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ABSTRACT
The convergence behavior of many distributed machine learn-
ing (ML) algorithms can be sensitive to the number of ma-
chines being used or to changes in the computing environ-
ment. As a result, scaling to a large number of machines can
be challenging. In this paper, we describe a new scalable
coordinate descent (SCD) algorithm for generalized linear
models whose convergence behavior is always the same, re-
gardless of how much SCD is scaled out and regardless of
the computing environment. This makes SCD highly robust
and enables it to scale to massive datasets on low-cost com-
modity servers. Experimental results on a real advertising
dataset in Google are used to demonstrate SCD’s cost effec-
tiveness and scalability. Using Google’s internal cloud, we
show that SCD can provide near linear scaling using thou-
sands of cores for 1 trillion training examples on a petabyte
of compressed data. This represents 10,000x more training
examples than the ‘large-scale’ Netflix prize dataset. We
also show that SCD can learn a model for 20 billion training
examples in two hours for about $10.

Keywords
Distributed Machine Learning; Coordinate Descent; Linear
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1. INTRODUCTION
Although distributed machine learning (ML) algorithms

have been extensively studied [22, 12, 10, 9], scaling to a
large number of machines can still be challenging. Most fast
converging single machine algorithms update model parame-
ters at a very high rate which makes them hard to distribute
without compromises. For example, single-machine stochas-
tic gradient descent (SGD) [7] updates model parameters
after processing each training example, while coordinate de-
scent (CD) [18] updates them after processing a single fea-
ture. Common approaches to distribute SGD or CD break
the basic flow of the single-machine algorithm by letting up-
dates occur with some delay or by batching [16, 22, 8, 23,
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12]. However, this changes the convergence behavior of the
algorithm, making it sensitive to the number of machines
as well to the computing environment. As a result, scaling
can become non-linear and the benefit from adding more
machines can tail off early [16].

Because of these scaling problems, some authors [9] have
argued that it is better to scale out ML algorithms using just
a few ‘fat’ servers with lots of memory, networking cards, and
GPUs. While this may be an appealing approach for some
problems, it has obvious scaling limitations in terms of I/O
bandwidth. Generally speaking, it is also more expensive
than scaling out using low-cost commodity servers. GPUs in
particular are not always a cost effective solution for sparse
datasets.

In this paper, we describe a new scalable coordinate de-
scent (SCD) algorithm for generalized linear models that
does not suffer from the scaling problems outlined above.
SCD is highly robust, having the same convergence behav-
ior regardless of how much it is scaled out and regardless
of the computing environment. This allows SCD to scale
to thousands of cores and makes it well suited for running
in a cloud environment with low-cost commodity servers. A
key observation of our work is that, by using a natural parti-
tioning of parameters into blocks, updates can be performed
in parallel a block at a time without compromising conver-
gence. In fact, on many real-world problems, SCD has the
same convergence behavior as the popular single-machine
coordinate descent algorithm.

In addition to the SCD algorithm, we describe a dis-
tributed system that addresses the specific challenges of scal-
ing SCD in a cloud computing environment. Straggler han-
dling ends up being the biggest challenge to achieving linear
scaling with SCD. Experimental results using a real adver-
tising dataset in Google are used to demonstrate SCD’s cost
effectiveness and scalability.

To summarize, the main contributions of this paper are
as follows:

• We describe a new scalable coordinate descent algo-
rithm (SCD) whose convergence behavior is always the
same, regardless of how much SCD is scaled out and
regardless of the computing environment.

• We describe a distributed system for SCD that can
provide near linear scaling using thousands of cores.

• We provide experimental results from Google’s internal
cloud using low-cost preemptible virtual machines to
show that SCD can solve large-scale ML problems with
1 trillion training examples.



2. PROBLEM STATEMENT
In this section, we discuss the machine learning and com-

puting environments that are the focus of our work. Then
we state the main goals of our work.

2.1 Machine Learning Environment
We focus on generalized linear models with large sparse

datasets. Linear models are popular in industry for large-
scale prediction tasks [24, 21, 12, 20] because of their high
prediction quality and interpretability.

2.1.1 Linear Model
Let x ∈ Rp be a feature vector and y an unknown variable

of interest, e.g. click/non-click, rating, etc. A linear model
ŷ : Rp → R assumes a linear dependency between the input
feature vector R and the variable of interest y

ŷ(x) = 〈θ,x〉 =

p∑
i=1

θixi (1)

where θ ∈ Rp are the model parameters that parameterize
the dependency. Using a link function, linear models can be
generalized (GLM) [18] to prediction tasks such as logistic
regression (binary classification), Poisson regression (count
data), etc. Note that even though a linear model assumes a
linear dependency in x, non-linearity can be introduced by
preprocessing x, e.g., using polynomial expansions or log-
transformations. Preprocessing allows linear models to be
very expressive and highly non-linear in the original space.
The remainder of the paper assumes that a proper prepro-
cessing has been done and that x is the feature vector after
transformation.

2.1.2 Optimization Task
ML algorithms learn the values of the model parameters θ

given a set S of labeled training examples (x, y). In matrix

notation, X ∈ R|S|×p is the design matrix with labels y ∈
R|S|. The optimization task is to find the model parameters
that minimize a loss:

argmin
θ∈Rp

∑
(x,y)∈S

l(y, ŷ(x)) + λ||θ||2 (2)

where l is a loss function that depends on the optimization
task, e.g., using a squared loss l(y, ŷ) := (y − ŷ)2, or using
a logistic loss l(y, ŷ) := −yŷ + ln(1 + exp(ŷ)). λ is a reg-
ularization value for generalization. For simplicity, we will
assume L2 regularization, but all the results in this paper
can be extended to L1 regularization.

2.1.3 Large-Scale Learning and Sparse Datasets
We focus on datasets with potentially trillions of training

examples, that is, |S| ∈ O(1012). Consequently, the training
data does not fit in memory. We also focus on models with
billions of features, that is, p ∈ O(109). The model will
usually fit in memory, but our proposed solution can also
handle models that are larger than memory.

Typically, a training dataset with lots of features will also
have a lot of sparsity. There might be billions of features, but
only a small number (e.g., hundreds) of non-zero features per
example. The reason for high sparsity is usually because of
one-hot encoded categorical variables. For example, part of
the feature vector x might contain a country variable that is
represented by a binary vector with as many entries as there

are countries. But each binary vector will contain only one
non-zero entry, corresponding to the selected country. For
variables like countries, there might be only hundreds of
entries, whereas for variables like video ids or user ids, there
might be billions of entries leading to very high sparsity.
Note that our approach is not limited to categorical variables
but supports any kind of real-valued feature vector x ∈ Rp.

Let NZ(x) be the number of non-zeros in a feature vector
x or design matrix X. ML algorithms can make use of the
sparsity and usually have a runtime in the order of NZ(X)
instead of |S| × p.

2.2 Computing Environment
Cloud computing has become a cost effective solution for

many applications, particularly for batch applications that
need to scale with their data size. Although our work can
be applied to any large-scale distributed computing environ-
ment, we focus on a cloud with the following properties:

• Shared Machines: To increase utilization, each physi-
cal machine can be shared by multiple virtual machines
(VMs).

• Distributed File System: A fault tolerant distributed
file system (DFS), such as the Google File System [19],
is available to store data. In addition to training data,
the DFS can be used to save any application state
needed for fault tolerance.

• Preemptible VMs: The cloud scheduler is free to pre-
empt a low-priority VM in favor of a higher-priority
one. All of a VM’s state is lost when it is preempted.
However, a notification is sent to a VM before it is
preempted. This includes a grace period that is long
enough for the application to save its state to the DFS
for fault tolerance, if necessary.

• Machine Failures: Physical machines can fail without
any notification. Failures are assumed to be rare, but
do happen. Consequently, long-running jobs need to
checkpoint their state to the DFS for fault tolerance.

Other than preemptible VMs, these are fairly standard
properties for most modern clouds. Preemptible VMs are
available on Google’s Cloud Platform (GCP) [1] and as“spot
instances” from Amazon Web Services (AWS) [2]. They are
an attractive way to lower costs for long-running batch jobs.
For example, a preemptible VM is about 70% less expensive
than a standard VM on GCP.

In terms of cost, a cloud with the above properties is par-
ticularly appealing for running distributed ML jobs. How-
ever, scaling a distributed ML algorithm on such a cloud
becomes even more challenging. This is because there can
be wide variations in machine performance because of con-
tention for physical resources such as CPU and networking,
or contention for software resources such as access to the
DFS. Preemptions also create headaches. All these things
can negatively impact convergence behavior.

2.3 Goals of Distributed Learning
In terms of the learning algorithm and its distributed sys-

tem design, the main goals of our work are as follows:

1. Robust Distribution: The algorithm’s convergence be-
havior should always be the same, regardless of how



much it is scaled out and regardless of the computing
environment.

2. Linear Scale-out : If the number of training examples
|S| as well as the number of computing resources grow
by a factor ofM , the time to solve the learning problem
should stay constant. This is also known as “weak
scaling”.

3. Linear Speed-up: If the number of computing resources
grows by a factor of M , the same learning problem
should be solved M times faster in wall time. This is
also known as “strong scaling”.

The learning algorithm and distributed system that we
describe in this paper satisfies all three of these goals for a
wide range of problem sizes and scaling factors.

3. LEARNING ALGORITHMS
In this section, we review the popular coordinate descent

(CD) algorithm [18, 26, 11], which is inherently restricted
to a single machine. Then we describe our new scalable co-
ordinate descent (SCD) algorithm. Note that this section
focuses on the abstract SCD algorithm. In Section 4, we
describe SCD’s distributed system design and implementa-
tion.

3.1 Coordinate Descent (CD)
CD looks at a single model parameter or coordinate θj at

a time, assuming that the values of other model parameters
θ \ θj are known and fixed. Under this assumption, the
optimum for θj has a closed form solution:

θ∗j =
Tj

T ′j + λ
. (3)

For linear regression, the sufficient statistics Tj and T ′j are:

Tj :=
∑

(x,y)∈S

xj

y −∑
i 6=j

θi xi

 , T ′j :=
∑

(x,y)∈S

x2j . (4)

To simplify the discussion, we use linear regression in all
the algorithm descriptions, but other loss functions can be
handled similarly, such as logistic regression using a second-
order Taylor expansion [18]. For sparse data, the computa-
tion for Tj and T ′j can be accelerated by only iterating over
examples x where xj 6= 0.

From this analysis follows Algorithm 1. As shown, CD
iterates over one model parameter θj at a time. In each
iteration, the sufficient statistics Tj and T ′j are aggregated
(lines 8-11), and the local optimum θ∗j is calculated (line 12).
To make the cost of computing Tj independent of the other
features x\xj , the current prediction ŷ(x) of each example is
precomputed. Using ŷ(x), the computation of Tj simplifies
to:

Tj =
∑

(x,y)∈S

xj (y − ŷ(x) + θj xj) . (5)

The precomputed prediction ŷ(x) for each example also needs
to be updated each iteration (lines 13-15). Finally, the model
parameter is updated with its local optimum (line 16).

CD is known as a fast-converging algorithm for problems
that fit on a single machine [11]. Variations on Algorithm 1
include cyclic coordinate descent [18] and stochastic coordi-
nate descent [26].

Algorithm 1 Coordinate Descent

1: procedure CD(S)
2: ŷ ← (0, . . . , 0) . Precomputed predictions
3: θ ← (0, . . . , 0)
4: repeat
5: for j ∈ {1, . . . , p} do
6: Tj ← 0
7: T ′j ← 0
8: for (x, y) ∈ S where xj 6= 0 do
9: Tj ← Tj + xj (y − ŷ(x) + θj xj)

10: T ′j ← T ′j + x2j
11: end for
12: θ∗j ←

Tj

T ′
j+λ

13: for (x, y) ∈ S where xj 6= 0 do
14: ŷ(x)← ŷ(x) + xj(θ

∗
j − θj)

15: end for
16: θj ← θ∗j
17: end for
18: until converged
19: end procedure

3.1.1 CD Analysis
Recall that CD processes one parameter at a time. We

define a CD iteration as the update of one parameter and
an epoch as a pass over all parameters. The amount of
computation per iteration is on average O(NZ(X)/p) and
per epoch O(NZ(X)).

A straightforward distributed version of Algorithm 1 would
require a system-wide synchronization barrier just after ag-
gregating the sufficient statistics Tj and T ′j (lines 8-11). In
general, distributing work only pays off if the overhead in
terms of communication and barriers is small compared to
the amount of work that is parallelized. However, with a
large number p of parameters and a high sparsity (NZ(x)�
p) per feature vector x, there is relatively little work to be
done in an iteration of CD. Consequently, a straightforward
distributed version of Algorithm 1 would neither scale-out
nor speed-up.

3.2 Scalable Coordinate Descent (SCD)
SCD increases the amount of work per iteration by care-

fully partitioning the parameters and by iterating a block
of parameters at a time. Scaling is achieved by computing
the sufficient statistics over examples in parallel across ma-
chines. Robustness is achieved by keeping the partition fixed
and independent of the number of machines. Fast conver-
gence is achieved by a clever partitioning of parameters.

We start with discussing the algorithm, assuming a parti-
tion is given and later show how to choose a good partition.

3.2.1 Robust and Scalable Algorithm
Let P be a partition of feature or parameter indices {1, .., p}.

We refer to B ∈ P as a block. We denote the subset of
parameters θ associated with the block B by θB , the sub-
vector of the feature vector x by xB , and the submatrix of
the design matrix X by XB . The basic flow of SCD (see
Algorithm 2) is similar to CD, but instead of iterating over
one model parameter at a time, SCD iterates over one block
B of parameters at a time (line 7). In each iteration, partial
sums for the sufficient statistics T and T ′ are computed in
parallel (lines 8-13). These are aggregated across machines



Algorithm 2 Scalable Coordinate Descent

1: procedure SCD(S,P)
2: θ ← (0, . . . , 0)
3: ŷ ← (0, . . . , 0) . Precomputed predictions
4: repeat
5: T ← (0, . . . , 0)
6: T ′ ← (0, . . . , 0)
7: B ← SelectBlock(P)
8: for (x, y) ∈ S do . In parallel, across machines
9: for j ∈ B where xj 6= 0 do

10: Tj ← Tj + xj (y − ŷ(x) + θj xj)
11: T ′j ← T ′j + x2j
12: end for
13: end for
14: Aggregate T and T ′ across machines.
15: for j ∈ B do

16: θ∗j ← (1− α) θj + α
Tj

T ′
j+λ

17: end for
18: for (x, y) ∈ S do . In parallel, across machines
19: for j ∈ B where xj 6= 0 do
20: ŷ(x)← ŷ(x) + xj(θ

∗
j − θj)

21: end for
22: end for
23: for j ∈ B do
24: θj ← θ∗j
25: end for
26: until converged
27: end procedure

(line 14), and the new value θ∗j of each parameter in B is
calculated (lines 15-17).

Because the sufficient statistics of several features have
been computed in parallel, the independence assumptions
of the CD update step (eq. 3) are violated. To ensure con-
vergence, we use the common line-search method to find a
step size α ∈ [0, 1] and update each parameter with:

θ∗j = (1− α) θj + α
Tj

T ′j + λ
. (6)

Obviously, the smaller the step size α, the slower the conver-
gence in comparison to CD. In Section 3.2.3, we will show
that by using a clever partitioning, SCD can usually take
optimal steps, in which case α = 1. After the new value
has been calculated, the precomputed predictions ŷ(x) for
each example are updated (lines 18-22). Finally, each model
parameter in B is updated with its new value (lines 23-25).

In Algorithm 2, it is important to note that parallel execu-
tion is done over examples, i.e., sharding is by example. This
means that each machine is responsible for computing the
partial sufficient statistics T and T ′ for all the parameters
θB in the selected block B but only for a subset of exam-
ples. Consequently, the more machines, the faster sufficient
statistics are computed. As long as the amount of work for
a block is large enough, SCD scales with more machines.
Moreover, as the partition is fixed and does not change with
the number of machines, SCD is robust.

3.2.2 Optimal Updates with Pure Blocks
So far we have discussed the robustness and scalability,

now we focus on convergence speed. The key idea is to
partition the model parameters into what we call pure blocks

of independent parameters. We prove that parallel updates
within a pure block are equivalent to processing the updates
sequentially and consequently, full update steps α = 1 can
be taken.

Definition 1 (Pure Block). A block B is pure iff
the feature subvector xB of every example (x, y) ∈ S has
at most one non-zero entry:

B pure :⇔ ∀(x, y) ∈ S : NZ(xB) ≤ 1.

Similarly, a partition P of {1, . . . , p} is pure if all the blocks
in the partition B ∈ P are pure.

Lemma 1 (Independence of Updates). All parame-
ter updates for a pure block are independent.

Proof. The well known closed form solution of a regular-
ized least-squares problem is θ = (XtX + λ I)−1X y. Let

B̃ := {1, . . . , p} \B. Consequently, the closed form solution
for the parameters of the block B is θB = ((XB)tXB +

λ I)−1XB (y − XB̃ θB̃). Because B is pure, the Gramian
(XB)tXB is a diagonal matrix diag(T ′1, T

′
2, . . .). It follows

that the standard CD update (eq. 3) is identical to the
joined closed form solution for all parameters θB of the
block. This means that, within a pure block B, the update
of one parameter does not influence the update of another
parameter.

The upshot of Lemma 1 is that, within a pure block, process-
ing parameter updates in parallel is equivalent to processing
the updates sequentially. In other words, SCD on pure par-
titions is equivalent to CD while allowing scaling.

Note that purity and robustness are two different con-
cepts. SCD is robust no matter if a pure or impure parti-
tion has been chosen. Pure partitions are preferred because
optimal step sizes can be taken.

3.2.3 Generating a Partition
Now we describe how to construct a good partition for a

training set S = (X,y). Based on our analysis, a good par-
tition has two properties: (1) pure blocks for convergence
speed and (2) a large amount of work per block for sys-
tem speed. Both properties can easily be met individually
but at first glance fulfilling both looks hard. However, most
real-world datasets have a natural partition with good prop-
erties. As mentioned in Section 2.1.3, input feature vectors
x are usually generated from several variables. We suggest
to partition the features by variable. For each variable v, a
block is constructed that corresponds to the features gener-
ated from v. The properties of this partition are: (1) For
many variable types the resulting blocks are pure. This in-
cludes categorical variables, a cross product of categorical
variables, bucketized numerical variables, dense numerical
variables, etc. (2) For these variables each resulting block
is of equal computational complexity with NZ(XB) = |S|.
To summarize, a natural partition by underlying variable of-
ten has all desired properties. Many real-world datasets are
composed of these variable types. In fact, these are the most
common variable types in regression datasets at Google.

Some datasets contain variable types with suboptimal prop-
erties. An example is a set-valued variable, such as the gen-
res of a movie, where several genres can be assigned to one
movie. In this case a split by variable would result in an
impure block. We propose splitting the features of such a
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Figure 1: Data is sharded in both the feature and
example dimensions. Each cell in the grid is stored
as a separate file that holds the data of many exam-
ples for one block.

variable v into NZ(Xv)/|S| blocks. Splitting the features
this way means there will be one active feature per block on
average. However, there can still be training examples with
more than one active feature. That means the blocks of a
set variable can be impure and a step size α < 1 is used.

3.2.4 SCD Analysis
An SCD iteration processes one block B of model pa-

rameters at a time. The computational complexity for an
iteration is O(Nz(X

B)). Updating all parameters, that is,
one SCD epoch, takes |P| iterations, so the overall complex-
ity of one epoch is O(NZ(X)). Although it is not shown in
Algorithm 2, a small number of synchronization barriers are
required in each SCD iteration. More will be said about this
in Section 4 when SCD’s implementation is described. Con-
sequently, the number of barriers per SCD epoch is O(|P|).
Compared to CD, SCD decreases the number of barriers
from O(p) to O(|P|). On a large sparse dataset, this can
mean hundreds of barriers instead of billions of barriers. The
decrease in the number of barriers, along with an increase
in the amount of work per barrier, is what makes it feasible
to distribute SCD over a large number of machines.

The SCD algorithm meets the three goals of Section 2.3.
First, SCD is robust in the sense that it performs exactly the
same update computations no matter how many machines
it uses. Moreover, the outcome of each SCD update step is
deterministic and unaffected by the computing environment.
Second, the increase of work per iteration allows SCD to
scale linearly – at least in theory. In practice, various system
overheads and stragglers become a limiting factor. More will
be said about this shortly.

4. DISTRIBUTED SCD SYSTEM
In this section, we describe a distributed system that ad-

dresses the specific challenges of scaling SCD in a cloud com-
puting environment.

4.1 Storage Format
As shown in Figure 1, the training data S = (X,y) for

SCD is sharded in both the feature and example dimensions.
It is sharded in the feature dimension using the block par-
tition P (i.e., the sharding follows P), while it is sharded in
the example dimension using row sharding. Feature sharding
enables SCD to process the data corresponding to one block

1.  Select block B Master

2. Compute sufficient statistics T, T’
one work item per row shard 

3. Aggregate sufficient statistics
one work item per range of statistics

Workers

Workers

4. Search for step size

6. Update predictions y
one work item per row shard

Master

5. Update model parameters Master

Workers

Figure 2: The system flow for one iteration of the
SCD algorithm. The computationally expensive
steps are distributed over the workers.

independently of the other blocks, while example sharding
enables SCD to process different shards of XB in parallel.

The remaining data is sharded as follows. The model pa-
rameters θ are sharded in just the feature dimension (fol-
lowing P), while the labels y and predictions ŷ are sharded
in just the example dimension (following the row sharding).

As noted in Figure 1, each cell in the grid is stored in a
separate file. For example, if there were p = 109 features
partitioned into |P| = 100 blocks and |S| = 1010 examples
sharded in 104 rows with 106 examples each, then the design
matrix X would be stored in 104 ∗ 100 = 106 files.

4.2 System Architecture
Our system architecture is based on a single master and

multiple workers. The master acts as the orchestrator and
is responsible for assigning work, while the workers execute
the computationally expensive parts of the SCD algorithm.
To assign work, the master hands out work items to work-
ers. Each work item corresponds to a small unit of work
that usually takes only a few hundred milliseconds to exe-
cute. Both the master and workers are multi-threaded to
take advantage of multi-core parallelism.

A single master obviously becomes a scaling bottleneck
at some point. But as the performance experiments in Sec-
tion 5 will show, even a single master can scale to hundreds
of workers with thousands of cores.

4.3 System Flow
Recall that the main loop of the SCD algorithm iterates

over one block of parameters at a time (see Algorithm 2,
lines 4-26). One iteration of this loop translates into the
following steps:

1. Select block: The master selects a block B based on
various heuristics that try to estimate which block will
have the largest impact on convergence.



2. Compute sufficient statistics: The workers compute
the partial sums of sufficient statistics T and T ′ over
the row shards of block B. These partial sums are
stored in the memory of the workers.

3. Aggregate sufficient statistics: The sufficient statistics
of the workers are aggregated and sent back to the
master.

4. Search for step size: The master chooses a step size
according to the line-search method described in Sec-
tion 3.2.1.

5. Update model parameters: The master updates the
model parameters θ of block B using the chosen step
size and the sufficient statistics.

6. Update predictions: The workers update their predic-
tions ŷ to reflect the change in the model parameters.

The steps in this flow are depicted in Figure 2. The mas-
ter executes the steps sequentially, either by performing the
step itself (steps 1, 4, and 5) or by assigning work items to
the workers for the steps that are computationally expen-
sive (steps 2, 3, and 6). The latter are distributed over the
workers and executed in parallel.

The sequential execution of the steps effectively creates a
system-wide barrier for the workers after steps 2, 3, and 6.
Typically, a whole iteration of SCD takes less than a minute,
which means there is a system-wide barrier every few sec-
onds. Handling stragglers, preempted and/or failed workers
and executing a system-wide barrier at this rate is challeng-
ing. The steps assigned to workers are now described in
more detail.

4.3.1 Computing Sufficient Statistics
The workers compute the partial sums for the sufficient

statistics over row shards of the selected block (see Algo-
rithm 2, lines 8-13). Each worker is multi-threaded and
the threads execute work items in parallel. Each work item
refers to one row shard in this case. Given a work item, a
worker thread needs the training data, labels y, and predic-
tions ŷ for the corresponding row shard in order to compute
the statistics. These can be found in the worker’s cache,
in another worker’s cache, or in the DFS. Section 4.4.2 will
provide more detail about the caches maintained by each
worker.

Sufficient statistics are stored in the memory of each worker
using a thread-local store for the 100K most-frequent fea-
tures and a worker-level store (over all threads) for the re-
maining features. This two-level scheme improves hardware
cache locality and also enables lock-free updates [25] of the
statistics. Update collisions can occur in the worker-level
store, but they have a very low probability of happening
since it is only used for infrequent features.

4.3.2 Aggregating Sufficient Statistics
After the partial sums for the sufficient statistics have

been computed by the workers, they need to be aggregated
across workers (see Algorithm 2, line 14). If each worker
sent back its statistics to the master, it would create a scaling
bottleneck due to the TCP Incast problem [13]. Instead, the
statistics are partitioned into ranges and the aggregation is
distributed among the workers (see Figure 3).

1: Aggregation
    work item

Worker

2: Fetch range from other workers

Sufficient Stats

Worker
Sufficient Stats

Worker
Sufficient Stats...

Worker
Sufficient Stats

3: Return range

Master
Sufficient Stats

Figure 3: Aggregating Sufficient Statistics: The
statistics are partitioned into ranges. For a particu-
lar range, an ‘aggregator’ worker collects the statis-
tics from the other ‘leaf’ workers and sends the sum-
mation to the master. A worker can simultaneously
be an aggregator and leaf for different ranges.

Each work item refers to one range of the sufficient statis-
tics in this case. For load balancing, each range is sized
to be about 128KB. The worker thread assigned a particu-
lar work item becomes the aggregator for the corresponding
range of statistics. It collects the statistics for the range from
the other workers, performs the aggregation, then sends the
aggregated range to the master. Multiple ranges are aggre-
gated in parallel across the workers to take advantage of all
the available networking bandwidth.

Let |W | be the number of workers, and let r > |B|
|W | be the

number of aggregation ranges, where |B| is the number of

features in a block. The size of each range is |B|
r

. Each range

creates |W | |B|
r

inbound network traffic for the aggregator,
|B|
r

outbound traffic for each (leaf) worker, and |B|
r

inbound
traffic for the master. This means that, over all ranges, each
worker has |B| inbound and outbound network traffic, while
the master has |B| inbound traffic. Consequently, the net-
work traffic of the workers and the master remains constant,
no matter how many workers there are.

4.3.3 Updating Predictions
After the master updates the model parameters, the pre-

dictions ŷ need to be updated to reflect the change in the
model parameters (see Algorithm 2, lines 18-22). Each work
item refers to one row shard in this case. Given a work item,
a worker thread needs the training data and labels y for the
corresponding row shard in order to update the predictions.
Again, these can be found in the worker’s cache, in another
worker’s cache, or in the DFS.

4.4 Straggler Handling
In theory, SCD should scale perfectly. However, in prac-

tice, various overheads and stragglers become a limiting fac-
tor. Up to about 1K workers, stragglers are by far the
biggest limiting factor. After that, the single master design
becomes the limiting factor.



Recall that there is a system-wide barrier for the workers
after steps 2, 3, 6 in the SCD system flow (see Figure 2).
Therefore, the time it takes to execute these steps is gated
by the slowest worker, that is, the worst straggler. It is well
known that straggler effects get amplified the more a sys-
tem is scaled-out [15]. Stragglers are especially challenging
in SCD because there is a barrier every few seconds. More-
over, the more SCD is sped-up, the shorter the time between
barriers.

Stragglers are usually caused by variations in CPU, net-
working, or DFS performance. Dynamic load balancing is
the main mechanism used to deal with stragglers. It elimi-
nates most of the stragglers caused by CPU and networking
performance. However, because of tail latencies, load bal-
ancing alone is not sufficient to handle some DFS stragglers.
Caching and prefetching are added to deal with these tail
latencies.

4.4.1 Dynamic Load Balancing
The DFS enables any worker to work on any work item.

Any time a worker thread is idle, it asks the master for
a new work item. This results in dynamic load balancing
similar to that in a multithreaded program [6], where faster
workers get assigned more work items, and vice versa for
slower workers. To facilitate load balancing, the system is
configured so that there are at least four work items per
worker thread.

4.4.2 Caching
In a cloud computing environment with shared access to

the DFS, tail latencies can be as bad as several seconds. The
best way to mitigate these tail latencies is to avoid the DFS
as much as possible using caching. Files for the training
data, labels y, and predictions ŷ are cached in each worker
using an LRU eviction strategy. Compressed files are cached
in memory and decompressed when a worker needs to access
them.

To improve caching, the master tries to assign the same
row shard to a given worker in each iteration of its main
loop. If a row shard ends up being “stolen” by a different
worker because of load balancing, the new worker can avoid
accessing the DFS by requesting the row shard’s files from
the old worker’s cache. When this happens, hedged-requests
[15] are used to avoid a worker that is slow to respond. A
request is sent to both the old worker and the DFS. The first
request to finish is the “winner” and the “loser” is canceled.

4.4.3 Prefetching
Using compression, even a small cache for the labels y

and predictions ŷ can be highly effective. However, caching
is less effective for the training data. This is because each
iteration of the SCD algorithm accesses the training data
associated with a different block B. As a result, the cache
hit rate for training data tends to be much lower. This
means that workers have to frequently access the DFS for
training data. To minimize the impact of tail latencies in
this case, training data for the next iteration is prefetched.
As a result, even a very slow DFS access has no effect as
long as it is shorter than a whole iteration.

4.5 Dealing with VM Preemptions
Recall that a notification is sent to a VM before it is pre-

empted. This includes a grace period that is long enough

for the application to save its state to the DFS for fault tol-
erance, if necessary. We use this grace period to drain a
worker that will be preempted. When a worker is notified
that it will be preempted, it simply stops asking for new
work items. As a result, other workers end up stealing all
the preempted worker’s row shards and associated data.

The master is usually configured using a standard VM
to prevent preemptions. But even if it is configured with a
preemptible VM, there is only one master and many workers,
so the chances of it being preempted are low. If the master
is preempted, it is treated as a machine failure (see below).

4.6 Dealing with Machine Failures
Machine failures are very rare but do happen. The pre-

dictions ŷ for a row shard are only written to the DFS when
they are evicted from a worker’s cache. Consequently, pre-
dictions can be lost if a worker fails. When this happens,
a recovery phase orchestrated by the master simply recom-
putes the lost predictions.

Of course, the master can also fail. At the end of each
iteration, the master takes a checkpoint of its state to the
DFS which includes the current value of the model param-
eters θ. If the master fails and is restarted, it uses the last
checkpoint to recovery its state and resume from where it
left off.

5. EXPERIMENTS
In this section, we investigate the performance of SCD on

a large-scale advertising dataset. The dataset has 1.7 billion
parameters (p = 1.7∗109) with a pure partition in |P| = 194
blocks. We experimented with several scales of the dataset
from 20 billion examples with 4 trillion non-zero elements in
the design matrix up to one trillion examples (|S| = 1012)
and 200 trillion non-zero elements (NZ(X) = 2 ∗ 1014).

CD is considered a fast solver for linear models (e.g., [11,
18]) and is a popular choice for single machine implemen-
tations, e.g., LIBLINEAR [3] or glmnet [4]. As shown in
Section 3.2.2, on pure partitions, SCD produces the same
models with an identical convergence behavior as CD and
thus, we focus on runtime and scaling questions. In partic-
ular, we investigate the scale-out and speed-up of SCD.

All experiments are run in the internal Google cloud [27]
using low-priority, preemptible VMs. Each VM uses 8 cores
and less than 30GB of memory. A comparable preemptible
VM in Google’s external cloud is the n1-standard-8 with an
hourly price of $0.12. The workers are overthreaded by a
ratio of 2:1 to hide I/O latency.

5.1 Scale-out
As defined in Section 2.3, scale-out refers to a system’s be-

havior when the problem as well as the number of machines
grows. We experimented with M ∈ {1, 2, 4, 8, 16, 32, 50}
scales of the dataset and increased the number of machines
accordingly by the same factor M . For each of the M scale-
out variants, we ran SCD for one epoch, i.e., 194 iterations,
and report the average iteration time. The baseline 1x ex-
periment uses 20 machines for 20 billion training examples,
the 2x scale-out 40 machines for 40 billion training exam-
ples, etc. Note that on the 50x scale, the dataset consists of
1 trillion examples which is 10,000x more data points than
the ‘large-scale’ Netflix prize dataset [5]. The compressed
50x dataset takes about one petabyte on the DFS including
standard replication. Figure 4 shows the scale-out behavior
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Figure 4: Scale-out behavior of SCD: 1x corresponds to 20 billion training examples and 20 machines, 2x to
40 billion examples and 40 machines, and 50x to 1 trillion examples and 1000 machines. The average total
time for an iteration as well as the average time for the main phases of the SCD algorithm are shown.

of SCD. Compared to a perfect linear scaling, SCD shows
less than 10% degradation for a 16x (=1600%) scale-out and
about 35% degradation for a 50x scale-out. One of the main
reasons for the degradation are stragglers caused by the very
short barriers of SCD. The larger the data set, and conse-
quently the more files, the higher the chance to hit a severe
straggler. E.g., in the update prediction phase, the system
orchestrates a thousand workers with 8000 cores and hun-
dreds of thousands of work items in about 6 seconds. We
conclude that SCD allows near linear scale-out to extremely
large datasets.

5.2 Speed-up
The second gain from a distributed system is speed-up,

i.e., increasing the number of machines while the problem
size stays the same. We study the speed-up of our system
on 20 billion training examples and vary the number of ma-
chines from 1 to 128 workers. Again, we run each variant
of the system for one epoch and report the mean iteration
time. As SCD is robust, every configuration learns exactly
the same model.

The left plot of Figure 5 shows the average iteration time
versus the number of workers. As can be seen, SCD provides
a close to linear speed-up behavior. Actually, all configura-
tions outperform the theoretical linear speed-up of a single
worker. The reason for the super-linear speed-up is that
the amount of data that can be cached increases with more
workers. For example, if one worker has 1 GB of memory for
caching label data and there are 10 GB of label files, then
with one worker at most 10% of the label requests are cache
hits, whereas with 32 workers, overall 32 GB of labels can
be cached, which results in a much higher cache hit rate.
In Figure 5, the super-linear speed-up has its optimum with
16 to 32 workers and moves closer to a linear speed-up with
more workers. This is expected because the more machines,
the faster the iterations, the shorter the barriers and conse-
quently, the stronger straggler effects. For example, having a
straggler of 1 second might not have any effect on a run with
32 machines because barriers are every 3 seconds, whereas
for 64 machines, where a perfect speed-up means 1.5 second

barriers, the same straggler has more impact. More aggres-
sive prefetching, e.g., two iterations ahead, might solve this
tail latency issue.

Speeding-up a system implies getting the results faster
when using more resources. If the cost for a resource is con-
stant as in common cloud environments, a theoretical linear
speed-up implies getting the result faster with exactly the
same cost. In reality, speed-ups are not exactly linear and
additional costs can occur. The right plot of Figure 5 shows
the time vs. cost trade-off for speeding up the SCD algo-
rithm. The number of resources was varied from 1 to 128
workers and the plot shows the time to converge, i.e., in
this case running SCD for five epochs, vs. the costs of the
machines. For instance, running SCD for five epochs with
128 machines takes about one hour whereas the time with
one worker is about 140 hours. The cost for running 128
workers for about one hour is about $16 whereas the cost
for running one worker for 140 hours is about $17. Because
SCD is robust, this means SCD can get the same model
100x faster with the same resource bill as a single machine.
Factoring in the cost for the master, running SCD with 128
workers is actually much cheaper. In particular, the same
result is achieved 100x faster with 2x less cost. If cost alone
should be minimized, the optimal choice would be using 16
workers which costs less than $10 and requires about five
hours. Spending a dollar more and running with 32 ma-
chines, would give the results in 2.5 hours.

Besides the resource costs, learning models is also associ-
ated with other costs such as the time (=salary) of the end
user who is waiting for the results, the number of experi-
ments that can be explored, etc. That means reducing the
runtime is usually much more valuable than the computation
costs. Factoring in such other costs, SCD provides a sub-
stantial speed-up at marginally higher compute costs. Fi-
nally, we want to highlight, that running very large datasets
on low-priority cloud environments is very inexpensive, e.g.,
running the 20 billion example version of the advertising
dataset to convergence would cost about $10 in the Google
cloud. Given the value that such a model provides when it
is applied, the costs are many orders of magnitude smaller.
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6. RELATED WORK
Block or parallel coordinate descent (BCD), e.g., [8, 23],

and SCD share the idea of updating several coordinates in
parallel but differ in important aspects. BCD [8, 23] assigns
features to computing resources, e.g., cores or machines, and
computes the sufficient statistics in parallel. This has con-
sequences on both robustness and scalability.

First, the more computing resources, the more model pa-
rameters are updated in parallel with BCD. Consequently,
BCD is not robust with respect to our goal in Section 2.3.
In contrast to BCD, SCD parallelizes over examples while
keeping the partitioning constant, which makes SCD robust.

Second, the frequency of a feature being non-zero is usu-
ally non-uniform distributed. Typically, the distribution is
Zipfian, e.g., a popular video occurs in much more exam-
ples than a niche video. Moreover, imbalance occurs not
only within the same variable, e.g., popular vs. non popular
videos, but also over variables, e.g., high vs. low cardinal-
ity variables. For example, in the advertisement data set
of Section 5, the bias feature occurs in 1 trillion example,
other frequent features appear billions or millions of times
but most features appear only a few times. Consequently,
a parallel execution where each feature is a unit of work is
impossible to load balance even in a perfect distributed en-
vironment. This means BCD will not have linear scaling
properties in sparse datasets. In contrast to this, SCD par-
allelizes work over examples and does not care about the
number of features that are updated in parallel. For exam-
ple, the block sizes in Section 5 range from 1 feature per
block to 240,000,000 features per block but in each block
the number of non-zeros is constant NZ(XB) ≈ |S|. That
means, row shards are balanced in terms of computational
costs.

Third, we introduce pure partitions which allow us to scale
the popular single-machine CD algorithm without compro-
mising convergence. Finally, we demonstrate the effective-
ness of SCD on truly large-scale datasets. The distributed
BCD algorithm [23] was evaluated on less than 10M ex-
amples using 400 machines. This dataset is 100,000 times

smaller than our datasets. A single core in our system pro-
cesses 10M examples in less than a second end-to-end in-
cluding all synchronization work.

Another related line of work is Sibyl [10], a widely used
ML platform in Google that distributes the parallel boosting
algorithm [14]. Parallel boosting updates all features in one
iteration and is comparable to SCD with a single non-pure
block B = {1, . . . , p}. The parallelism is achieved similar to
SCD over examples. This makes Sibyl both robust and scal-
able. Parallel boosting fits very well a standard framework
such as MapReduce [17] because iterations are long. The
downside is that it requires many more epochs to converge
than SCD and the memory consumption is much higher be-
cause all parameters and statistics are in each mapper. On
various datasets, SCD showed an improvement of one to two
orders of magnitude in convergence speed and computing re-
sources. We omit these results due to space restrictions.

The orthogonal approach to CD is stochastic gradient de-
scent (SGD) that iterates over examples. As described in
Section 1, the single-machine SGD algorithm [7] accesses
and updates parameters at a very high rate. This makes
standard SGD inherently a single-machine algorithm. Many
distributed SGD modifications have been proposed, e.g., us-
ing combinations of delayed updates and batching (e.g. [22,
12, 16]). Distributed SGD algorithms do not scale linearly
and the behavior is more complex to control when changing
the number of machines. This makes them harder to use
than the SCD system – especially in a shared cloud environ-
ment where the system behavior is less predictable. In con-
sequence, distributed SGD does not meet the design goals of
robustness and linear scaling that motivated our work (see
Section 2.3).

7. CONCLUSION
In this paper, we described a new scalable coordinate de-

scent (SCD) algorithm for generalized linear models. SCD
is highly robust, having the same convergence behavior re-
gardless of how much it is scaled out and regardless of the



computing environment. This allows SCD to scale to thou-
sands of cores and makes it well suited for running in a
cloud environment with low-cost commodity servers. On
many real-world problems, SCD has the same convergence
behavior as the popular single-machine coordinate descent
algorithm. In addition to the SCD algorithm, we described
a distributed system that addresses the specific challenges
of scaling SCD in a cloud computing environment. Using
Google’s internal cloud, we showed that SCD can provide
near linear scaling using thousands of cores for 1 trillion
training examples on a petabyte of compressed data.

8. ACKNOWLEDGMENTS
We would like to thank our colleagues Tushar Chandra,

Mike Gunter, Judah Jacobson, Gus Katsiapis, Lukasz Lew,
Alex Passos, Tal Shaked, and Greg Steuck of the Sibyl team
for their insightful discussions about the SCD algorithm and
system design.

9. REFERENCES
[1] https://cloud.google.com/.

[2] https://aws.amazon.com/.

[3] https://www.csie.ntu.edu.tw/˜cjlin/liblinear/.

[4] https://cran.r-project.org/web/packages/glmnet/.

[5] J. Bennet and S. Lanning. The Netflix prize. In KDD
Cup and Workshop, 2007.

[6] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J.
ACM, 46(5):720–748, Sept. 1999.

[7] L. Bottou. Stochastic learning. In Advanced Lectures
on Machine Learning, Lecture Notes in Artificial
Intelligence, LNAI 3176, pages 146–168. Springer
Verlag, 2004.

[8] J. K. Bradley, A. Kyrola, D. Bickson, and
C. Guestrin. Parallel coordinate descent for
l1-regularized loss minimization. In Proceedings of the
International Conference on Machine Learning (ICML
2011), June 2011.

[9] J. Canny and H. Zhao. Big data analytics with small
footprint: Squaring the cloud. In Proceedings of the
19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13,
pages 95–103, 2013.

[10] T. Chandra. Sibyl: A system for large scale machine
learning at Google. Keynote talk at the 44th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014.

[11] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate
descent method for large-scale l2-loss linear support
vector machines. J. Mach. Learn. Res., 9:1369–1398,
June 2008.

[12] O. Chapelle, E. Manavoglu, and R. Rosales. Simple
and scalable response prediction for display
advertising. ACM Trans. Intell. Syst. Technol.,
5(4):61:1–61:34, Dec. 2014.

[13] Y. Chen, R. Griffit, D. Zats, and R. H. Katz.
Understanding TCP incast and its implications for big
data workloads. Technical report, DTIC Document,
2012.

[14] M. Collins, R. E. Schapire, and Y. Singer. Logistic
regression, Adaboost and Bregman distances. Mach.
Learn., 48(1-3):253–285, Sept. 2002.

[15] J. Dean and L. A. Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, Feb. 2013.

[16] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
M. Mao, M. A. Ranzato, A. Senior, P. Tucker,
K. Yang, Q. V. Le, and A. Y. Ng. Large scale
distributed deep networks. In Advances in Neural
Information Processing Systems 25, pages 1223–1231.
2012.

[17] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[18] J. Friedman, T. Hastie, and R. Tibshirani.
Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software,
33(1):1–22, 2010.

[19] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 29–43, 2003.

[20] T. Graepel, J. Q. Candela, T. Borchert, and
R. Herbrich. Web-scale bayesian click-through rate
prediction for sponsored search advertising in
microsoft’s bing search engine. In Proceedings of the
27th International Conference on Machine Learning,
pages 13–20, 2010.

[21] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi,
A. Atallah, R. Herbrich, S. Bowers, and J. Q. n.
Candela. Practical lessons from predicting clicks on
ads at Facebook. In Proceedings of the Eighth
International Workshop on Data Mining for Online
Advertising, ADKDD’14, pages 5:1–5:9, 2014.

[22] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su. Scaling distributed machine learning with
the parameter server. In Proceedings of the 11th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, pages 583–598, 2014.

[23] D. Mahajan, S. S. Keerthi, and S. Sundararajan. A
distributed block coordinate descent method for
training l1 regularized linear classifiers. CoRR,
abs/1405.4544, 2014.

[24] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg,
A. M. Hrafnkelsson, T. Boulos, and J. Kubica. Ad
click prediction: A view from the trenches. In
Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’13, pages 1222–1230, 2013.

[25] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing
Systems 24, pages 693–701. 2011.

[26] S. Shalev-Shwartz and A. Tewari. Stochastic methods
for l1-regularized loss minimization. J. Mach. Learn.
Res., 12:1865–1892, July 2011.

[27] A. Verma, L. Pedrosa, M. R. Korupolu,
D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale
cluster management at Google with Borg. In
Proceedings of the European Conference on Computer
Systems (EuroSys), 2015.


