
www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  43

SYSADMIN

Being an On-Call Engineer
A Google SRE Perspective

A N D R E A S P A D A C C I N I A N D K A V I T A G U L I A N I

Being on-call is a critical duty that many operations and engineering
teams must undertake in order to keep their services reliable and
available. However, there are several pitfalls in the organization of on-

call rotations and responsibilities that can lead to serious consequences for
the services and for the teams if not avoided. We provide the primary tenets
of the approach to on-call that Google’s Site Reliability Engineers have devel-
oped over years, and explain how that approach has led to reliable services
and sustainable workload over time.

Several professions require employees to perform some sort of on-call duty, which entails
being available for calls during both working and non-working hours. In the IT context, on-
call activities have historically been performed by dedicated Ops teams tasked with the pri-
mary responsibility of keeping the service(s) for which they are responsible in good health.

Many important services in Google, e.g., Search, Ads, and Gmail, have dedicated teams of
Site Reliability Engineers (SREs) [1] responsible for the performance and reliability of these
services. As such, SREs are on-call for the services they support. The SRE teams are quite
different from purely operational teams in that they place heavy emphasis on the use of
engineering to approach problems. These problems, which typically fall in the operational
domain, exist at a scale that would be intractable without software engineering solutions.

To enforce this type of problem-solving, Google hires people with a diverse background in
systems and software engineering into SRE teams. We cap the amount of time SREs spend
on purely operational work at 50%; at minimum, 50% of an SRE’s time should be allocated to
engineering projects that further scale the impact of the team through automation, in addi-
tion to improving the service.

We present an informed view of how Google SRE teams organize the on-call aspect of their jobs,
and how Google’s strong focus on engineering determines numerous aspects of this organization.

We do not describe all the possible ways of organizing on-call rotations in detail. For detailed
analysis, refer to the “Oncall” chapter of The Practice of Cloud System Administration [2].

Life of an On-Call Engineer
As the guardian of production systems, the on-call engineer takes care of his or her assigned
operations by managing outages that affect the team and performing and/or vetting produc-
tion changes.

When on-call, an engineer is available to perform operations on production systems within
minutes, according to the paging response Service Level Objectives (SLOs) agreed to by the
team and the business system owners. Typical SLO values are five minutes for user-facing or
otherwise highly time-critical services, and 30 minutes for less time-sensitive systems. The
company provides the page-receiving device, which is typically a phone. Google has flexible

Andrea Spadaccini works in
Dublin as a Site Reliability
Manager for Google, which he
joined in 2012 as an SRE
working on the systems that

distill, store, and serve all the metrics about
Google’s Ads platforms. Prior to that, he
worked on Linux-based PBX products, hacked
on open source CPU simulators, and co-
founded a nonprofit for students to get work
experience while pursuing their studies. He
earned a PhD in computer engineering from
the University of Catania, Italy, where he
focused mostly on biometric recognition. .

Kavita Guliani is a Technical
Writer for Technical
Infrastructure and Site
Reliability Engineering in
Google Mountain View. Before

working at Google, Kavita worked for
companies like Symantec, Cisco, and Lam
Research Corporation. She holds degree in
English from Delhi University and studied
technical writing at San Jose State University.
kguliani@google.com

44    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSADMIN
Being an On-Call Engineer: A Google SRE Perspective

alert delivery systems that dispatch pages via multiple mecha-
nisms (email, SMS, robot call, app) across multiple devices.

This page-to-work-towards-resolution SLO is distinct from the
service SLOs themselves (e.g., user-facing latency, processing
delay, and so on). There is a relationship between the two types
of SLOs: the service SLOs imply upper bounds for the page-to-
work-towards-resolution SLO. For example, if a user-facing
system must obtain 4 nines of availability in a given quarter
(99.99%), the allowed quarterly downtime is around 13 min-
utes. This constraint implies that the reaction time of on-call
engineers has to be on the order of minutes. For systems with
more relaxed SLOs, the reaction time can be on the order of tens
of minutes.

As soon as a page is received and acknowledged, the on-call
engineer is expected to triage the problem and work towards its
resolution, possibly involving other team members and escalat-
ing as needed.

Non-paging production events, such as lower priority alerts
or software releases, can also be handled and/or vetted by the
on-call engineer during business hours. These activities are less
urgent than paging events, which take priority over almost every
other task, including project work.

Many teams have both a primary and a secondary on-call rota-
tion. The distribution of duties between the primary and the
secondary varies from team to team and ranges from the second-
ary acting as a fall-through for the pages missed by the primary
on-call to an arrangement in which the primary on-call handles
only pages and the secondary handles all other non-urgent pro-
duction activities.

In teams for which a secondary rotation is not strictly required
for duty distribution, it is common for two related teams to serve
as secondary on-call for each other, with fall-through handling
duties. This setup eliminates the need for an exclusive secondary
on-call rotation.

Balanced On-Call
SRE teams have specific constraints on the quantity and quality
of on-call shifts. The quantity of on-call can be calculated by
the percentage of time spent by engineers on on-call duties. The
quality of on-call can be calculated by the number of incidents
that occur during an on-call shift.

SRE managers are responsible for keeping the on-call workload
balanced and sustainable across these two axes.

Balance in Quantity
SREs can spend no more than 25% of their time on-call, and
another 25% of their time on other types of operational, non-
project work. We strongly believe that the “E” in “SRE” is a
defining characteristic of our organization, so we strive to invest
at least 50% of SRE time in engineering.

Using the 25% rule, we can derive the minimum number of SREs
required to sustain a 24/7 on-call rotation. Assuming that there
are always two people on-call (primary and secondary, with
different duties), the minimum number of engineers needed for
on-call duty from a single-site team is eight: assuming week-long
shifts, each engineer is on-call (primary or secondary) for one
week every month. For dual-site teams, a reasonable minimum
size of each team is six, both to honor the 25% rule and to ensure
a substantial and critical mass of engineers for the team.

If a service implies enough work to justify growing a single-site
team, we can create a multi-site team. A multi-site team can be
advantageous for two reasons:

◆◆ Night shifts have detrimental effects on people’s health [3], and
multi-site rotation allows teams to avoid night shifts altogether.

◆◆ Limiting the number of engineers in the on-call rotation ensures
that engineers do not lose touch with the production systems
(see “A Treacherous Enemy: Operation Underload,” below).

However, multi-site teams incur communication and coor-
dination overhead. Therefore, the decision to go multi-site or
single-site should be based on the tradeoffs each option entails,
the importance of the system, and the workload each system
generates.

Balance in Quality
For each on-call shift, an engineer should have sufficient time
to deal with incidents and follow-up activities such as writing
postmortems [4]. Assuming that on-call incidents, on average,
require six hours of work between investigation, root cause
analysis, remediation, and follow-up activities such as writing a
postmortem, it follows that the maximum number of incidents
per day is two. In order to stay within this upper bound, the
distribution of paging events should be very flat over time, with
a likely median value of 0: if a given component or issue causes
pages every day (median incidents/day 1), it is likely that some-
thing else will break at some point, thus causing more incidents
than should be permitted.

If this limit is temporarily exceeded, e.g., for a quarter, corrective
measures should be put in place to make sure that the opera-
tional load returns to a sustainable state (see “Avoiding Opera-
tional Overload,” below).

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  45

SYSADMIN
Being an On-Call Engineer: A Google SRE Perspective

Compensation
Adequate compensation needs to be considered for out-of-hours
support. Different organizations handle on-call compensation
in different ways; Google offers time-off-in-lieu or straight cash
compensation, capped at some proportion of overall salary. The
compensation cap represents, in practice, a limit on the amount
of on-call work that will be taken on by any individual. This
compensation structure ensures incentivization to be involved
in on-call duties as required by the team, but also promotes a bal-
anced on-call work distribution and limits potential drawbacks
of excessive on-call work, such as burnout or inadequate time for
project work.

Feeling Safe
As mentioned earlier, SRE teams support Google’s most criti-
cal systems. Being an SRE on-call typically means assuming
responsibility for user-facing, revenue-critical systems, or for
the infrastructure required to keep these systems up and run-
ning. SRE methodology for thinking about and tackling prob-
lems is vital for the appropriate operation of services.

Modern research identifies two distinct ways of thinking that
an individual may choose, consciously or subconsciously, when
faced with challenges:

◆◆ Intuitive, automatic, and rapid action

◆◆ Rational, focused, and deliberate cognitive functions [5]

When dealing with the outages related to complex systems, the
second of these options is more likely to produce better results
and lead to well-planned incident handling.

To make sure that the engineers are in the appropriate frame of
mind to leverage the latter mindset, it’s important to reduce the
stress related to being on-call. The importance and the impact of
the services and the consequences of potential outages can cre-
ate significant pressure on the on-call engineers, damaging the
well-being of individual team members and possibly prompting
SREs to make incorrect choices that can endanger the avail-
ability of the service. Stress hormones like cortisol and CRH are
known to cause behavioral consequences—including fear—that
can impair cognitive functions and cause suboptimal decision-
making [6].

Under the influence of these stress hormones, the more deliber-
ate cognitive approach is typically subsumed by unreflective and
unconsidered (but immediate) action, leading to potential abuse
of heuristics. Heuristics are very tempting behaviors when on-
call. For example, when the same alert pages for the fourth time
in the week, and the previous three pages were initiated by an
external infrastructure system, it is extremely tempting to exer-
cise confirmation bias by automatically associating this fourth
occurrence of the problem with the previous cause.

While intuition and quick reactions can seem like desirable
traits in the middle of incident management, they have down-
sides. Intuition can be wrong and is often less supportable by
obvious data. Thus, following intuition can lead an engineer to
waste time pursuing a line of reasoning that is incorrect from
the start. Quick reactions are deep-rooted in habit, and habitual
responses are unconsidered, which means they can be disas-
trous. The ideal methodology in incident management strikes
the perfect balance between taking steps at the desired pace
when enough data is available to make a reasonable decision and
simultaneously critically examining your assumptions.

It’s important that on-call SREs understand that they can rely
on several resources that make the experience of being on-call
less daunting than it may seem. The most important on-call
resources are:

◆◆ Clear escalation paths

◆◆ Well-defined incident-management procedures

◆◆ A blameless postmortem culture [4]

The developer teams of SRE-supported systems usually par-
ticipate in a 24/7 on-call rotation, and it is always possible to
escalate to these partner teams when necessary. The appropri-
ate escalation of outages is generally a principled way to react to
serious outages with significant unknown dimensions.

When handling incidents, if the issue is complex enough to
involve multiple teams, or if, after some investigation, it is not yet
possible to estimate an upper bound for the incident’s time span,
it can be useful to adopt a formal incident-management protocol.
Google SRE uses the protocol described in “Managing Incidents”
[7], which offers an easy to follow and well-defined set of steps
that aid an on-call engineer in rationally pursuing a satisfactory
incident resolution with all the required help. This protocol is
internally supported by a Web-based tool that automates most of
the incident management actions, such as handing off roles and
recording and communicating status updates. This tool allows
incident managers to focus on dealing with the incident, rather
than spending time and cognitive effort on mundane actions
such as formatting emails or updating several communication
channels at once.

Finally, when an incident occurs, it’s important to evaluate
what went wrong, recognize what went well, and take action to
prevent the same errors from recurring in the future. SRE teams
must write postmortems after significant incidents, and detail
a full timeline of the events that occurred. By focusing on events
rather than the people, these postmortems provide significant
value. Rather than placing blame on individuals, value is derived
from the systematic analysis of production incidents. Mistakes
happen, and software should make sure that we make as few
mistakes as possible. Recognizing automation opportunities is
one of the best ways to prevent human errors [4].

46    O C TO B ER 20 1 5  VO L . 4 0, N O. 5 	 www.usenix.org

SYSADMIN
Being an On-Call Engineer: A Google SRE Perspective

Avoiding Inappropriate Operational Load
Operational Overload
As mentioned in the “Balanced On-call” section above, SREs
spend at most 50% of their time on operational work. What hap-
pens if operational activities exceed this limit? The SRE team
and leadership are responsible for including concrete objectives
in quarterly work planning in order to make sure that the work-
load returns to sustainable levels.

Ideally, symptoms of operational overload should be measurable,
so that goals can be quantified (e.g., number of daily tickets < 5,
paging events per shift < 2).

Monitoring misconfiguration is a common cause of operational
overload. Paging alerts should be aligned with the symptoms
that threaten a service’s SLOs. All paging alerts should also be
actionable. Low-priority alerts that bother the on-call engineer
every hour (or more frequently) disrupt productivity, and the
fatigue such alerts induce can also cause serious alerts to be
treated with less attention than necessary.

It is also important to control the number of alerts that the on-
call engineers receive for a single incident. Sometimes a single
abnormal condition can generate several alerts, so it’s important
to regulate the alert fan-out by ensuring that related alerts are
grouped together by the monitoring or alerting system. If, for any
reason, duplicate or uninformative alerts are generated during
an incident, silencing those alerts can provide the necessary
quiet for the on-call engineer to focus on the incident itself.
Noisy alerts that systematically generate more than one alert per
incident should be tweaked to approach a 1:1 alert/incident ratio.
Doing so allows the on-call engineer to focus on the incident
instead of triaging duplicate alerts.

Sometimes the changes that cause operational overload are not
under the control of the SRE teams. For example, the application
developers might introduce changes that cause the system to be
more noisy, less reliable, or both. In this case, it is appropriate
to work together with the application developers to set common
goals to improve the system.

In extreme cases, SRE teams may have the option to “give back
the pager”—SRE can ask the developer team to be exclusively
on-call for the system until it meets the standards of the SRE
team in question. Giving back the pager doesn’t happen very
frequently, as it’s almost always possible to work with the
developer team to reduce the operational load and make a given
system more reliable. In some cases, though, complex or archi-
tectural changes spanning multiple quarters might be required
to make a system sustainable from an operational point of view.
In such cases, the SRE team should not be subject to an exces-
sive operational load. Instead, it is appropriate to negotiate the
reorganization of on-call responsibilities with the development

team, possibly routing some or all paging alerts to the developer
on-call. Such a solution is typically a temporary measure, during
which time the SRE and developer teams work together to get
the service in shape to be onboarded by the SRE team again.

The possibility of renegotiating on-call responsibilities between
SRE and developer teams attests to the balance of powers
between the teams. This working relationship also exemplifies
how the healthy tension between these two teams and the values
that they represent—reliability vs. feature velocity—is typically
resolved by greatly benefitting the service and, by extension, the
company as a whole.

A Treacherous Enemy: Operation Underload
Being on-call for a quiet system is blissful, but what happens
if the system is too quiet or when SREs are not on-call often
enough? An operation underload is undesirable for an SRE team.
Being out of touch with production for long periods of time can
lead to confidence issues, both in terms of overconfidence and
underconfidence, while knowledge gaps are discovered only
when an incident occurs.

To counteract this eventuality, SRE teams should be sized to
allow every engineer to be on-call once or twice a month, thus
ensuring that each team member is sufficiently exposed to
production.

Some teams also run so-called “Wheel of Misfortune” exer-
cises, in which theoretical (or practical) incident scenarios are
presented to the team by a dungeon master, much in the style
of traditional role-playing games. This exercise is also a useful
team activity that can help to hone and improve troubleshooting
skills and knowledge of the service.

Google also has a company-wide annual disaster recovery
event called DiRT (Disaster Recovery Training) that combines
theoretical and practical drills to perform multi-day testing of
infrastructure systems and individual services.

Onboarding New Systems
It is common for SRE teams to become responsible for new
systems, a process that typically culminates in handing off pager
responsibilities, also called onboarding.

The SRE team needs to engage with the new system well before
the onboarding process starts. Ideally, the SREs are involved
from the early design phase of the new system, as their knowl-
edge and experience with the production infrastructure can
offer an important perspective on the architecture of the new
systems. Direct involvement by SREs during the development
phase might be necessary as the system approaches its launch,
in preparation for a Production Readiness Review (PRR) or
Launch Review.

www.usenix.org	   O C TO B ER 20 1 5  VO L . 4 0, N O. 5  47

SYSADMIN
Being an On-Call Engineer: A Google SRE Perspective

After the new system launches, the application developers may
remain on-call for the system until the ownership is transitioned
to SRE. A system must meet specific requirements with regards
to reliability, Service Level Objectives (SLOs), alerting, and the
on-call load before it is onboarded by SRE. The on-call training
can begin towards the end of the onboarding process. Generally,
the application developers train SREs on the internals of the new
systems, explaining the most likely or common failure modes
and how to react to these failures. To demonstrate debugging
techniques, developers may fake troubleshooting scenarios and
demonstrate their resolution to SREs.

All alerts are expected to have corresponding documentation
that enables the on-call engineer to take appropriate actions
when paged. Upon service handoff, documentation ownership is
transitioned to SREs, who are expected to keep the docs up-to-
date in collaboration with the application developers.

Conclusion
The approach to on-call we described serves as a guideline for
all SRE teams in Google and is key to fostering a sustainable
and safe work environment. Google’s approach to on-call has
enabled us to use engineering work as the primary means to
scale production responsibilities and maintain high reliability
and availability despite the increasing complexity and number of
systems and services for which SREs are responsible.

References
[1] http://www.site-reliability-engineering.info/.

[2] Thomas A. Limoncelli, Strata R. Chalup, Christina J.
Hogan, “Oncall,” in The Practice of Cloud System Adminis
tration: Designing and Operating Large Distributed Systems,
vol. 2, Pearson Education, 2014.

[3] Jeffrey S. Durmer and David F. Dinges, “Neurocognitive
Consequences of Sleep Deprivation,” in Seminars in Neurol-
ogy, vol. 25, no. 1, 2005.

[4] Jake Loomis, “How to Make Failure Beautiful: The Art and
Science of Postmortems,” in Web Operations: Keeping the Data
on Time, O’Reilly Media, 2010

[5] Daniel Kahneman, Thinking, Fast and Slow, Farrar, Straus
and Giroux, 2011.

[6] George P. Chrousous, “Stress and Disorders of the Stress
System,” Nature Reviews Endocrinology, vol. 5, July 2009,
doi: 10.1038/nrendo.2009.106.

[7] Andrew Stribblehill, Kavita Guliani, “Managing Inci-
dents,” ;login:, vol. 40, no. 2, April 2015: https://www.usenix
.org/publications/login/apr15/stribblehill.

