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Abstract. A common misstep in the development of security and pri-
vacy solutions is the failure to keep the demands resulting from high-level
policies in line with the actual implementation that is supposed to op-
erationalize those policies. This is especially problematic in the domain
of social networks, where software typically predates policies and then
evolves alongside its user base and any changes in policies that arise
from their interactions with (and the demands that they place on) the
system. Our contribution targets this specific problem, drawing together
the assurances actually presented to users in the form of policies and
the large codebases with which developers work. We demonstrate that a
mapping between policies and code can be inferred from the semantics
of the natural language. These semantics manifest not only in the policy
statements but also coding conventions. Our technique, implemented in
a tool (CASTOR), can infer semantic mappings with F1 accuracy of 70%
and 78% for two social networks, Diaspora and Friendica respectively –
as compared with a ground truth mapping established through manual
examination of the policies and code.

1 Introduction

This paper addresses the problem of identifying areas of code that operationalize
(or implement) one or more policy statement(s) from security or privacy policies.
This problem is particularly challenging because information systems have grown
not only in size and technical complexity but also in the volume of information
they manage and process. The effort required to identify areas of code that
implement relevant policies remains largely manual, at best aided by simple
search techniques. Ideally, policies and code should be linked to ease processes
such as compliance checks, verification, maintenance etc.; however this is not
always the case for two main reasons:
(i) Asynchronous evolution of policies and code. Policies describe organ-
isations’ actions on user data or personally identifiable information – and are
often driven by regulatory and legal requirements. Program code, on the other
hand, implements the various features and services provided by the information
system and must be compliant with the aforementioned policies. Modern infor-
mation systems evolve rapidly as organisations continually update the system’s



functionality to provide a better quality of service and user experience. This
is generally driven by factors such as changes in requirements, optimisation of
code, fixes for bugs and security vulnerabilities, etc. Policies also change but
such changes are less frequent and often driven by legislative requirements and
regulatory frameworks or changes in business processes. This asynchronous evo-
lution can often (unintentionally) lead to changes resulting in the code being
non-compliant with the policy. A recent example is that of Facebook introduc-
ing a photo sync feature that allows users to sync their mobile photos with their
Facebook account [5]. This feature introduced a vulnerability that allowed pho-
tos that had not been published on Facebook and should not have been visible to
anyone be accessed by third-party applications; yet Facebook’s terms of service
continued to stipulate that private photos will stay private when connecting to
external applications.
(ii) Implementation precedes policies and regulation. In an ideal world,
policies would be derived first, requirements established, and then passed on to
software engineers for design and implementation. However, much modern soft-
ware development does not follow this cycle. They also, almost always, out-pace
the regulatory environment. Often, legal and regulatory requirements are not
given full consideration during product development (requiring post-implementation
compliance checks) or regulations come into existence after a system is in public
use. For example, the European Commission only recently introduced regulation
as part of its Data Protection Directive [4] requiring that users should have full
export/download access to all of the data stored about them.

In this paper we present a technique and tool to infer and identify areas of
code (aka functions) that implement particular policy statements described in
natural language. Our inference technique is driven by the semantics of natural
language and coding conventions, wherein verbs and nouns used in policy state-
ments and source code (e.g., in function and parameter names) provide useful
clues that enable a semantic mapping to be established between the two arte-
facts. Our use of naming conventions means that such mapping can be added
to systems post-hoc – as we highlighted above, it is often impossible to attach
security demands arising from high-level policies to methods at the time the
code is written (e.g., because of codebases predating policies).

Contributions

We make the following novel contributions in this paper:

1. We describe a semantic-mapping approach to infer function specifications
from natural language policies. The resulting technique aids developers in in-
ferring and identifying relevant functions that implement one or more policy
statement(s) to assist in compliance verification. Our technique demonstrates
that the burden of identifying areas of code that operationalize relevant poli-
cies can be reduced through inference using the semantic constructs of the
natural language itself and coding conventions driven by such constructs.

2. An implementation of our technique in a tool called CASTOR is presented.
It accepts as inputs policy statements and source code; and outputs a set
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of semantic mappings between policy statements and function specifications
(methods). These mappings aid one to assess the completeness of an imple-
mentation with respect to stated policies. More importantly, the semantic
mapping which is established directly between policy statements (as pre-
sented to users) and source code deem useful for organisations in quality
assessment and compliance preservation.

3. We present an evaluation of our technique and tool on inferring mapping
between privacy policies and the code implementing these policies for two
open-source social networking sites, namely Diaspora and Friendica. Our
evaluation shows that we can achieve a F1 accuracy of 70% for Diaspora and
78% for Friendica (for the balanced class experiment) in finding the semantic
mappings required as compared with a ground truth mapping established by
thorough manual examination of the policies and code.

2 Related Work

In this section we first contrast our work with techniques that automate map-
pings between textual documents and source code, followed by an approach to
privacy leak detection using flow analysis. We then discuss techniques that au-
tomate mappings between policies and software requirements specifications.
Text Documents and Source Code: Pandita et al. [24] attempt to transform
natural language descriptions of methods, as found in API documentation, into
formal specifications for function behaviour, as described by code contracts. Their
method involves parsing the API documentation through Part-Of-Speech (POS)
tagging aided by domain-specific noun boosting and jargon handling, followed
by the application of a shallow parser which attempts to classify the sentences
of lexical tokens based on predefined semantic templates. The result of this
process is a first-order logic expression which is then parsed for equivalences and
redundancies and finally used to generate code contracts [3]. These contracts can
then be inserted into the functions to which the corresponding API documents
refer. While their work demonstrates the possibility of mapping between natural
language and representations of source code, it differs from our work in two ways:
firstly, we are interested in identifying implementations of policy statements in
the source code, rather than in generating assertions for error–checking; and
secondly, the mapping is done in a far more narrow domain than attempted in
this paper, as API documentation is naturally more precisely connected to the
source code it describes than user-facing texts such as policies.

Antoniol et al. [9, 10] describe an approach to establish and maintain links
between source code and free text documents such as requirements, design doc-
uments and user manuals, etc. Their work is based on the assumption that
programmers use meaningful names for program concepts, such as functions,
variables, types, classes, and methods; therefore, the analysis of these concepts
(identifiers) can aid in associating high level concepts with program concepts, and
vice-versa. The approach is based on a stochastic language model that assigns
a probability value to every string of words taken from a prescribed vocabulary.
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The relevant documents are used to estimate the language models, one for each
document or identifiable section. Then, a classifier – Bayesian classification –
is used to compute the score of the sequence of mnemonics extracted from a
selected area of code against the language models. A high score indicates a high
probability that a particular sequence of mnemonics is extracted from the docu-
ment, or a section, that generated the language model. This implies the existence
of a semantic link between the document and the area of code from which the
particular sequence of mnemonics is extracted. However, the approach is pri-
marily applied to text that is likely to clearly express source code functionality
(requirements specification documents). In contrast, our approach addresses the
scenario where code and policies have either evolved independently or policies
have come into existence post-development and deployment.

Privacy in Source Code: Jang et al. [18] approach the breach of privacy by
user-facing websites through flow analysis of the Javascript code from several
major websites. Their method involves the design and implementation of a lan-
guage for specification of privacy-breaching information flows, and was trialled
on a large sample of well-visited websites. Where their approach tests uniformly
for four specific information breaching flows to identify violations, we aim to tie
source code to the publicly expressed policies of social networking sites. Our ap-
proach also performs analysis of source code, but whereas their method analyses
client-side code, we perform analysis of the server-side handling of information,
which is arguably more critical for tracing potentially hidden violations.

Policies and Requirements: Massey et al. [21] evaluated the security and
privacy requirements of an existing software system – the iTrust, open source
electronic health record system – for legal compliance with a regulatory docu-
ment (HIPAA). Their work mainly focuses on establishing trace links between
software requirements and legal texts which, while an important initial step in
legal compliance, does not fully complete the mapping between legal texts such
as policies and the software code itself. Cleland-Huang et al. [14] proposed two
machine learning methods to automatically generate links between regulatory
codes (a subset of HIPAA) and product requirements. May et al. [22] present
a framework that formalises regulatory rules, HIPAA, and exploit this formali-
sation to analyse the rules’ conformance to a health-care system automatically.
Fisler, et al. [16] also attempt a model-checking based verification system, Mar-
grave, for analysing role-based access control policies. However, these works fo-
cus on deriving software requirements from privacy policies and legal documents
(primarily in the healthcare domains). In contrast, we aim to establish a seman-
tic mapping between areas of code (functions) that implement particular policy
statements described in natural language – and in situations where policies need
to be mapped to code post-hoc implementation.

3 Semantic Inference

CASTOR’s semantic inference mechanism (cf. Appendix A for CASTOR’s architec-
ture) presents a technique that enables software developers to infer and identify
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areas of code (aka functions) that implement particular policy statements de-
scribed in natural language. This inference technique is driven by the semantics
of natural language and coding conventions, wherein verbs and nouns used in
policy statements and source code (e.g., in function and parameter names) pro-
vide useful clues that enable a semantic mapping to be established between the
two artefacts.

Privacy 
Policy

Source
Code

Contracts

def addPost = {
   def user = 
        User.findById(params.id);

   if (user) {
      def newPost = 
             new Post(params)
       user.addToPosts(newPost)
       ............
       ............
       ............
       track()
   }
}

Action

Data

Function 
Name

Parameters

Statements

Similarity
Measure

.............

............

............

.............

........

........

............. .............

Fig. 1. An overview of our semantic mapping approach.

A premise of this work is that programmers use meaningful names for source
code primitives, such as functions, parameters and classes. Much of the appli-
cation domain knowledge that developers employ when writing code is often
captured by these mnemonics for code primitives; thus these mnemonics aid in
associating source code primitives with high-level concepts (e.g., policy state-
ments) [10]. In this section, we provide basic definitions and concepts relating to
policies, source code and the relationship between policy and source code prim-
itives, wherein, we measure how close the code primitives, namely functions
and parameters, are to the policy primitives of actions and data.

3.1 Definitions

The semantic mapping between policy and source code is drawn using a semantic
relatedness measure between the primitives of these artefacts, namely, similarity
between the words e.g., data-parameter, action-function, etc. As summarised
below, we define a model for privacy policies, source code functions and followed
by the semantic relatedness between the two. Herein,

– A policy, PP, is considered to be a set of statements. Each statement s ∈ PP
is modelled as the tuple s = 〈a,D〉, where D = {d1, d2, ..., dn} ⊆ D is the
data items referred to by the statement and a ∈ A is the action verb (e.g.,
share, track, collect, etc.).
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– F is the set of functions implemented in source code. A function f =
〈c, n, P 〉, f ∈ F is modelled as a triple, where c is the class to which it
belongs, n is the function’s name and P is the set of its parameter names.

– Semantic relatedness, R : W × W → [0, 1] is the measure of semantic
similarity between two words w0, w1 ∈ W.

– MF : S → W ⊆ F is a relationship between policy statements, s ∈ S, and
source code functions, f ∈ W, where W is the subset of functions that map
to one or more statements in S. This relationship is computed using the
semantic relatedness measure defined above, applied to the words used in
policy statements and function/parameter names.

In the following subsections each of the above modelling and mapping techniques
are elaborated.

3.2 Policy Model Construction

The construction of the policy model, PP, is based on two common linguistic
analysis techniques, namely part-of-speech tagging and shallow parsing. Part-
of-Speech (POS) tagging is the process of assigning parts of speech, such as
noun, verb, adjective, etc., to each word in a text (statements). A shallow parser
accepts the lexical tokens generated by the POS tagger and divides those tokens
into segments which correspond to certain syntactic units, such as noun phrases,
verbs, verb phrases, etc. Figure 2 illustrates a simplified example of a parsed
policy statement.

The annotated statements are mapped based on their grammatical functions
to policy primitives of ‘action’, the activity that the actor performs and ‘data’,
the data item to which an actor’s action relates. In doing this, the fact that
each grammatical function has a designated semantic role in natural language
is exploited. Actions, for example, are expressed by any of the verbs or verb
phrases (VP) in natural language, while data tends to be identified by nouns
and noun phrases. For example, the tokens labelled [VB: post] and [NN: post]
in Figure 2 will be tagged as action and data respectively.

[WRB: Whenever] [PRP: you] [VB: post]  [JJ: content] 
[IN: like] [NN: status] [NNS: updates]  [PRP: you] [MD: can] 
[VB: select] [DT: a] [NN: privacy] [VBG: setting] [IN: for] 
[DT: every] [NN: post].                                                              

Legend: WRB: Whadverb, PRP: Personal pronoun, VB: Verb,  JJ: Adjective, IN: Preposition, 
NN: Noun (singular), NNS: Noun(plural), MD: Modal, DT: Determiner, VBG: Verb 

Fig. 2. An example of tagged policy statement.

This grammatical mapping process is aided by a data dictionary to assist
when mapping composite data primitives such as ‘personally identifiable infor-
mation’. The data dictionary is used to associate and identify relevant noun
phrases with pre-defined data classes. Without this, ‘personally identifiable in-
formation’ would be annotated as an adjective phrase by the POS tagger instead
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of as a noun phrase as required for this analysis. This association is essential to
the semantic mapping step in which such composite data primitives are expanded
to obtain the individual data items that are grouped within that class such as
‘gender’, ‘sexuality’, ‘relationship status’, etc. Note, the POS Tagger used here
was adapted from the Stanford Parser [19].

To aid in retaining the core elements of the policy statements, i.e., verbs and
nouns, selected terms and grammatical constructs are removed. These include
stop words (e.g., the, is, at, when, etc.), personal and possessive pronouns. The
decision to retain only the core elements of the policy statement is to construct
an intermediate policy model that is easy to comprehend and allows for cohe-
sion with the original statement. Although, formalised policies like P3P [15] and
EPAL [11] have been proposed to make policies more readable and enforceable,
they have several limitations, e.g., the P3P language does not have a clear se-
mantics and can therefore be interpreted and presented differently by different
user agents; and, an EPAL policy must be enforced at the time data is accessed
which causes significant performance overhead – every data access has to rely
on an external policy evaluation. Furthermore, the policy model proposed in
this work avoids the additional complexity that comes with formalisation and
utilises the semantics of natural language constructs which can be interpreted
and translated appropriately.

3.3 Source Code Model Construction

The source code model is constructed automatically using a (naive) static pro-
gram analysis technique [26]. The analyser parses the code base of an online
social network and constructs a model based on class, functions and parameter
names. This model is inspired by code contracts [23] which are a way of ab-
stractly expressing what a function accomplishes. Functions, F , are modelled as
triples, f = 〈c, n, P 〉, where c is the class to which the function belongs, n is the
function’s name and P the set of its parameter names. Note: in this paper the
terms ‘parameter’ and ‘variable’ are used interchangeably. These code principles
are extracted to ease the semantic mapping (described next) of policy and source
code primitives.

3.4 Semantic Mapping

The semantic mapping, MF , between S and F is based on the premise that
policy statements are operationalized as functions at the source code level. The
strategy for establishing this semantic mapping is based on a hybrid approach
of Natural Language Processing (NLP) and machine learning applied to policy
statements and source code. We use a lexical resource, namely WordNet3 to
discover the semantic relatedness, R, (a measure of “similarity”) between policy
and source primitives. WordNet is a broad coverage lexical network of English
words that contains around 100,000 terms, organised into taxonomic hierarchies.
Nouns, adjectives, verbs and adverbs are organised into networks of synonym

3 http://wordnet.princeton.edu/
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sets (synsets) that each represent one underlying concept and are interlinked
with a variety of relations. For instance, a word that has multiple meanings
(polysemous) will appear in one sysnset for each of its definitions. The measure
of relatedness between two words, w0, w1 ∈ W, in WordNet is computed using
path length in the network graph: R : W × W → [0, 1]. The shorter the path
from one word to another, the more similar they are.

We then use a machine learning technique to map statements to functions
using the computed similarity measures (input to the machine learning algo-
rithm). The trained classifier can then distinguish between a correct and in-
correct mapping when it is confronted with new similarity values by using the
learned mapping model.

Examination of Naming Conventions: As previously mentioned, the seman-
tic mapping approach is drawn from the concept of relating policy and source
primitives. We measure how close the source primitives (variables/parameters or
functions) are to the policy primitives of actions and data. Common program-
ming practices tend to dictate that functions are named as verbs and variables
are named as nouns [25]. These naming conventions are crucial to this approach,
so we verified whether this practice held in the real world. A unigram POS tag-
ger from the Python Natural Language Toolkit4 was run across the source code
from two social networks, Diaspora5 and Friendica6. These two code bases are
the datasets used for evaluation in this paper.

The tagger was trained on Brown corpus7 (a general text collection that
contains 500 samples of English-language text, totalling roughly to one million
words), with a regular expression based backoff parser implementing a tech-
nical dictionary. We ran the tagger over a collection of function and variable
names drawn from the source code of Diaspora and Friendica. As the common
camelCase and snake case coding conventions are likely to confuse a natu-
ral language tagger, such examples were split into their individual words (e.g,
camelCase to camel case).

As shown in Table 1, while function parameters mapped as expected to nouns
(77.50%), results vary for the function name mapping. Unsplit function names
were mostly categorised as nouns by default, but splitting these names into con-
stituent tokens revealed a modest increase in the proportion of tokens identified
as verbs. Further examination showed that the first token after such splitting
was in most cases a verb, as in get name or similar constructs. 44.2% of function
names contained at least one verb token. The relatively high parameter-to-noun
and function-to-verb semantic relatedness illustrates that the approach for data-
to-parameter and action-to-function mappings is a viable measures in terms of
drawing a similarity between policy and source primitives.

4 http://nltk.googlecode.com/svn/trunk/doc/howto/wordnet.html
5 https://github.com/diaspora
6 https://github.com/friendica/friendica
7 http://www.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/

content/corpora/list/private/brown/brown.html
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Table 1. Verb and Noun percentages of function names and variables.

% Nouns % Verbs # Tagged

parameters 77.50 6.82 21034

parameters (split) 75.35 8.23 27967

function name 68.04 25.68 5366

function name (split) 56.48 27.89 11842

function name (first token) 43.20 44.20 5366

Mapping Inference: The problem of mapping policy statements to source
code functions that operationalize those statements is formulated as a binary
classification problem, because the mappings are either correct or incorrect. Our
semantic inference is an application of the Random Forests [12] classifier, which
is an effective approach to the problem of learning and classification [20, 17].
We found that this classifier best fitted our mapping model and outperformed
other standard classifiers such as nâıve bayes [1] and support vector machine [2].
The classifier needs to be trained once per social network (domain-dependent),
as random forests are a supervised learning technique. This is performed using
manually created mappings. By confirming the manually mapped s−f pairs, one
can then provide more training data to the classifier and improve its prediction.

To infer the mapping, for each policy statement s ∈ S the classifier predicts
if a source code function f ∈ F maps to that statement, that is 〈s, f〉 ∈ MF .
And, to do this, labelled examples, i.e., a training dataset of correct and incor-
rect mappings, are required to estimate a ‘target learning model’ in the machine
learning technique. This estimated learning model is then used to classify an
input vector of features into classes. In CASTOR, the labelled examples are gen-
erated using manually created mappings. These manually created mappings are
established based on a method that was derived in prior work [8]. The method
provides a systematic means of studying the traceability (mapping) between
privacy policies and controls in social networks, hence establishing the degree of
traceability between the two. In [8], we define the degree of traceability as the
level of certainty that we can have about the existence of an externally observable
relationship measured using a qualitative 3-point scale.

By confirming the manually mapped statement/function pairs, one can then
provide more training data to the classifier and improve its prediction (target
learning model). We label such manual mapped 〈s, f〉 pairs as G (indicating
correct mappings), while non-mapping pairs are labelled N (indicating incorrect
mappings). For each statement, function pair 〈s, f〉 we extract a feature vector
v = 〈dc, af, dp, pc〉 for classification:

1. data-class-similarity, dc = Rmaxd∈Ds
(d, cf ), where Ds is the set of data

items of the statement s, and cf is the class name of the function f ;
2. action-function-similarity, af = Rmaxa∈As

(a, nf ), where As is the set of
actions of the statement s, and nf is the name of the function f ;
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3. data-parameter-similarity, dp = Rmaxd∈Ds,p∈Pf
(d, p), where Ds is the

set of data items of the statement s, and Pf are the parameter names of the
function f ;

4. parameter count, pc = |Pf | is the number of parameters of function f .

The WordNet path similarity is used as a measure for semantic relatedness of
the feature variables dc, af, and dp. When actions, data items, parameter names
or function names consist of multiple words W , the maximum similarity of these
words were used as semantic relatedness: R(W,x) = maxw∈W (w, x).

The measure of semantic relatedness as outlined above generates a set of
vector of features for the learning method, which classifies each vector of features
into the set of mapping classes, V = {G,N}. For example (for the training
dataset), the feature vector for the statement–function pair 〈s1, f6〉 shown below
(see Statement s1 & Listing. 1.1) is v = 〈0.67, 0.00, 0.74, 5〉. Thus, in order to
calculate the most probable class (G or N) for this vector, the features are run
down all of the trees in the forest and the final class of the vector is decided by
aggregating the votes (i.e., predicted class) of each tree – which is G in this case.

Statement, s1: The default privacy setting for some of the information you
post on Diaspora is set to “everyone”.

Listing 1.1. Snippet of function,f6, setDefault from the Diaspora code base.

4 Evaluation

The data used in our experiments consists of privacy policies and source code of
two social networks: Diaspora and Friendica. Both of these sites are decentralised
social networks implemented using Ruby on Rails and PHP respectively. We
selected these sites in accordance with the following constraints: availability of
source code (open-source), at least 1000 function specifications, and the fact that
they are implemented using different programming languages and frameworks.
The motivation behind this selection is to test the coverage of our semantic map-
ping technique across different conventions used in real–world implementations.

10



Since the two social networks are decentralised open source networks, there
were no publicly available privacy policies. This is a constraint that we faced since
most popular social networks with a published privacy policy are closed source
systems. We, therefore, synthesised policies drawing upon our earlier detailed
investigation of privacy policies of 16 social networks [7], in which we showed
that there exist a significant disconnect between policy statements and user-
facing privacy controls. The synthesised privacy policies were representative of
those that would be shown to users of these sites8.

This section describes the different (independent) experiments conducted us-
ing machine learning techniques for the semantic inference. Recall that for each
experiment the input to the classifier is the set of pairs 〈s, f〉 where each pair
consists of the features v = 〈dc, af, dp, pc〉. The results of these experiments and
the conclusions drawn are then presented.

4.1 Experiment 1: Unbalanced classes

There was a drastic imbalance of classes in our experimental datasets. Non-
mapping statement–function pairs (class N) are far more common than mapping
ones (class G) – see Table 2. This is due to the inherent nature of our input,
there are significantly more contracts that are not relevant to policy statements
compared to those that are relevant. In this unbalanced experiment we train the
classifier on this unbalanced data, but adjust the weights of the class importance
during learning, so that the equal error rate EER = |FPR−FNR| is minimised
(FPR is the false positive rate, FNR is the false negative rate).

Table 2. Class imbalance ‖N‖ · ‖G‖−1 for all 2 datasets, with and without heuristics.

Dataset No Heuristics Heuristics % Reduction

Diaspora 1347.01 601.98 44.69

Friendica 2195.99 700.81 31.91

For each dataset we manually created a ground truth mapping (based on
the method in [8]). We trained network-dependent classifiers using an 80/20
training/test data split which we evaluated using a randomised cross validation.
We report scores based on true positive rates (recall), TPR, false positive rates,
FPR, precision, PPV and F1 score. The recall score for each class, namely G
and N , provides information on the number of semantic mappings that were
successfully identified, while the precision score takes into account all identified
mappings for each class and evaluates how many of them were actually relevant.
Finally, the F1 score is the harmonic mean of precision and recall (see Appx. B).

4.2 Experiment 2: Balanced classes

A common practice for dealing with imbalanced data sets is to rebalance them ar-
tificially. This is essential to evaluate the fundamental soundness of our semantic

8 See example policies at http://www.paulineanthonysamy.com/myData.html
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mapping approach. Over and under-sampling methodologies have received signif-
icant attention as a technique to rebalance classes [13]. Therefore, in the second
experiment we trained and tested CASTOR’s classifier on balanced datasets. For
each dataset (one for each of the two social networks) we balance both classes
(G, N), by randomly sampling an equal number of statement/function pairs.
This random resampling method for balancing classes has been shown to be an
effective technique when faced with an imbalance problem [13] as in our case.

rand
s∈PP,f∈F

〈s, f〉 s.t. |〈s, f〉 ∈ M| = |〈s, f〉 6∈ M|.

4.3 Experiment 3: Introducing heuristics

To alleviate the class imbalance, we introduce heuristics that exclude source
code functions that are unlikely to map to policy statements. An expert would
expect operationalizing functions to be located in specific places (i.e. packages
and folders), depending on the programming language and framework that was
used to implement the social network. We encode that knowledge and reject
functions based on where in the source code they are defined. Below are some of
the heuristics introduced:

– Global: Sources within the ‘db/’, ‘spec/’, ‘config/’, ‘lib/’, ‘script/’,

‘markdown/’ folders across our dataset were removed. These folders were
selected as they contain database table descriptions, application wide con-
figuration files, third-party library files, scripts and markdown files.

– Framework Specific: These were mainly to deal with the different terminolo-
gies and spellings among the folders.

• PHP: Sources within the ‘view/’, ‘util/’, ‘test/’, ‘mods/’, ‘library/’
folders were removed.

• Ruby: Sources within the ‘presenters/’, ‘assets/’, ‘views/’, ‘mailers/’,
‘error message’, ‘layout’ folders were removed.

Our heuristics do not reject functions that were manually labelled as ground
truth. This way we reduce the class imbalance by 44.69% for Diaspora and
31.91% for Friendica respectively across the two social networks (see Table 2).

4.4 Results

Figure 3 depicts a box plot of mean similarity scores obtained from WordNet
for ground truth (mapped), G, and non-mapping, N , statements respectively –
indicated by the center horizontal line within each box. The outliers are repre-
sented by •. The scores are computed for each statement, function pair 〈s, f〉
with dc, af , dp, pc. As illustrated by Figure 3 the mean scores for the two sites
are higher for the ground truth (mapped) statements, namely 0.343 (s.d. 0.220)
for Diaspora and 0.346 (s.d. 0.208) for Friendica. In comparison the non-mapping
statements’ means were 0.146 (s.d. 0.117) for Friendica and 0.166 (s.d. 0.127)
for Diaspora. These values show that, although the overall similarity scores are
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Fig. 3. Mean similarity scores of ground truth, G, and non-ground truth mappings, N .

Table 3. Table showing results from Random Forest classifier. The table labels are as
follows:- Recall: TPR, False Positive Rate: FPR, Precision: PPV , F1 score: F1, Equal
Error Rate: EER.

Dataset TPR FPR PPV F1 EER

Diaspora

Balanced 0.693 0.296 0.700 0.696 0.011

Unbalanced 0.759 0.265 0.002 0.004 0.024

Heuristic 0.777 0.301 0.004 0.008 0.078

Friendica

Balanced 0.788 0.245 0.762 0.775 0.033

Unbalanced 0.806 0.242 0.001 0.003 0.048

Heuristic 0.790 0.315 0.003 0.007 0.105

small, WordNet consistently returned a higher similarity score for statements in
G than statements in N , which warrants that our semantic mapping approach
achieves its aim as to infer the mapping between policy statements and code.

The semantic mapping results are reported in Table 3 for all three exper-
iments: unbalanced, balanced, and with heuristics. In all instances, the recall
(TPR) rates were consistently high for Diaspora (between 0.69 and 0.78) and
Friendica (between 0.79 and 0.80) indicating a high level of success in the iden-
tification of semantic mappings for each of our classes – G and N . These rates
are crucial as it illustrates that our approach works in the non-optimal case, i.e.,
unbalanced classes, which is the norm in the real world. The consistent TPR
and FPR rates shows that our approach generalises, and performs well, over dif-
ferent social networks. The EER (representing the number of false positive and
false negative are equal) were also consistently low across all the experiments –
at an average of 5% and 6% for Diaspora and Friendica.
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We observe a very low precision in the unbalanced experiment (0.002). This
is to be expected as it has been observed previously [13] that class imbalance
(i.e., significant differences in class sizes) may produce a deterioration of the
performance achieved by learning and classification systems. This precision score
(PPV) significantly improved when the class sizes were balanced (Diaspora: 70%
and Friendica: 76%).

Introducing simple heuristics to the unbalanced class improved precision (by
a mean factor of 2.19, s.d. 0.24). Albeit a small increase, the observed improve-
ment was proportional to reduction of the class imbalance shown in Table 2.
This indicates that using heuristics improves the classification performance.

5 Discussion & Future Work

The scale and complexity of current systems make the task of identifying rele-
vant sections of code (functions) that implement or realise a policy extremely
challenging. Our technique demonstrates that this burden of identifying areas of
code that operationalizes relevant policies can be reduced through inference (F1
accuracy of 70% and 78% for Diaspora and Friendica – balanced class exper-
iment) using the semantic constructs of the natural language itself and coding
conventions driven by such constructs. Though the functionality of a method is
most critical in ensuring that requirements are upheld, this mandates that secu-
rity demands arising from high-level policies are explicitly attached to methods
at the time the code is written. This is infeasible nigh impossible in typical sce-
narios where code bases predate policies. Our approach allows this connection to
be made based on well-established naming conventions. While this would never
be as precise as a detailed semantic analysis of each method’s code, the latter
would be extremely expensive. Our usage of naming conventions means that
such mapping can be easily added (post-hoc) to systems to highlight methods,
which may need to be checked against security demands arising from policies. By
identifying and short-listing the relevant methods, our approach not only ben-
efits developers but potentially policy or compliance auditors for data sensitive
systems such as Facebook and Google that are prone to accidental breaches.

Limitations: Our semantic mapping approach relies on WordNet’s similarity
measures to compare policy and source code primitives. The overall WordNet
similarity scores are low as it is designed as a dictionary based on psycho-
linguistic principles rather than a knowledge base. WordNet lacks contextual
policy information. For example, in a social-networking policy, WordNet does not
interpret ‘track’ as ‘recording information’ therefore we were compelled to take
the most-related pair of synsets among the matched options. We hypothesized
that these measures can be significantly increased if a verb-synonym database
was available and later confirmed it [6]. The verb synonym database was built
by extracting all the verbs from the privacy policies analysed in [8] and manually
classifying them based on their semantic meanings. The semantic meanings of
these verbs were determined using a lexical dictionary.

14



Table 4. Table showing results from Random Forest classifier with the verb synonym
database. The table labels are as follows:- Recall: TPR, False Positive Rate: FPR,
Precision: PPV , F1 score: F1, Equal Error Rate: EER.

Dataset TPR FPR PPV F1 EER

With Verb Synonym Database

Diaspora

Balanced 0.785 0.251 0.757 0.771 0.031

Unbalanced 0.735 0.250 0.002 0.004 0.013

Heuristic 0.762 0.245 0.006 0.011 0.017

Friendica

Balanced 0.797 0.209 0.792 0.795 0.006

Unbalanced 0.836 0.230 0.002 0.003 0.066

Heuristic 0.806 0.281 0.004 0.008 0.087

The results of the three experiments improved when conducted with a verb
synonym database (cf. Table 4). In particular, the recall rates (TPR) increased
for both datasets – Balanced: Diaspora: 78.5% and Friendica: 79.7%; Unbal-
anced: Diaspora 73.5% and Friendica 83.6%; and, Heuristic: Diaspora 76.2%
and Friendica 80.6%. The precision also increased for both the datasets in the
balanced class experiment, i.e., 77.1% and 79.5% accordingly. Although, the pre-
cision score was still relatively low in the unbalanced and heuristic experiments
(due to the fact that the classes were still vastly disproportionate), there was a
small hike in Friendica’s PPV rates – 0.1% rise – but there was no change in
Diaspora. Whereas, the heuristic experiment improved the PPV rates for both
datasets, i.e., about 0.2% in Diaspora and 0.1% in Friendica.
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A Implementation: CASTOR

We have implemented our technique in a tool called CASTOR. Figure 4 illus-
trates the architecture of CASTOR. CASTOR accepts as inputs policy statements
and source code; and outputs a set of semantic mappings between policy state-
ments and functions. Briefly, CASTOR works on the input as follows:

Policy Engine: CASTOR’s policy engine is composed of a parser and a state-
ment analyser which transforms the natural language policy into an intermediate
representation (as described in Section 3.2). This intermediate representation
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maintains the relevant policy primitives of a statement, namely action (verbs)
and data (nouns).

Code Engine: CASTOR’s code engine is composed of a minimal recursive-
descent parser that extracts a function’s name, associated class and parameters,
along with information identifying the source file and line number where the
function can be found. This is inline with our source model construction in Sec-
tion 3.3.

Mapping Engine: CASTOR’s mapping engine infers the mapping between the
privacy policy PP and source code functions F using its inbuilt WordNet corpora
and classifier. The output of this engine is a set of semantic mappings between
policy statement(s) and functions.

B Formulae

Recall (TPR) = tp
tp+fn ; False-Positive Rate (FPR) = fp

fp+tn ; Precision (PPV)

= tp
tp+fp ; and F1 = 2 · Precision·Recall

Precision+Recall .
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