy-optimal frequency to the CPUs.
However, prediction of the exact workload and setting the
optimal frequency for a web browsing workload are difficult
tasks to achieve. In this section, we make a rough estimate of
how much potential exists for power savings without perfor-
mance loss by applying DVFS. Figure 16 shows the estimates
of power consumption, CPU utilization, and operating fre-

= Loading finish AlS
= A7
[.
g :
o N
~ o . :
0 2 4 6 8
—. 500 ; . .
X 400 Al5 K
o 300 f A7 N
0200 + 1
2 100 K
D 0 —_— S —
0 2 4 6 8
Time [s]

Figure 15: Power consumption and CPU utilization for load-
ing eBay for case 3.

Ama- | Face- | Red- | Wiki-

eBay zon book dit pedia CNN

3.6s 3.6s 2.3s 2.6s 5.4s 13.0s

Case 1| 15313 16.99J 8707 | 9.07J | 15.40J] 25.35J

Case 2 3.8s 3.6s 2.5s 2.7s 5.4s 13.9s
11.57J] 15.95J]] 8.37J | 9.08J | 15.26J] 24.07J
6.8s 5.2s 5.1s 5.1s 11.5s

Case 3 >13s

4.87J | 5.37J | 4.39J | 439J | 5.20J

Table 1: Loading times and energy consumption of repre-
sentative websites for different core configurations.

quency if an oracle workload predictor was used. The oracle
predictor is a theoretical construct of which we assume is
capable of knowing the exact future workload such that the
utilization of the core that executes the bottleneck thread
is kept as close as possible to 100% by applying DVFS. In
other words, it finds the lowest possible CPU frequency that
does not result in a performance loss unlike the performance
oriented default Android governors. The power graph in Fig-
ure 16 is obtained by using the following CPU power model

Pcpu =Uu- Ceff . V2f + Retatic(v)v (1)

where u is the sum of utilization of the cores, Cess is the
effective switching capacitance, and V and f are the operat-
ing voltage and frequency, respectively. We fit the model to
the measured power consumption of the A15 processor and
find that 1.0158 x 10™? F is a reasonable value for Ces. The
analysis shows that if we were to predict the workload pre-
cisely, the total energy consumption could be reduced from
10.889 J to 7.996 J, which is about 26.6%.

7.4 Post-Loading Phase Power Gating

We consistently observe that in most cases the A15 is not
being utilized and the A7 is mostly handling the rendering
workload during the post-loading phase. However, the An-
droid default power managers never applies power gating to
the A15 as long as the device itself is in use. This leaves
scope for power gating techniques to be utilized during the
post-loading phase. The power consumption of the A15 dur-
ing idling is approximately P;qe = 0.27 W, while it is only
P,rs = 0.04 W when power gated. Hence, power gating re-
sults in 85% idle power savings. Although the absolute idle
power is almost negligible compared to the active power,
the energy consumption of the A15 during the post-loading
phase could be significant depending on the user activity,
e.g., the user may read an article for a considerable amount
of time after the web page loading finishes.

.: ' ' & Loading finish

|] Als
Al5 oracle

Power [W]
O—=NWhAWUNN

W
(=3
(=}

Usage [
[SS VS
[l

(=) [N
—

o>
@
S
g

o o
|1

%
S
3
3

T
i

100

Als b

1.6 Al5 oracle |

1.2

Freq A15 [GHz]

0 1 2 3 4 5 6 7
Time [s]

Figure 16: Frequency, usage and power of the A15 estimated
by the oracle verses a real measurement when loading eBay.

We implemented a simple prototype power manager that
power gates the A15 immediately when the utilization is
zero during the post-loading phase and turns the A15 back
on when the A7 utilization rises above 110%. The threshold
of 110% is set because we observe that the A7 workload dur-
ing the post-loading phase was fairly single-threaded, so that
turning on the A15 cores would benefit in terms of perfor-
mance. A real world power manager featuring power gating
should allow for well established theory on predicting idle
time and breakeven time as well as practical constraints such
as granularity of power gating, in our case the CPU clusters.
The prototype power manager is very naive, and, hence,
cannot be applied for browser power management in gen-
eral, but suffices for two simple usage scenarios. We repeat
the experiments as described in Section 6 for Wikipedia and
eBay using the prototype power manager. For Wikipedia,
the loading time takes 5.4s and consumes 13.84 J. There is
no increase in loading time, but the energy consumption de-
creased by 10.1% compared to the case without power gating
(15.40J). For eBay, we observe a loading time of 4.8s and
an energy consumption of 8.09J. Although the increase in
loading time compared to the default settings is 1.2s (25%),
we can achieve energy saving of 39.2%. These results show
a large scope for power savings by utilizing A15 power gat-
ing for web browser workload. However, a more elaborate
power gating technique requires detailed knowledge of the
time and power overhead, which we leave as a future work.

8. FUTURE WORK

In addition to the power management possibilities out-
lined in the previous sections, our results show that there is
a considerable potential for future work. In this section, we
discuss a browsing phase-aware approach as well as the inte-
gration of the Android power management components for
HMP platforms. All techniques can be applied in parallel.

Phase-aware Frame Rate Adaptive Power Manage-
ment: In Section 3.4, we introduce two phases during web
browsing, the loading phase and the post loading phase.
Phase-aware power management in mobile web browsers has
not been extensively studied, but it has been proven to be

useful for other domains of applications such as games [3].
Mobile web page rendering, like interactive games, also con-
sists of multiple phases that vary in user requirement and
user interaction such that significant power savings could
be achieved using a similar approach. In our work, we
have shown that the workload highly varies depending on
the phase and we expect that the user requirement such as
frame rate will also vary. The main objective during the
loading phase is to display the web page as fast as possible.
However, the strategy of the web browser is to re-render
the loading web page often to illustrate an on-going load-
ing progress. This can result in a high computation over-
head due to fast web page updates and an unnecessary high
frame rate. Meanwhile, that computation power could be
used to process background information such as CSS and
JavaScript, resulting in a faster page setup and, hence, lower
loading time. During the post loading phase, the frame rate
and the workload highly depend on the type of web page
and its degree of interactivity. While static web pages do
not need a frame rate update at all, the frame rate for dy-
namic contents such as slide shows or scrolling movements
may vary. By adaptively changing the frame rate, we can
also adapt the CPU frequency to compute a frame within
a desired time bound. Finding out the frame rate require-
ments of different web pages and automatically adapting the
frame rate will be a major part of our future work.

Integrated Android Power Manager: In Section 4, we
have shown that the default Android power management
does not perform well as the three power managing entities,
the governor, scheduler, and power control unit separately
manage the operating frequency, thread allocation/schedule,
and power state of the CPU. Even though there has been a
significant amount of theoretical research on co-optimizing
thread allocation and DVFS on HMP platforms, and the de-
velopment of the so called Energy Aware Scheduler [11] for
big. LITTLE systems is an ongoing project pushed by ARM
and Lenaro, an integrated power manager capable of actu-
ally performing the policies has not yet been implemented,
especially in the domain of mobile web browsing. In the fu-
ture, we would need a power manager that either integrates
the separate components or lets them closely collaborate to-
gether to minimize the power consumption. The integrated
power manager will be aware of different computation de-
mands and impacts on user experience among threads. It
would enable us to selectively allocate performance criti-
cal threads such as the CrRendererMain, to the appropriate
cores. However, threads that produce a high workload but
are not critical for fast web page rendering could be de-
ferred to power-optimized cores. A part of our future work
will be to identify performance critical threads and perform
scheduling and DVFS to maintain a good user experience.

9. CONCLUDING REMARKS

This paper provides a detailed look into the web browser
workload on HMP platforms and seeks potential power sav-
ings based on the observations. Unlike previous works that
analyze the power consumption according to the inputs to
the web browser, the new aspect of our work is the focus on
the actual thread workloads and function calls invoked by
the web browser. They provide information that can be used
directly for power management. Based on the characteriza-
tion, we apply several power management techniques, such

as DVFS, thread allocation to CPU cores and power gating.
Moreover, we outline the theoretical power saving poten-
tial for web browsing in Android. Our initial results show
that current Android power management leaves a significant
room for improvement and relevant operating system enti-
ties, the governor, scheduler, and power control unit, should
work collaboratively to achieve higher power savings.

Acknowledgments: This work was partially supported
by Google Inc and by the Bavarian Ministry of Economic
Affairs and Media, Energy and Technology as part of the
EEBatt project.

10. REFERENCES

[1] A. Sampson et al. Automatic discovery of performance
and energy pitfalls in html and css. In IISWC, 2012.

[2] Alexa Internet, Inc. The top 500 sites on the web.
http://www.alexa.com/topsites, 2016.

[3] B. Dietrich et al. Forget the battery, let’s play games!
In ESTIMedia, 2014.

[4] B. Zhao et al. Energy-aware web browsing on
smartphones. TPDS, 26(3), 2015.

[5] T. Garsiel. How browsers work. http://taligarsiel.com/
Projects/howbrowserswork1.htm, 2009.

[6] Google, Inc. Chrome V8.
https://developers.google.com/v8/, 2015.

[7] Google, Inc. Nexus 5X.
https://www.google.com/nexus/5x/, 2015.

[8] Google Inside AdWords. Building for the next
moment. http://adwords.blogspot.co.uk/2015/05/
building-for-next-moment.html, 2015.

[9] H. Chung et al. Heterogeneous multi-processing
solution of Exynos 5 Octa with ARM® big. LITTLE
technology. In Samsung White Paper, 2012.

[10] Hardkernel co., Ltd. Odroid-XU3.
http://www.hardkernel.com, 2015.

[11] A. Kucheria. Energy-Aware Scheduling (EAS)
Project. https://www.linaro.org/blog/core-dump/
energy-aware-scheduling-eas-project/, 2015.

[12] M. Meeker. KPCB Internet Trends 2014.
http://www.kpcb.com/blog/2014-internet-trends.

[13] N. Thiagarajan et al. Who killed my battery:
Analyzing mobile browser energy consumption. In
WWW, 2012.

[14] Qualcomm Technologies, Inc. Qualcomm®
Snapdragon™ 808. https://www.qualcomm.com/
products/snapdragon/processors/808, 2015.

[15] Samsung Electronics Co., Ltd. Exynos Octa 7420.
http://www.samsung.com/semiconductor /minisite/
Exynos/w/solution.html#?v=Tocta_7420, 2015.

[16] Samsung Electronics Co., Ltd. Samsung Galaxy S6.
http://www.samsung.com/global/galaxy/galaxystory/
s6-inside-stories/hardware/, 2015.

[17] Y. Zhu et al. High-performance and energy-efficient
mobile web browsing on big/little systems. In HPCA,
2013.

[18] Y. Zhu et al. Event-based scheduling for
energy-efficient qos (eqos) in mobile web applications.
In HPCA, 2015.

[19] Y. Zhu et al. The role of the cpu in energy-efficient
mobile web browsing. IEEE Micro, 35(1), 2015.

