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ABSTRACT
We present a secondary ranking system to find and remove
erroneous suggestions from a geospatial recommendation sys-
tem. We discover such anomalous links by “double check-
ing” the recommendation system’s output to ensure that it
is both structurally cohesive, and semantically consistent.

Our approach is designed for the Google Related Places
Graph, a geographic recommendation system which provides
results for hundreds of millions of queries a day. We model
the quality of a recommendation between two geographic en-
tities as a function of their structure in the Related Places
Graph, and their semantic relationship in the Google Knowl-
edge Graph.

To evaluate our approach, we perform a large scale human
evaluation of such an anomalous link detection system. For
the long tail of unpopular entities, our models can predict
the recommendations users will consider poor with up to
42% higher mean precision (29 raw points) than the live
system.

Results from our study reveal that structural and seman-
tic features capture different facets of relatedness to human
judges. We characterize our performance with a qualitative
analysis detailing the categories of real-world anomalies our
system is able to detect, and provide a discussion of addi-
tional applications of our method.

Categories and Subject Descriptors
D.2.8 [Database Management]: Database applications—
Data mining

Keywords
anomaly detection; knowledge graph; link prediction; rec-
ommendation systems
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Figure 1: The People Also Search For feature, showing five
good recommendations from the Related Places Graph for
the Empire State Building. Prominent use of recommen-
dations raises the risk of bad suggestions negatively affecting
a user’s product experience.

1. INTRODUCTION
Recommendation systems have become an integral part

of modern information retrieval systems. They are used to
suggest almost anything to users, including places, products,
publications, and on social networks - even friends.

Despite their prevalence, recommendation systems are still
capable of making recommendations that users might find
irrelevant or unhelpful. These bad recommendations can
occur from noise in the real world processes that generate
the data that they are trained on, or can be the result of a
subtle dependency that the recommendation system doesn’t
properly model. As the size of a dataset grows, so does its
long tail of less popular items, which worsens both problems.
Not only do spurious correlations occur more often, but the
effects of improperly modeled dependencies become more
apparent. These sources of error directly affects the utility
of these recommendation systems for information retrieval
and content recommendation tasks.

In the literature this problem is usually addressed by chang-
ing the original model to include additional features and
dependencies. Unfortunately, the cost of properly engineer-
ing and validating such an enhanced model for web-scale
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Figure 2: Overview: The Related Places Graph is formed by observing entity co-occurrence in web sessions (2a), constructing
a Session-Entity matrix (2b), and estimating an entity similarity score (2c). This graph can be filtered by distance (dashed
lines), but more subtle anomalies (red) may remain.

recommendation is frequently not justified by speculative
performance gains.1 However, simply ignoring the problem
is often equally undesirable as incorrect recommendations
have been shown to lower a user’s opinion of the system [6].

In this work, we present a secondary ranking system for
the detection of such erroneous recommendations in the Google
Related Places Graph, a large geographic recommendation
system which provides recommendations for hundreds of
millions of queries a day. Our approach detects anoma-
lous entity recommendations by fusing semantic information
from the Google Knowledge Graph with network features
from the Related Places Graph. While we focus on a spe-
cific problem instance, the approach we present is general,
and can be used with any similarly constructed recommen-
dation network and knowledge graph (e.g. Freebase [5]).

To evaluate our approach, we perform what is (to our
knowledge) the first comprehensive human evaluation of such
an anomalous link detection system, and show that we are
able to achieve relative increases of 9% to 42% in mean pre-
cision (7 to 29 raw points, respectfully) in an anomaly detec-
tion task against a very challenging baseline - the live sys-
tem itself. We also perform a qualitative evaluation which
illustrates the categories of anomalies our system is able to
detect.

Specifically, our contributions are the following:
• Unified Approach: We fuse semantic information

from a knowledge graph, with structural features from
the recommendation network to detect bad recommen-
dations with much higher precision (9% to 42% relative
improvement in mean precision) over the base recom-
mendation system.

• Human Evaluation: To capture the nuanced seman-
tics assigned with geographic similarity, we evaluate
our approach using trained human raters. Results from
our study reveal that structural and semantic features
capture different facets of relatedness to human judges.

• Qualitative Analysis: We provide a comprehensive
qualitative analysis of the capabilities and limitations
of our system, along with example applications for our
system’s output. We believe this will motivate further
research in this area.

1For example, the winning algorithm for the Netflix Chal-
lenge was never launched into production [3].

2. RELATED PLACES GRAPH
Our dataset for this paper is the Google Related Places

Graph, a very large geographic recommendation system with
hundreds of millions of entities and tens of billions of similar-
ity relations. It is used to provide pairwise geographic entity
similarity results for hundreds of millions of search queries a
day. In this section, we briefly describe its construction and
challenges associated with web-scale geographic recommen-
dation.

2.1 Overview
The Google Related Places Graph G = (V,E) is a simi-

larity network composed of V entities which are geolocated
businesses or organizations, and E edges which encode a
similarity score between them (i.e. edge Eij = s(i, j), the
similarity between entities vi, and vj). It is an instance
of an item-based collaborative filtering system [24], which
intuitively captures how related two places are for the pur-
poses of web search. Exact details of the similarity function
are proprietary, but a number of memory and model based
approaches to similar problems have been discussed in the
literature [28]. The top k highest weighted outgoing edges of
an entity can be used to return ranked lists of similar places
for geographic recommendation. A typical result of such use
is shown in Figure 1.

An outline of the Related Places Graph is shown in Figure
2. The process starts by collecting entities associated with
user search sessions (2a). This is used to populate a Sessions-
Entity matrix M from the set of sessions S and establish-
ments V (2b). Finally a similarity function s : V × V → R
is used to construct the recommendation network (2c).

2.2 Challenges
Unfortunately, the relations captured by the Related Places

Graph are not perfect. In particular, there are a number of
adverse effects which make it difficult to correctly model es-
tablishment similarity, including:
• Distance is relative: The distance which an indi-

vidual considers two things to be related varies greatly
with location and intent. A pizza restaurant two blocks
away may be too far in New York City, but perfectly
reasonable in rural Montana. This variance poses chal-
lenges for simple thresholding methods.

• Frequency Imbalance: Some entities (such as the
Empire State Building) are much more popular than



many of their surrounding establishments. This imbal-
ance can result in low quality similarity links for less
popular establishments.

• Geographic Sparsity: Geographic regions with smaller
populations have correspondingly lower query volume.
Statistical estimates for establishments in these regions
are therefore more prone to noise.

• Conglomerate Entities: An entity may have multi-
ple semantic senses associated with it. For example, a
grocery store might have an automated teller machine
(ATM), a pharmacy, or a coffee shop in addition to
food products. Composite relationships like this can
greatly broaden the scope of entities considered to be
related.

• Ambiguous Queries: Similarly, the ambiguity of
natural language used for search itself poses issues.
Consider the Taj Mahal, which is both the name of
a famous mausoleum and a common name for restau-
rants which serve Indian cuisine. This polysemy cre-
ates superficial similarity.

Dealing with such challenges is a non-trivial task, and ge-
ographic recommendation systems are is the subject of ac-
tive research [15, 33]. The most straightforward strategy is
to discard all relationships with low similarity (Eij < εS)
or high distance (dist(i, j) > εD). While this thresholding
strategy can mitigate some forms of errors (e.g. from fre-
quency imbalance), it adversely effects recall (especially for
establishments with low volume). Additionally, it does noth-
ing to address other, more semantic, sources of error. These
remaining errors can have an extremely negative influence
on how users perceive some queries, typically when multiple
semantic meanings or polysemous queries link two seemingly
dissimilar places. Examples of anomalous relationships de-
tected by our system are shown in Section 7.2.

2.3 Definition of ‘Relatedness’
We note that there are many possible definitions of what

might be considered a ‘related place’. For the purposes of
this work, we consider a place to be ‘related’ when it is:
• Relevant: A relevant recommendation captures a user’s

internal sense of the similarity between two places.

• Useful: A useful recommendation is one which is help-
ful if shown to users in addition to place they are
searching for.

These attributes are subjective, and can vary with the
type of entity. For example, whether a business is ‘useful’
will vary based on location (2 blocks may be too far in NYC,
while ten miles may be reasonable in rural Kentucky), or its
type (two amusement parks may be far away and still be
related). The concept of ‘relevance’ is also deeply integrated
with the nature of the search task which a user is performing
at the time of query. For example, when searching for a hotel
to stay in, a user might wish to see alternative hotels in the
area. However, a user who has already chosen a hotel (and
may be already staying there) might prefer to see nearby
restaurants or tourist attractions.

In order to capture this relation in all of its nuance, the
evaluation of our system utilizes human raters. More details
are discussed in Section 5.

3. ANOMALOUS LINK DISCOVERY
Given a graph G = (V,E), the Anomalous Link Discovery

(ALD) problem is to find a set of anomalous edges Ea ⊂ E
which represent a deviation from the dominant patterns in
G [21]. ALD is related to the link prediction problem [13],
which models the evolution of the network by predicting
unseen edges.

3.1 Class Imbalance
Link prediction can be viewed as classifying the set of

possible edges of G to those that existent and should non-
existent. Many real world graphs are sparse, and so the ex-
istent edges (positive label) are a small fraction (m ≈ O(n))
out of all possible edges (O(n2)) This asymptotically skewed
class distribution is a core challenge of link prediction, in-
creasing the variance of link models, and making complete
model evaluation computationally expensive.

Unlike link prediction, ALD focuses on the m edges which
actually exist - a distinction which becomes increasingly im-
portant in sparse real world graphs. We note that this does
not eliminate class skew entirely, as most graphs of interest
will have more good edges than noisy ones. As such, ALD
models must also account for variance arising from both the
structure and higher-order semantic properties of a network.

3.2 ALD Modeling
Just as with link prediction, early approaches to ALD

consisted of using individual connectedness metrics to pro-
vide a ranking of edges by their anomaly value (i.e. edges
with score(i, j)< ε are returned as the anomalies). Modern
link prediction uses supervised learning [14], which provides
much more flexibility for link modeling. We apply a similar
supervised approach in our ALD model, extracting multiple
topological properties as features, and seamlessly combining
them with additional semantic information.

Specifically, we seek to model P (Eij), the probability of
an edge found between vi and vj in G. We assume that
edges are a function of topological properties from G, and
the intrinsic semantic attributes of the nodes in our network
as represented in the Google Knowledge Graph (denoted
XKG), and therefore concern ourselves with P (Eij |G,XKG).
We assume that the input to our process is a similarity graph
where edges are weighted with Eij = s(i, j) and that G has
already been appropriately thresholded to only contain high
similarity edges (i.e. Eij > ε).

4. FEATURES
In this section we discuss the features used for link mod-

eling in our anomalous link detection system for recom-
mendation networks. Our choice of features is based on
the assumption that recommendation networks should con-
tain strong homophily - that is they should exhibit both
structural transitivity, and semantic consistency. We model
structural transitivity through features derived from the net-
work itself and model semantic consistency through features
captured by the Google Knowledge Graph. For each feature
we briefly discuss its motivation and outline the its construc-
tion function f(vi, vj) 7→ R.

4.1 Structural Transitivity
Our first assumption is that a recommendation network

should exhibit homophily through transitivity. That is, if



entity A is related to entity B and C, then items B and
C should have a much higher chance of being related. We
quantify this relationship by introducing topological features
from the recommendation network representing the struc-
tural connectedness of two entities. These network features
are very valuable, and can implicitly capture information
which has not been explicitly annotated.

4.1.1 Neighborhood
The simplest measures of structural transitivity can be

derived from the neighborhoods of two vertices. Features
of this variety have been widely used in link prediction[13].
We denote the neighbors of a node v by N (v), (i.e. N (v) =
{i; (i, v) ∈ E ∨ (v, i) ∈ E}).
• Common Neighbors: f(x, y) = |N (x) ∩N (y)|

The simplest link prediction feature is the size of the
intersection between two neighborhoods.

• Jaccard Index: f(x, y) = |N (x)∩N (y)|
|N (x)∪N (y)|

To avoid bias towards neighborhoods with high size,
this measure normalizes the size of the intersection by
the total size of the combined neighborhood.

• Preferential Attachment: f(x, y) = |N (x)|∗ |N (y)|
In this measure, the size of each neighborhood deter-
mines the creation of a link.

4.1.2 Graph Distance
More advanced measures of structural equivalence con-

sider information beyond the node neighborhoods.
• Personalized PageRank: f(x, y) = PPRx(y)

The Personalized PageRank vector[10] PPRx captures
information about probability that node y will be reached
in a random walk started at node x.

We note that many additional features have been pro-
posed for link modeling, but limit our discussion to the tech-
niques listed here.

4.2 Semantic Consistency
Our second assumption is that good recommendations are

those which are semantically consistent with the entity of in-
terest. This semantic consistency varies with both the type
of entity being considered and the location of the entity. For
example, consider two medical practitioners: one who spe-
cializes in cardiology, and the other in pediatrics. Although
they are both doctors, they might be bad recommendations
for one another in an area with many doctors. However, they
might well be reasonable recommendations if they were the
only two doctors in town. Fine grained semantic consistency
can be quite nuanced in other domains as well, such as food
service. To capture these relationships, we annotated enti-
ties in our recommendation network with information from
the Google Knowledge Graph.

4.2.1 Knowledge Graph
The Google Knowledge Graph is a comprehensive knowl-

edge store that contains semantic information about entities
in the real world [26]. Storing information on people, places,
and things, it aids in query disambiguation and summariza-
tion.

In this work, we are concerned with the subset of the
knowledge graph which refers to places. For our purposes,
a place is a location entity which people may wish to visit
such as a business, monument, or school. Each place in the
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(a) Idealized Knowledge Graph Category Hierarchy

Joe’s Trattoria   Italian 

Pizza 
Delivery 

Kelly’s Pizza Delivery 

Tim’s Italian Takeout Pizza 
Takeout 

(b) Example: Three businesses which all offer pizza (left), con-
nected to their corresponding semantic labels (right).

Figure 3: An idealized hierarchy of entity categories in
the Knowledge Graph (a), showing how even a seemingly
straightforward concept like pizza restaurant can be encoded
in a number of different ways. In (b), an example of 3 hy-
pothetical businesses which all offer pizza, but due to noise
in the labeling process, have different sets of semantic cate-
gories.

knowledge graph has an associated set of semantic categories
associated with it. These categories are related to each other
through a hierarchy ranging from the specific (e.g. pizza-
delivery, French restaurant) to general (store). Figure 3 il-
lustrates an example of an idealized hierarchy (3a) and the
semantic labels for several similar hypothetical businesses
(3b). Notice how related entities do not necessarily share
the same semantic categories.

The size and scope of the Knowledge Graph afford a va-
riety of ways to create features for classification tasks. We
briefly discuss some of them below:
• Distance: f(x, y) = dist(x, y)

The distance between two locations is an important
part of geographic recommendation. By itself weak
(not all close businesses are related), it can be powerful
when combined with other features.

• Common Categories: f(x, y) = |Cat(x) ∩ Cat(y)|
The categories which two entities have in common is
also very relevant to recommendations. Similar to the
common neighbors, this metric can also be normalized

using Jaccard similarity
(
f(x, y) = |Cat(x)∩Cat(y)|

|Cat(x)∪Cat(y)|

)
or

related measures.

• Categorical Hierarchy
In some cases, there may be no exact overlap between
two entities’ categories, although they are related (Fig-
ure 3b). To capture broader senses of relation, we can
expand the set of categories each entity has by travers-
ing upwards through the categorical hierarchy (Figure



3a), searching for common ancestors. The overlap be-
tween these expanded sets can be normalized based on
their size, or based on the distance up the hierarchy
the terms are added at.

We note that the inclusion of categorical features from
the Knowledge Graph has the potential to greatly increase
a model’s complexity. Our approach relies on using a small
number of training examples, and so we have discussed ag-
gregating categorical information. However, as available
training data grows, model complexity can be easily in-
creased by treating each particular category (or pairwise
combination of categories) as separate features.

5. EXPERIMENTAL DESIGN
Our approach to Anomalous Link Discovery uses user in-

put to train discriminative link models. This user input is
collected during the course of routine product quality eval-
uations. The anomalies detected by these models are then
evaluated by human raters to determine model performance.
In this section, we briefly discuss the process used to con-
struct datasets and link models, the design of the experi-
ments, and our human evaluations.

5.1 Training Dataset Construction
We use human evaluations of the similarity between two

place entities as our training data. This data was collected
in the course of routine product quality evaluations.

For each pair of entities, at least three different human
raters were asked to judge the recommendation (on a scale
of {Not, Somewhat, Very}) based on its relevance (their in-
ternal view of how analogous the two places were), and its
usefulness (how helpful it would be to a user searching for a
the original place). The distinction between relevance and
usefulness is elaborated on in Section 2.3.

To convert their ratings to binary labels, a value of {1,2,3}
was assigned to each judgment of {Not, Somewhat, Very}.
An edge was labeled as relevant (or useful) when its respec-
tive average score for that category was above 2. As we
assume that a good geographic recommendation is both rel-
evant and useful, we labeled an edge as related only when
judged as having both properties.

Using this process, we distilled over 28,800 human ratings
into 9,600 labeled examples pairs for training. Of these 7,637
pairs were labeled as related and 1,963 labeled as not-related
(a positive class label imbalance of 5:1).

5.2 Classification
Having discussed our method for generating training data,

we turn to our choice of classifier for link modeling.

5.2.1 Models Considered
We compared the performance of Logistic Regression (reg-

ularized with the L2 loss), and Random Forest Classifiers to
model the probability of a recommendation link being re-
lated. We used stratified 5-fold cross validation for model
selection, where Random Forests significantly out performed
Logistic Regression (shown in Table 1). For the remainder
of our paper, we present results using models trained with
Random Forests, which we abbreviate RFC.

The baseline models we consider in decreasing order of
difficulty:
• RFCRelated: This model uses the raw similarity score

(edge weight) of the existing relatedness estimate from

Classifier Feature Set ROC AUC
Logistic Regression Structural 0.621

Random Forest Structural 0.656
Logistic Regression Semantic 0.696

Random Forest Semantic 0.723
Logistic Regression All 0.713

Random Forest All 0.778

Table 1: Average model performance with different feature
sets in stratified 5-fold cross validation.

the Related Places Graph. This estimate is computed
from a very large sample of web traffic, and is a very
competitive baseline.

• RFCCommon: A model which considers only the com-
mon neighbors between entities.

• RFCDistance: A model which considers only the dis-
tance between two entities.

• Random: This model simply returns the links under
consideration in an random order, which illustrates the
difficulty of the task.

The method under consideration are:
• RFCNetwork: This model considers a number of net-

work features designed to capture structural transitiv-
ity (Section 4.1).

• RFCKnowledge: This model considers a number of fea-
tures derived from the Knowledge Graph, in order to
capture semantic similarity (Section 4.2).

• RFCAll: This model is trained on both semantic and
structural features.

5.3 Human Evaluation
The decision as to whether two geographic entities are re-

lated is nuanced, varying with their location, the entities,
and ultimately the individual. In order to satisfactorily cap-
ture this relation, we evaluate our model’s performance using
human evaluation.

The human raters we use in our experiments are paid
evaluators used for product quality assessment. These raters
have been professionally trained using a rigorous process and
guidelines. They all reside in the region where our study
takes place (United States), and have a full proficiency in
English. These vetted raters allow us to avoid some of the
quality issues which may be present in other large scale hu-
man evaluations (e.g. Mechanical Turk [12]).

We generate test datasets for our evaluation by sampling
entities from a subgraph of the Related Places Graph con-
taining only entities located in the United States. This sub-
graph is large enough to be interesting (millions of nodes
and billions of edges), but it eliminates some cultural vari-
ance which might complicate evaluation. Our test datasets
are generated in one of two ways:

• Uniform: Our first test dataset is created by uniform
random sampling of entities without replacement. It
consists of 12,593 nodes and their top 5 best recom-
mendations (highest weighted edges).

• Traffic Weighted - Our second test dataset is cre-
ated by random sampling of entities in proportional
to their average web traffic volume (without replace-



ment). It consists of 1,187 nodes and their top 5 best
recommendations (highest weighted edges).

To evaluate the performance of a model, we score the en-
tire test datasets, and send each of the 200 most anoma-
lous edges (highest P (Eij = 0|G,XKG)) out to three human
raters. An individual rater was allowed to answer a maxi-
mum of 20 out of the 600 judgments per model, ensuring
that at least 30 unique raters contributed to each assess-
ment. The raters were instructed to perform research (e.g.
visit an entity homepage, read reviews, etc.) about the two
entities and then to deliver a judgment. The raters results
are converted to labels (as discussed in Section 5.1), which
we use to calculate the area under the precision curve.2

6. EXPERIMENTS
After evaluating our models through cross validation, we

conducted two large scale human evaluations of feature qual-
ity from links present in the Google Related Places Graph.
As described in Section 5.2, one evaluation consists of loca-
tion entities which were sampled uniformly at random and
the other of entities sampled in proportion to their web traf-
fic volume.

6.1 Uniform Sampling
The results of our uniform sampling evaluation are pre-

sented in Figure 2. Here, we briefly discuss some observa-
tions in terms of relevance and usefulness.

Of all the features considered, we find that the those from
the Knowledge Graph perform best for detection of links
which are not relevant, initially outperforming the strong
RFCRelated baseline by 14 precision points (k=25), and nar-
rowing to 5 at k=200. Structural features were much less
competitive on this task, failing to outperform the baseline
at all. A final observation is that the distance model is not
able to determine relevance (as judged by humans) signifi-
cantly better than random.

In contrast, we find that structural features are much
better predictors of recommendations which are not useful.
We attribute the strong performance of structural features
for k<=50 to those features (e.g. a low number of com-
mon neighbors) which can provide strong evidence for non-
relation. As k grows larger, the network structure’s signal
is less valuable, and performance degrades.

Both models perform well on detecting recommendations
which are not related, with RFCNetwork initially beating the
baseline by 42% at k=25, but again degrading as more re-
sults are returned. The joint model (RFCAll) performs gen-
erally well on this task, leveraging the strengths of both the
structural and semantic features to beat the baseline by 37%
at k=25, to 9% at k=200. However, we note that in some
cases the model performs worse than its constituent parts.
This occurs when the structural features provide poor dis-
criminating power, and is a result of the highly heteroge-
neous phenomenon we are modeling. The performance of
the joint model will improve as our system collects more
human judgments.

We remark that the use of uniform sampling emphasizes
entities which lie in the long tail of popularity. These rela-
tively unpopularity entities have similarity estimates based
on weaker statistical evidence, and are more likely to have

2As our task is anomaly detection, we consider the positive
class label to be 0 when calculating the mean precision.

data quality issues. Lower popularity then, impacts both
structural and semantic feature quality. Our results show
that even under such constraints, it is indeed possible to
identify anomalous recommendations with a high degree of
precision.

6.2 Traffic Weighted Sampling
In order to better understand the user impact of our sys-

tem, we designed an evaluation where the entities were sam-
pled in proportion to their percentage of total search volume.
This experiment reflects the real world situation in which our
product is used. Instead of dealing with unpopular entities,
this experiment allows us to understand how our approach
works when the entities have both good similarity estimates
and detailed Knowledge Graph entries. This allow the study
of nuanced anomalies (and not those that are simply a re-
sult of noise). The results of this evaluation are presented
in Table 3.

With respect to detecting relations categorized as not rel-
evant, we find that models using features from the Knowl-
edge Graph (RFCKnowledge, RFCAll) again perform much
better than RFCNetwork. We also see that the relative per-
formance of the baseline is much stronger on this task, and
that only the combination of topological and semantic fea-
tures (RFCAll) is able to exceed it (by up to 12% at k=200)

For not useful recommendations, we again see that net-
work features are very strong indicators of whether users
consider a recommendation to be useful. When entities
have good similarity estimates, the network features much
more closely model user behavior. Conversely, the rela-
tively poor performance of the Knowledge Graph features
on this task can be explained by the more robust semantic
similarities captured between entities. For example, when
given an airport, we may recommend nearby hotels. Such
a recommendation is quite useful, but may be flagged as an
anomaly because it is between two very distinct semantic
categories (and there was a lack of training data indicating
that these types of entities are appropriate to recommend
for each other). We discuss this further in Section 7.

Finally we see that the performance of structural features
again carries over to detecting entities which are not related,
beating the baseline by 19% at k = 25 and still by 5% at
k = 200. We see that RFCAll initially suffers from its re-
liance on semantic features, but recovers and is superior to
both methods by k=200. The worst performing model is
RFCKnowledge, as it can not take advantage of the enhanced
similarity estimates available for popular entities.

7. DISCUSSION
Here we discuss the conclusions we have derived from our

experiments, provide a qualitative analysis of the types of
anomalies we detect, and discuss applications of our work.

7.1 Results
As seen in Section 6, our experiments show that our pro-

posed approach is able to detect erroneous recommendations
on a very large recommendation system with much higher
precision than any of the baselines we consider. In addi-
tion to the raw performance benefits, we have draw several
higher-level conclusions from our human evaluation, which
we highlight here:
Structural and semantic features are not equal. Our results
on the long tail of entities (Uniform Random Sampling) show



Mean Precision @k % vs RFCRelated

Model k=25 k=50 k=100 k=200 k=25 k=50 k=100 k=200

N
o
t
R
e
le
v
a
n
t Random 0.147 0.146 0.200 0.235 -75.7 -76.3 -69.4 -63.9

RFCDistance 0.154 0.165 0.179 0.191 -74.5 -73.2 -72.6 -70.7
RFCCommon 0.297 0.294 0.265 0.250 -50.8 -52.4 -59.4 -61.6
RFCRelated 0.604 0.618 0.654 0.653 - - - -
RFCNetwork 0.603 0.516 0.461 0.437 -0.18 -16.6 -29.5 -33.1
RFCKnowledge 0.748 0.715 0.695 0.703 23.7 15.6 6.26 7.67
RFCAll 0.766 0.714 0.679 0.654 26.7 15.5 3.89 0.21

N
o
t
U
se

fu
l

Random 0.468 0.417 0.433 0.444 -29.6 -38.1 -39.0 -37.6
RFCDistance 0.285 0.351 0.399 0.443 -57.2 -47.9 -43.8 -37.7
RFCCommon 0.456 0.498 0.478 0.446 -31.5 -26.2 -32.6 -37.2
RFCRelated 0.666 0.675 0.710 0.711 - - - -
RFCNetwork 0.858 0.807 0.731 0.683 28.8 19.5 2.89 -3.90
RFCKnowledge 0.779 0.771 0.762 0.785 17.1 14.2 7.36 10.4
RFCAll 0.893 0.820 0.773 0.745 34.2 21.46 8.87 4.85

N
o
t
R
e
la
te

d

Random 0.468 0.423 0.443 0.452 -29.6 -37.3 -37.7 -36.8
RFCDistance 0.285 0.358 0.409 0.451 -57.2 -46.9 -42.5 -36.9
RFCCommon 0.456 0.502 0.489 0.462 -31.5 -25.6 -31.3 -35.4
RFCRelated 0.666 0.675 0.712 0.715 - - - -
RFCNetwork 0.951 0.867 0.767 0.708 42.8 28.4 7.85 -0.95
RFCKnowledge 0.779 0.771 0.762 0.785 17.1 14.2 7.14 9.74
RFCAll 0.912 0.856 0.812 0.779 37.0 26.9 14.1 8.98

Table 2: Anomaly detection results for our Uniform Random Sampling experiment. Bold indicates whether structure or
semantics (RFCNetwork or RFCKnowledge) performed best on the task. For the long tail of unpopular entities, our proposed
models can predict the recommendations users will consider not related up to 42% better than our strongest baseline.

Mean Precision @k Relative % to RFCRelated

Model k=25 k=50 k=100 k=200 k=25 k=50 k=100 k=200

N
o
t
R
e
le
v
a
n
t Random 0.145 0.152 0.171 0.179 -75.9 -74.9 -71.9 -70.8

RFCDistance 0.195 0.207 0.207 0.210 -67.5 -66.0 -66.1 -65.7
RFCCommon 0.399 0.354 0.329 0.311 -33.5 -41.7 -46.1 -49.2
RFCRelated 0.601 0.608 0.612 0.613 - - - -
RFCNetwork 0.454 0.411 0.394 0.374 -24.4 -32.3 -35.5 -39.0
RFCKnowledge 0.580 0.593 0.592 0.620 -3.55 -2.54 -3.18 1.13
RFCAll 0.560 0.618 0.653 0.692 -6.88 1.68 6.86 12.8

N
o
t
U
se

fu
l

Random 0.273 0.260 0.258 0.260 -60.8 -62.6 -62.8 -62.4
RFCDistance 0.543 0.517 0.509 0.510 -22.2 -25.6 -26.6 -26.4
RFCCommon 0.675 0.637 0.574 0.527 -3.27 -8.29 -17.1 -23.9
RFCRelated 0.698 0.695 0.693 0.693 - - - -
RFCNetwork 0.864 0.819 0.767 0.722 23.8 17.9 10.7 4.25
RFCKnowledge 0.649 0.672 0.677 0.697 -6.98 -3.26 -2.31 0.66
RFCAll 0.682 0.725 0.751 0.769 -2.30 4.39 8.31 11.0

N
o
t
R
e
la
te

d

Random 0.359 0.299 0.301 0.325 -50.5 -57.8 -57.0 -53.3
RFCDistance 0.543 0.523 0.519 0.518 -25.2 -26.1 -25.9 -25.5
RFCCommon 0.675 0.637 0.579 0.536 -6.96 -10.1 -17.3 -23.0
RFCRelated 0.725 0.709 0.700 0.696 - - - -
RFCNetwork 0.864 0.819 0.769 0.730 19.0 15.6 9.81 4.93
RFCKnowledge 0.649 0.689 0.699 0.716 -10.53 -2.84 -0.14 2.89
RFCAll 0.682 0.725 0.751 0.774 -6.03 2.36 7.24 11.2

Table 3: Anomaly detection results for our Traffic Weighted Sampling experiment. Bold indicates whether structure or
semantics (RFCNetwork or RFCKnowledge) performed best on the task. For popular entities, the combination of structural and
semantic features is necessary to discover relations which are not relevant, while structural features provide a strong signal
for entity pairs which are not useful.

that semantic features from the Knowledge Graph are good
at identifying recommendations which are judged as not rel-
evant, while structural features from the recommendation
network are good at determining relationships which judged
to be are not useful.
Network features help, regardless of location popularity. As
locations receive more web traffic, we are able to build a
recommendation network that more accurately models the
underlying relationships. This decreases the noise of features
directly derived from the network, allowing them to perform

well even as the number of anomalies decreases (as in our
traffic weighted experiment).
Distance alone is not enough. Many geographic recommen-
dation systems simply include distance-based constraints or
regularization to model geospatial dependencies. Our results
show that these models can be improved by using structural
features of the network, and semantic features of locations.

7.2 Qualitative Analysis
We have performed a qualitative analysis of the types of

anomalies our approach is able to capture, which we briefly



Entity Anomalous Reason
Location Recommendation(s) in Top-5
(Category) (Category)

IBM Victoria’s Secret Nearby
New York, NY (Intimate Apparel Store)
(Software Company)
Boys and Girls Club 3 Strip Clubs Auto-Completion
Orlando, FL (Adult Entertainment) & Polysemy
(Youth Organization)
Mom’s Bar Los Angeles County Ambiguous
Los Angeles, CA Bar Association Phrases
(Bar) (Professional Association)
Tony’s Small Engine Services Academy Animal Hospital Data Sparsity
Ashland, KY (Veterinarian)
(Auto Repair Shop)
IKEA Comfort Suites (Hotel)
Canton, MI Hampton Inn (Hotel) Unmodeled
(Home Furnishings Store) La Quinta Inn (Hotel) Phenomenon

Fairfield Inn (Hotel)
Extend Stay America (Hotel)

Florida Department Tampa Private Investigators
of Agriculture (Private Detectives)
Tampa, FL Equip 2 Conceal Firearms Conglomerate
(State Government Agency) (Gun shop) (issues firearm

Shoot Straight permits)
(Gun shop)
Florida Firearms Academy
(Shooting Range)

Table 4: Representative examples of real anomalies detected by our system, and our categorization of their cause.

discuss here. Table 4 shows a summary of representative
examples of actual anomalies we have detected using our
approach. Specifically, the variety of anomalies which we
were able to discover included those due to:
Unmodeled Phenomena: Unmodeled interactions between
entities can lead to very interesting anomalies, such as the
recommendation between IKEA and hotels. We discuss how
this class of anomalies can be used for targeted ontology im-
provements in Section 7.3.2.
Ambiguous Phrases: We are able to detect anomalies
created both polysemous words and phrases (e.g. Mom’s Bar

/ Bar Association).
Conglomerate entities Multi-sense entities can result in
surprising recommendations. For example, normally one
would not expect recommendations between a government
entity and firearm clubs. However, as the Florida Depart-

ment of Agriculture also issues gun permits, several such
recommendation links appear. We note that such recom-
mendations for conglomerate entities may in fact be useful
to users. In such cases, (as with unmodeled phenomena) the
anomalies we find can be used to improve the quality of data
stored in the Knowledge Graph itself.
Data-sparsity: In some rural locations, there is not enough
data for confident estimates of similarity (e.g. Tony’s Small

Engine Services / Academy Animal Hospital). When this
happens, features from the Knowledge Graph allow detec-
tion of entities which are not related.
Mobile users & Search Completion: Finally, two sources
of anomalies seemed tied to mobile users and search com-
pletion technologies. First are auto-completion errors. This
category of errors seemed due to substring similarity be-
tween entity names. Examples include people’s names to
locations (e.g. Tuscano / Tuscany), and between very un-
related entity types (e.g. Boy’s and Girls Club / Girls

Club). Second, are nearby entities. This category of anoma-
lies contained dissimilar businesses entities which are very
close to each other. We suspect this behavior is due to in-

dividuals searching for information about that location (e.g.
in order to plan a shopping trip).

Our qualitative analysis shows that our approach is able
to address the challenges we outlined earlier in Section 2.2,
and that we are able to discover anomalous links across a
variety of categories, causes, and geographic locations.

7.3 Applications and Future Work
Although our work has thus far focused on a specific prob-

lem instance, we believe that the approach we present is gen-
eral, and has applications to any recommendation network
which has structured information available. In this section
we highlight additional applications of our method which go
beyond the simple removal of low-quality recommendations.

7.3.1 Entity Outlier Score
In our qualitative analysis, we have seen that anomalous

links (specifically due to unmodeled phenomena, multi-sense
entities, and data sparsity) tend to come in ‘clumps’ for an
entity. A natural extension of our approach, then, is to
consider the detection of anomalous entities in addition to
anomalous links. We note that an outlier score for an entity
may be constructed as a function of it’s link probabilities,
for example:

score(i) =

∑
j∈N (i) Pr(Eij = 0|G,XKG)

|N (i)| (1)

Maintaining an accurate web-scale knowledge base is a
very challenging endeavor, and this score could be useful for
highlighting entities which have incorrect information about
them (perhaps from recent changes). Entities flagged as
anomalous by this measure could then be prioritized to be
investigated by the relevant data quality team.

7.3.2 Targeted Ontology Improvements
When an anomalous entity is not the result of incorrect

information, it can indicate that our underlying semantic



Entity Location Anomalous Recommendation(s) in Top-5 (Category)

IKEA Brooklyn, NY IKEA Dock (Transportation)
Wall Street-Pier 11 (Transportation)
New York Water Taxi (Transportation)
St. George Terminal (Transportation)
Hoboken Terminal (Transportation)

IKEA Centennial, CO Embassy Suites Denver - Tech Center (Hotel)
Comfort Suites Denver Tech Center (Hotel)

IKEA Charlotte, NC Hilton Charlotte University Place (Hotel)
Comfort Suites University Area (Hotel)

IKEA West Chester, OH Kings Island (Amusement Park)
Newport Aquarium (Aquarium)

Table 5: Additional examples of the IKEA store anomaly, found during our qualitative evaluation. Our investigation reveals
that in many areas, users treat IKEA more like a Tourist Attraction or Travel Destination than a normal furniture store.

model is not expressive enough. These data-driven improve-
ments can result in groups of entities acquiring new semantic
categories, or even changes to the hierarchical relationships
between categories.

As a case study, we return to the furniture store IKEA. Ta-
ble 5 illustrates some highlights from our investigation into
the IKEA store anomaly found during our qualitative analy-
sis. Interestingly, we see two things. First, in areas of high
density (such as Brooklyn, NY), users focus on transporta-
tion methods to/from the store. This is understandable, as
many residents of New York City do not have cars capable
of transporting large furniture. Second, in areas adjacent to
large rural regions, IKEA is treated as a travel destination.
Top recommendations include Hotels and tourist attractions
like Amusement Parks or Aquariums. These anomalies sug-
gest that IKEA should be modeled differently than a tra-
ditional furniture store, perhaps with additional semantic
senses (such as a Tourist Attraction or Travel Destination).

We believe that the investigative analysis of anomalies ex-
posed by our approach will allow us to not only improve the
quality of our recommendation system, but also extend the
expressiveness of the Knowledge Graph itself. Such improve-
ments can allow a better understanding of user intent and
improve user experience across a variety of products.

8. RELATED WORK
The problem of detecting anomalous links touches on the

domains of Link Prediction, and Recommender Systems,
which we briefly discuss here.

Link Prediction models the strength of relations, usu-
ally in order to find high probability links which are miss-
ing from a network. Early work on link prediction was un-
supervised, using topological features [13]. More recently,
the problem has been addressed as in a supervised fash-
ion [2, 14]. Supervision allows the blending of topological
features with semantic ones, and a number of methods do-
ing such have been proposed. Semantic features used in
the literature include textual features (e.g. paper titles or
keywords[2], sometimes with TF-IDF weighting [30]), loca-
tion features, [7, 18], or social interactions [32]. Other recent
work examines using community information [27] or trans-
ferability of models across networks [29]. More information
is available from several surveys [9, 16, 22].

Although there has been considerable work on link pre-
diction, the vast majority of the literature deals with the
discovery of non-existent links and not the detection and
removal of anomalous ones. The anomalous link discov-
ery problem was introduced by Rattigan and Jensen [21],
who noted that topological measures of similarity performed

well for anomalous co-authorship detection. Relatively little
work followed. In [11] Huang and Zeng examined anomalous
links in an email network, and Ding et al. [8] examined clus-
tering and betweenness centrality for detecting links that
represented network intrusion. Our work helps address this
gap in the literature by analyzing the performance of an
anomalous link discovery system in a very large industrial
setting. Furthermore, our comprehensive human evaluation
is the first such human evaluation (to our knowledge) of any
anomalous link detection approach.

More recent work in graph anomaly detection has focused
on discovering anomalous communities [19, 20]. A compre-
hensive survey is available from Akoglu et al. [1].

Recommender Systems model user/item interactions
to suggest additional content to users. Similar to link pre-
diction, the focus is on finding highly confident recommen-
dations (i.e. those which future users will have the highest
likelihood of interacting with). Item based filtering was in-
troduced in [24]. Since then, entity recommendation has
been proposed for use in search in a variety of different set-
tings [4, 34, 35]. Removal of anomalous recommendations is
typically performed implicitly during model improvement,
usually through the inclusion of additional features to the
model , and several recent works target geographic recom-
mendation [15, 33].

We view our work as complementary to that of the exist-
ing recommender system development process for two rea-
sons. First, by explicitly modeling the detection of anoma-
lous links, our approach provides an insightful view of what
is being effectively captured by a recommendation system.
This analysis is quite useful for understanding the limits of
an existing system, and where likely areas of the best im-
provements are (e.g. Qualitative Analysis in Section 7.2).
Second, it is sometimes impossible to replace an entire rec-
ommender system used in production as substantial model
changes require validation (which can be both expensive
and time consuming). Our lightweight modeling of anoma-
lous link discovery approach allows for high precision focused
changes changes to existing models, which can allow for eas-
ier validation.

Finally, we note that the disambiguation of user intent
from keyword search is a mainstay of research in information
retrieval [17, 23, 25, 31]. We believe that our work helps
further the discussion on this important problem.

9. CONCLUSIONS
In this work, we have proposed and evaluated a unified

approach for anomalous link discovery in recommendation
systems. Given a recommendation system, we treat its out-



put as a network and extract graph features which quantify
the structural transitivity present in the recommendations.
We fuse this information with features constructed from an
appropriate knowledge graph, which capture the semantic
consistency of the entities.

Experiments on the Google Related Places Graph using
human raters show the effectiveness of our approach on a
very large geographic recommendation system. Interest-
ingly, our experiments also show that structural features
from the recommendation network capture a sense of a rec-
ommendation’s usefulness to users, while semantic features
better capture a sense of the relevance of a recommendation.

In addition to strong quantitative results, our qualitative
analysis illustrates how the anomalies exposed by our system
provide a valuable lens to study a recommendation system’s
behavior. Investigating such anomalies can enhance under-
standing of user intent and has the potential to improve user
experience across all information retrieval systems leverag-
ing the same knowledge graph.
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