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ABSTRACT
Software-defined networks can enable a variety of concurrent, dy-
namically instantiated, measurement tasks, that provide fine-grain
visibility into network traffic. Recently, there have been many pro-
posals to configure TCAM counters in hardware switches to moni-
tor traffic. However, the TCAM memory at switches is fundamen-
tally limited and the accuracy of the measurement tasks is a func-
tion of the resources devoted to them on each switch. This paper de-
scribes an adaptive measurement framework, called DREAM, that
dynamically adjusts the resources devoted to each measurement
task, while ensuring a user-specified level of accuracy. Since the
trade-off between resource usage and accuracy can depend upon the
type of tasks, their parameters, and traffic characteristics, DREAM
does not assume an a priori characterization of this trade-off, but
instead dynamically searches for a resource allocation that is suf-
ficient to achieve a desired level of accuracy. A prototype imple-
mentation and simulations with three network-wide measurement
tasks (heavy hitter, hierarchical heavy hitter and change detection)
and diverse traffic show that DREAM can support more concurrent
tasks with higher accuracy than several other alternatives.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]; C.2.3 [Network
Operations]: Network monitoring; C.2.4 [Distributed Systems]:
Network operating systems

Keywords
Software-defined Measurement; Resource Allocation

1. INTRODUCTION
Today’s data center and enterprise networks require expensive

capital investments, yet provide surprisingly little visibility into
traffic. Traffic measurement can play an important role in these
networks, by permitting traffic accounting, traffic engineering, load
balancing, and performance diagnosis [7, 11, 13, 19, 8], all of
which rely on accurate and timely measurement of time-varying
traffic at all switches in the network. Beyond that, tenant services
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in a multi-tenant cloud may need accurate statistics of their traffic,
which requires collecting this information at all relevant switches.

Software-defined measurement [39, 25, 31] has the potential to
enable concurrent, dynamically instantiated, measurement tasks. In
this approach, an SDN controller orchestrates these measurement
tasks at multiple spatial and temporal scales, based on a global
view of the network. Examples of measurement tasks include iden-
tifying flows exceeding a given threshold and flows whose volume
changes significantly. In a cloud setting, each tenant can issue dis-
tinct measurement tasks. Some cloud services have a large number
of tenants [1], and cloud providers already offer simple per-tenant
measurement services [2].

Unlike prior work [39, 35, 31, 29], which has either assumed
specialized hardware support on switches for measurement, or has
explored software-defined measurements on hypervisors, our paper
focuses on TCAM-based measurement in switches. TCAM-based
measurement algorithms can be used to detect heavy hitters and
significant changes [31, 41, 26]. These algorithms can leverage ex-
isting TCAM hardware on switches and so have the advantage of
immediate deployability. However, to be practical, we must address
a critical challenge: TCAM resources on switches are fundamen-
tally limited for power and cost reasons. Unfortunately, measure-
ment tasks may require multiple TCAM counters, and the num-
ber of allocated counters can determine the accuracy of these tasks.
Furthermore, the resources required for accurate measurement may
change with traffic, and tasks may require TCAM counters allo-
cated on multiple switches.

Contributions. In this paper, we discuss the design of a system
for TCAM-based software-defined measurement, called DREAM.
Users of DREAM can dynamically instantiate multiple concurrent
measurement tasks (such as heavy hitter or hierarchical heavy hitter
detection, or change detection) at an SDN controller, and addition-
ally specify a flow filter (e.g., defined over 5-tuples) over which
this measurement task is executed. Since the traffic for each task
may need to be measured at multiple switches, DREAM needs to
allocate switch resources to each task.

To do this, DREAM first leverages two important observations.
First, although tasks become more accurate with more TCAM re-
sources, there is a point of diminishing returns: beyond a certain
accuracy, significantly more resources are necessary to increase the
accuracy of the task. Moreover, beyond this point, the quality of
the retrieved results, say heavy hitters is marginal (as we quantify
later). This suggests that it would be acceptable to maintain the ac-
curacy of measurement tasks above a high (but below 100%) user-
specified accuracy bound. Second, tasks need TCAM resources
only on switches at which there is traffic that matches the speci-
fied flow filter, and the number of resources required depends upon
the traffic volume and the distribution. This suggests that allocat-



ing just enough resources to tasks at switches and over time might
provide spatial and temporal statistical multiplexing benefits.

DREAM uses both of these observations to permit more con-
current tasks than is possible with a static allocation of TCAM
resources. To do this, DREAM needs to estimate the TCAM re-
sources required to achieve the desired accuracy bound. Unfor-
tunately, the relationship between resource and accuracy for mea-
surement tasks cannot be characterized a priori because it depends
upon the traffic characteristics. If this relationship could have been
characterized, an optimization-based approach would have worked.
Instead, DREAM contains a novel resource adaptation strategy for
determining the right set of resources assigned to each task at each
switch. This requires measurement algorithm-specific estimation
of task accuracy, for which we have designed accuracy estima-
tors for several common measurement algorithms. Using these,
DREAM increases the resource allocated to a task at a switch when
its global estimated accuracy is below the accuracy bound and its
accuracy at the switch is also below the accuracy bound. In this
manner, DREAM decouples resource allocation, which is performed
locally, from accuracy estimation, which is performed globally.
DREAM continuously adapts the resources allocated to tasks, since
a task’s accuracy and resource requirements can change with traf-
fic. Finally, if DREAM is unable to get enough resources for a task
to satisfy its accuracy bound, it drops the task.

DREAM is at a novel point in the design space: it permits mul-
tiple concurrent measurements without compromising their accu-
racy, and effectively maximizes resource usage. We demonstrate
through extensive experiments on a DREAM prototype (in which
multiple concurrent tasks three different types are executed) that
it performs significantly better than other alternatives, especially
at the tail of important performance metrics, and that these per-
formance advantages carry over to larger scales evaluated through
simulation. DREAM’s satisfaction metric (the fraction of task’s
lifetime that its accuracy is above the bound) is 2× better at the tail
for moderate loads than an approach which allocates equal share of
resources to tasks: in DREAM, almost 95% of tasks have a satisfac-
tion higher than 80%, but for equal allocation, 5% have a satisfac-
tion less than 40%. At high loads, DREAM’s average satisfaction
is nearly 3× that of equal allocation. Some of these relative per-
formance advantages also apply to an approach which allocates a
fixed amount of resource to each task, but drops tasks that cannot
be satisfied. However, this fixed allocation rejects an unacceptably
high fraction of tasks: even at low load, it rejects 30% of tasks,
while DREAM rejects none. Finally, these performance differences
persist across a broad range of parameter settings.

2. RESOURCE-CONSTRAINED SOFTWARE-
DEFINED MEASUREMENT

In this section, we motivate the fundamental challenges for real-
time visibility into traffic in enterprise and data center networks.
Software-defined Measurement (SDM) provides this capability by
permitting a large amount of dynamically instantiated network-wide
measurement tasks. These tasks often leverage flow-based coun-
ters in TCAM in OpenFlow switches. Unfortunately, the number
of TCAM entries are often limited. To make SDM more practi-
cal, we propose to dynamically allocate measurement resources to
tasks, by leveraging the diminishing returns in the accuracy of each
task, and temporal/spatial resource multiplexing across tasks.

2.1 TCAM-based Measurement
In this paper, we focus on TCAM-based measurement tasks on

hardware switches. Other work has proposed more advanced mea-

Figure 1: TCAM-based task example

surement primitives like sketches [39], which are currently not avail-
able in commercial hardware switches and it is unclear when they
will be available. For this reason, our paper explicitly focuses on
TCAM-based measurement, but many of the techniques proposed
in this paper can be extended to sketch-based measurement (we
leave such extensions to future work). In more constrained environ-
ments like data centers, it may be possible to perform measurement
in software switches or hypervisors (possibly even using sketches),
but this approach (a) can be compromised by malicious code on
end-hosts, even in data-center settings [37, 9], (b) does not gen-
eralize to wide-area deployments of SDN [24], and (c) introduces
additional constraints (like hypervisor CPU usage) [22].

To understand how TCAM memory can be effectively used for
measurement, consider the heavy hitter detection algorithm pro-
posed in [26]. The key idea behind this (and other TCAM-based
algorithms) is, in the absence of enough TCAM entries to moni-
tor every flow in a switch, to selectively monitor prefixes and drill
down on prefixes likely to contain heavy hitters. Figure 1 shows a
prefix trie of two bits as part of source IP prefix trie of a task that
finds heavy hitter source IPs (IPs sending more than, say, 10Mbps
in a measurement epoch). The number inside each node is the vol-
ume of traffic from the corresponding prefix based on the “current”
set of monitored prefixes. The task reports source IPs (leaves) with
volume greater than threshold.

If the task cannot monitor every source IP in the network because
of limited TCAM counters, it only monitors a subset of leaves trad-
ing off some accuracy. It also measures a few internal nodes (IP
prefixes) to guide which leaves to monitor next to maximize accu-
racy. For example in Figure 1, suppose the task is only allowed to
use 3 TCAM counters, it first decides to monitor 11, 10 and 0*.
As prefix 0* sends large traffic, the task decides to drill down un-
der prefix 0* in the next epoch to find heavy hitters hoping that they
will remain active then. However, to respect the resource constraint
(3 TCAM counters), it must free a counter in the other sub-tree by
monitoring prefix 1* instead of 10 and 11.

2.2 Task Diversity and Resource Limitations
While the previous sub-section described a way to measure heavy

hitters at a single switch, the focus of our work is to design an
SDM system that (a) permits multiple types of TCAM-based mea-
surement tasks across multiple switches that may each contend for
TCAM memory, and (b) adapts the resources required for concur-
rent tasks without significantly sacrificing accuracy.

SDM needs to support a large number of concurrent tasks, and
dynamic instantiation of measurement tasks. In an SDN-capable
WAN, network operators may wish to track traffic anomalies (heavy
hitters, significant changes), and simultaneously find large flows to
effect preferential routing [7], and may perform each of these tasks
on different traffic aggregates. Operators may also instantiate tasks
dynamically to drill down into anomalous traffic aggregates. In
an SDN-capable multi-tenant data center, individual tenants might
each wish to instantiate multiple measurement tasks. Modern cloud
services have a large number of tenants; for example, 3 million do-
mains used AWS in 2013 [1]. Per-tenant measurement services
are already available — Amazon CloudWatch provides tenant op-
erators very simple network usage counters per VM [2]. In the fu-
ture, we anticipate tenants instantiating many measurement tasks to



achieve distinct goals such as DDoS detection or better bandwidth
provisioning [10, 38].

Each measurement task may need hundreds of TCAM entries for
sufficient accuracy [31, 26, 41], but typical hardware switches have
only a limited number of TCAMs. There are only 1k-2k TCAM
entries in switches [19, 23], and this number is not expected to in-
crease dramatically for commodity switches because of their cost
and power usage. Moreover, other management tasks such as rout-
ing and access control need TCAMs and this can leave fewer entries
for measurement.

2.3 Dynamic Resource Allocation for SDM
Given limited resources and the need to support concurrent mea-

surement tasks, it is important to efficiently allocate TCAM re-
sources for measurement.

Leverage: Diminishing returns in accuracy for measurement.
The accuracy of a measurement task depends on the resources al-
located to it [31, 39]. For example, for heavy hitter (HH) detection,
recall, the fraction of true HHs that are detected, is a measure of ac-
curacy. Figure 2 shows the result of our HH detection algorithm on
a CAIDA traffic trace [3] with a threshold of 8 Mbps (See Section 5
for implementation details).

The figure shows that more counters leads to higher recall. For
example, doubling counters from 512 to 1024 increases recall from
60% to 80% (Figure 2(a)). There is a point of diminishing re-
turns for many measurement tasks [17, 30, 28, 27] where addi-
tional resource investment does not lead to proportional accuracy
improvement. The accuracy gain becomes smaller as we double
the resources; it only improves from 82% to 92% when doubling
the number of counters from 1024 to 2048, and even 8K counters
are insufficient to achieve an accuracy of 99%. Furthermore, the
precise point of diminishing returns depends on the task type, pa-
rameters (e.g., heavy hitter threshold) and traffic [31].

Another important aspect of the relationship between accuracy
and resource usage of TCAM-based algorithms is that, beyond the
point of diminishing returns, additional resources yield less signif-
icant outcomes, on average. For example, the heavy hitters de-
tected with additional resources are intuitively “less important” or
“smaller” heavy hitters and the changes detected by a change de-
tection algorithm are smaller, by nearly a factor of 2 on average (we
have empirically confirmed this).

This observation is at the core of our approach: we assert that
network operators will be satisfied with operating these measure-
ment tasks at, or slightly above, the point of diminishing returns,
in exchange for being able to concurrently execute more measure-
ment tasks.1 At a high-level, our approach permits operators to
dynamically instantiate three distinct kinds of measurement tasks
(discussed later) and to specify a target accuracy for each task.
It then allocates TCAM counters to these tasks to enable them to
achieve the specified accuracy, adapts TCAM allocations as tasks
leave or enter or as traffic changes. Finally, our approach performs
admission control because the accuracy bound is inelastic and ad-
mitting too many tasks can leave each task with fewer resources
than necessary to achieve the target accuracy.

Leverage: Temporal and Spatial Resource Multiplexing. The
TCAM resources required for a task depends on the properties of
monitored traffic. For example, as the number of heavy hitters in-
creases, we need more resources to detect them. This presents an
opportunity to statistically multiplex TCAM resources across tasks

1Indeed, under resource constraints, less critical measurement tasks might well return
very interesting/important results even well below the point of diminishing returns.
We have left an exploration of this point in the design space to future work.

on a single switch: while a heavy hitter task on a switch may see
many heavy hitters at a given time, a concurrent change detection
task may see fewer anomalies at the same instant, and so may need
fewer resources. This dependence on TCAM resources with traf-
fic is shown in Figure 2(a), where the recall of the HH detection
task with 256 entries decreases in the presence of more HHs and
we need more resources to keep its recall above 50%. If we allo-
cate fixed resources to each task, we would either over-provision
the resource usage and support fewer tasks, or under-provision the
resource usage and obtain low accuracy.

Measurement tasks also permit spatial statistical multiplexing,
since the task may need resources from multiple switches. For ex-
ample, we may need to find heavy hitter source IPs on flows of
a prefix that come from multiple switches. Figure 2(b) shows the
recall of heavy hitters found on two switches monitoring differ-
ent traffic: the recall at each switch is defined by the portion of
detected heavy hitters on this switch over true heavy hitters. The
graph shows that with the same amount of resources, the switches
exhibit different recall; conversely, different amounts of resources
may be needed at different switches.

These leverage points suggest that it may be possible to effi-
ciently use TCAM resources to permit multiple concurrent mea-
surement tasks by (a) permitting operators2 to specify desired accu-
racy bounds for each task, and (b) adapting the resources allocated
to each task in a way that permits temporal and spatial multiplex-
ing. This approach presents two design challenges.

Challenge: Estimating resource usage for a task with a desired
accuracy. Given a task and target accuracy, we need to determine
the resources to allocate to the task. If we knew the dependence
of accuracy on resources, we could solve the resource allocation
problem as an optimization problem subject to resource constraints.
However, it is impossible to characterize the resource-accuracy de-
pendence a priori because it depends on the traffic, the task type, the
measurement algorithms, and the parameters [31]. Furthermore, if
we knew the current accuracy, we could then compare it with the
desired accuracy and increase/decrease the resource usage corre-
spondingly. Unfortunately, it is also impossible to know the cur-
rent accuracy because we may not have the ground truth during
the measurement. For example, when we run a heavy hitter detec-
tion algorithm online, we can only know the heavy hitters that the
algorithm detects (which may have false positives/negatives), but
require offline processing to know the real number of heavy hitters.
To address this challenge, we need to estimate accuracy and then
dynamically increase or decrease resource usage until the desired
accuracy is achieved. For example, to estimate recall (a measure
of accuracy) for heavy hitter detection, we can compute the real
number of heavy hitters by estimating the number of missed heavy
hitters using the collected counters. In Figure 1, for example, the
task cannot miss more than two heavy hitters by monitoring prefix
0* because there are only two leaves under node 0* and its total
volume is less than three times the threshold. In Section 5, we use
similar intuitions to describe accuracy estimators for other mea-
surement tasks.

Challenge: Spatial and Temporal Resource Adaptation. As
traffic changes over time, or as tasks enter and leave, an algorithm
that continually estimates task accuracy and adapts resource allo-
cation to match the desired accuracy (as discussed above) will also
be able to achieve temporal multiplexing. In particular, such an

2Operators may not wish to express and reason about accuracy bounds. Therefore, a
deployed system may have reasonable defaults for accuracy bounds, or allow priorities
instead of accuracy bounds, and translate these priorities to desired accuracy bounds.
We have left an exploration of this to future work.
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Figure 2: Accuracy of HH detection

algorithm will allocate minimal resources to measurement tasks
whose traffic does not exhibit interesting phenomena (e.g., heavy
hitters), freeing up resources for other tasks that may incur large
changes, for example. However, this algorithm alone is not suf-
ficient to achieve spatial multiplexing, since, for a given task, we
may need to allocate different resources on different switches to
achieve a desired global accuracy. For example, a task may wish to
detect heavy hitters within a prefix P, but traffic for that prefix may
be seen on switch A and B. If the volume of prefix P’s traffic on A is
much higher than on B, it may suffice to allocate a large number of
TCAM resources on A, and very few TCAM resources on B. De-
signing an algorithm that adapts network-wide resource allocations
to achieve a desired global accuracy is a challenge, especially in
the presence of traffic shifts between switches. DREAM leverages
both the global estimated accuracy and a measure of accuracy esti-
mated for each switch to decide on which switch a task needs more
resources in order to achieve the desired global accuracy.

3. DREAM OVERVIEW
DREAM enables resource-aware software-defined measurement.

It supports dynamic instantiation of measurement tasks with a spec-
ified accuracy, and automatically adapts TCAM resources allocated
to each task across multiple switches. DREAM can also be ex-
tended to other measurement primitives (like sketches) and tasks
for which it is possible to estimate accuracy.

Architecture and API. DREAM implements a collection of al-
gorithms (defined later) running on an SDN controller. Users of
DREAM submit measurement tasks to the system. DREAM period-
ically reports measurement results to users, who can use these re-
sults to reconfigure the network, install attack defenses, or increase
network capacity. A DREAM user can be a network operator, or a
software component that instantiates tasks and interprets results.

Our current implementation supports three types of measurement
tasks, each with multiple parameters:
Heavy Hitter (HH) A heavy hitter is a traffic aggregate identified

by a packet header field that exceeds a specified volume. For
example, heavy hitter detection on source IP finds source IPs
contributing large traffic in the network.

Hierarchical Heavy Hitter (HHH) Some fields in the packet hea-
der (such as the source/destination IP addresses) embed hier-
archy, and many applications such as DDoS detection require
aggregates computed at various levels within a hierarchy [33].
Hierarchical heavy hitter (HHH) detection is an extension of
HH detection that finds longest prefixes that exceed a certain
threshold even after excluding any HHH descendants in the pre-
fix trie [15].

Change Detection (CD) Traffic anomalies such as attacks often
correlate with significant changes in some aspect of a traffic ag-
gregate (e.g., volume or number of connections). For example,
large changes in traffic volume from source IPs have been used
for anomaly detection [41].

Figure 3: DREAM System Overview

Each of these tasks takes four parameters: a flow filter specifying
the traffic aggregate to consider for the corresponding phenomenon
(HH, HHH or CD); a packet header field on which the phenomenon
is defined (e.g., source IP address); a threshold specifying the mini-
mum volume constituting a HH or HHH or CD; and a user-specified
accuracy bound (usually expressed as a fraction). For example, if
a user specifies, for a HH task a flow filter < 10/8,12/8,∗,∗,∗ >,
source IP as the packet header field, a threshold of 10Mb and an
accuracy of 80%, DREAM measures, with an accuracy higher than
80%, heavy hitters in the source IP field on traffic from 10/8 to 12/8,
where the heavy hitter is defined as any source IP sending more
than 10Mb traffic in a measurement epoch. The user does not spec-
ify the switch to execute the measurement task; multiple switches
may see traffic matching a task’s flow filter, and it is DREAM’s
responsibility to install measurement rules at all relevant switches.

Workflow. Figure 3 shows the DREAM workflow, illustrating both
the interface to DREAM and the salient aspects of its internal opera-
tion. A user instantiates a task and specifies its parameters (step 1).
Then, DREAM decides to accept or reject the task based on avail-
able resources (step 2). For each accepted task, DREAM initially
configures a default number of counters at one or more switches
(step 3). DREAM also creates a task object for each accepted task:
this object encapsulates the resource allocation algorithms run by
DREAM for each task.

Periodically, DREAM retrieves counters from switches and passes
these to task objects (step 4). Task objects compute measurement
results and report the results to users (step 5). In addition, each
task object contains an accuracy estimator that measures current
task accuracy (step 6). This estimate serves as input to the resource
allocator component of DREAM, which determines the number of
TCAM counters to allocate to each task and conveys this number to
the corresponding task object (step 7). The task object determines
how to use the allocated counters to measure traffic, and may re-
configure one or more switches (step 3). If a task is dropped for
lack of resources, DREAM removes its task object and de-allocates
the task’s TCAM counters.

DREAM Generality. These network-wide measurement tasks
have many applications in data centers and ISP networks. For
example, they are used for multi-path routing [7], optical switch-
ing [12], network provisioning [21], threshold-based accounting [20],
anomaly detection [42, 41, 26] and DDoS detection [33].

Furthermore, DREAM can be extended to more general measure-
ment primitives beyond TCAMs. Our tasks are limited by TCAM
capabilities because TCAM counters can only measure traffic vol-
umes for specific prefixes. Moreover, TCAM-based tasks need a
few epochs to drill down to the exact result. However, DREAM’s



key ideas — using accuracy estimators to allocate resources, and
spatially multiplexing resource allocation — can be extended to
other measurement primitives not currently available on commod-
ity hardware, such as sketches. Sketches do not require controller
involvement to detect events and can cover a wider range of mea-
surement tasks than TCAMs (volume and connection-based tasks
such as Super-Spreader detection) [39]. We can augment DREAM
to use sketches, since sketch accuracy depends on traffic properties
and it is possible to estimate this accuracy [17]. We leave discus-
sion of these extensions to future work.

There are two main challenges in DREAM, discussed in subse-
quent sections: the design of the resource allocator, and the design
of task-specific accuracy estimators.

4. DYNAMIC RESOURCE ALLOCATION
DREAM allocates TCAM resources to measurement tasks on

multiple switches. Let ri,s(t) denote the amount of TCAM re-
sources allocated to the i-th task on switch s at time t. Each task is
also associated with an instantaneous global accuracy gi(t). Recall
that the accuracy of a task is a function of the task type, parame-
ters, the number of its counters per switch and the traffic matching
its flow filter on each switch.

DREAM allocates TCAM resources to maintain high average
task satisfaction, which is the fraction of time where a task’s ac-
curacy gi(t) is greater than the operator specified bound. More im-
portant, at each switch, DREAM must respect switch capacity: the
sum of ri,s(t) for all i must be less than the total TCAM resources
at switch s, for all t.

To do this, DREAM needs a resource allocation algorithm to al-
locate counters to each task (i.e., the algorithm determines ri,s(t)).
DREAM also needs an admission control algorithm; since the accu-
racy bound is inelastic (Section 2), admitting tasks indiscriminately
can eventually lead to zero satisfaction as no task receives enough
resources to achieve an accuracy above the specified bound.

Strawman approaches. One approach to resource allocation is to
apply a convex optimization periodically, maximizing the number
of satisfied tasks by allocating ri,s(t) subject to switch TCAM con-
straints. This optimization technique requires a characterization
of the resource-accuracy curve, a function that maps target accu-
racy to TCAM resources needed. The same is true for an optimiza-
tion technique like simulated annealing which requires the ability
to predict the “goodness” of a neighboring state. As discussed in
Section 2.3, however, it is hard to characterize this curve a priori,
because it depends upon traffic characteristics, and the type of task.

An alternative approach is to perform this optimization itera-
tively: jointly (for all tasks across all switches) optimize the in-
crease or decrease of TCAM resources, measure the resulting ac-
curacy, and repeat until all tasks are satisfied. However, this joint
optimization is hard to scale to large numbers of switches and tasks
because the combinatorics of the problem is a function of product
of the number of switches and the number of tasks.

If the total resource required for all tasks exceeds system capac-
ity, the first approach may result in an infeasible optimization, and
the second may not converge. These approaches may then need
to drop tasks after having admitted them, and in these algorithms
admission control is tightly coupled with resource allocation.

Solution Overview. DREAM adopts a simpler design, based on two
key ideas. First, compared to our strawman approaches, it loosely
decouples resource allocation from admission control. In most
cases, DREAM can reject new tasks by carefully estimating spare
TCAM capacity, and admitting a task only if sufficient spare capac-
ity (or headroom) exists. This headroom accommodates variabil-

ity in aggregate resource demands due to traffic changes. Second,
DREAM decouples the decision of when to adapt a task’s resources
from how to perform the adaptation. Resource allocation decisions
are made when a task’s accuracy is below its target accuracy bound.
The task accuracy computation uses global information. How-
ever, in DREAM, a per-switch resource allocator maps TCAM re-
sources to tasks on each switch, which increases/decreases TCAM
resources locally at each switch step-wise until the overall task ac-
curacy converges to the desired target accuracy. This decoupling
avoids the need to solve a joint optimization for resource alloca-
tion, leading to better scaling.

Below, we discuss three components of DREAM’s TCAM re-
source management algorithm: the task accuracy computation, the
per-switch resource allocator, and the headroom estimator. We ob-
serve that these components are generic and do not depend on the
types of tasks (HH, HHH, or CD) that the system supports.

Task Accuracy Computation. As discussed above, DREAM allo-
cates additional resources to a task if its current accuracy is below
the desired accuracy bound. However, because DREAM tasks can
see traffic on multiple switches, it is unclear what measure of accu-
racy to use to make this decision per switch. There are two possible
measures: global accuracy and local accuracy on each switch. For
example, if a HH task has 20 HHs on switch A and 10 HHs on
switch B, and we detect 5 and 9 true HHs on each switch respec-
tively, the global accuracy will be 47% and the local accuracy will
be 25% for A and 90% for B.

Let gi be the global accuracy for task i, and li,s be its local ac-
curacy at switch s. Simply using gi to make allocation decisions
can be misleading: at switch s, li,s may already be above the accu-
racy bound, so it may be expensive to add additional resources to
task i at switch s. This is because many measurement tasks reach a
point of diminishing returns in accuracy as a function of assigned
resources. In the above example, we do not want to increase re-
sources on switch B when the accuracy bound is 80%. Conversely,
li,s may be low, but adding measurement resources to i at switch s
may be unnecessary if gi is already above the accuracy bound. For
the above example, we do not want to increase resources on switch
A when the accuracy bound is 40%.

This discussion motivates the use of an overall accuracy ai,s =
max(gi, li,s) to decide when to make resource allocation decisions.
Of course, this quantity may itself fluctuate because of traffic chang-
es and estimation error. To minimize oscillations due to such fluc-
tuations, we smooth the overall accuracy using an EWMA filter.
In what follows, we use the term overall accuracy to refer to this
smoothed value. The overall accuracy for a task is calculated by its
task object in Figure 3.

The Per-switch Resource Allocator. The heart of DREAM is the
per-switch resource allocator (Figure 3), which runs on the con-
troller and maps TCAM counters to tasks for each switch.3 It uses
the overall accuracy ai,s(t) to redistribute resources from rich tasks
(whose overall accuracy are above the accuracy bound) to poor
tasks (whose overall accuracy is below the accuracy bound) to en-
sure all tasks are above the accuracy bound. DREAM makes alloca-
tion decisions at the granularity of multiple measurement epochs,
an allocation epoch. This allows DREAM to observe the effects of
its allocation decisions before making new allocations.

Ensuring Fast Convergence with Adaptive Step Sizes: The alloca-
tor does not a priori know the number of necessary TCAM counters
for a task to achieve its target accuracy (we call this the resource

3In practice, an operator might reserve a fixed number of TCAM counters for im-
portant measurement tasks, leaving only a pool of dynamically allocable counters.
DREAM operates on this pool.



target, denoted by Ri,s). The resource target for each task may also
change over time with changing traffic. The key challenge is to
quickly converge to Ri,s(t); the longer ri,s(t) is below the target,
the less the task’s satisfaction.

Because Ri,s is unknown and time-varying, at each allocation
epoch, the allocator iteratively increases or decreases ri,s(t) in steps
based on the overall accuracy (calculated in the previous epoch) to
reach the right amount of resources. The size of the step determines
the convergence time of the algorithm and its stability. If the step is
too small, it can take a long time to move resources from a rich task
to a poor one; on the other hand, larger allocation step sizes enable
faster convergence, but can induce oscillations. For example, if a
satisfied task needs 8 TCAMs on a switch and has 10, removing 8
TCAMs can easily drop its accuracy to zero. Intuitively, for stabil-
ity, DREAM should use larger step sizes when the task is far away
from Ri,s(t), and smaller step sizes when it is close.

Since Ri,s is unknown, DREAM estimates it by determining when
a task changes its status (from poor to rich or from rich to poor) as
a result of a resource change. Concretely, DREAM’s resource al-
location algorithm works as follows. At each measurement epoch,
DREAM computes the sum of the step sizes of all the poor tasks sP,
and the sum of the step sizes of all the rich tasks sR.4 If sP ≤ sR,
then each rich task’s ri,s is reduced by its step size, and each poor
task’s ri,s is increased in proportion to its step size (i.e., sR is dis-
tributed proportionally to the step size of each poor task). The con-
verse happens when sP > sR. If we increase or decrease ri,s during
one allocation epoch, and this does not change the task’s rich/poor
status in the next epoch, then, we increase the step size to enable
the task to converge faster to its desired accuracy. However, if the
status of task changes as a result of a resource change, we return
TCAM resources (but use a smaller step size) to converge to Ri,s.

Figure 4 illustrates the convergence time to Ri,s(t) for different
increase/decrease policies for the step size. Here, multiplicative
(M) policies change step size by a factor of 2, and additive (A)
policies change step size by 4 TCAM counters every epoch. We
ran this experiment with other values and the results for those val-
ues are qualitatively similar. Additive increase in AM and AA has
slow convergence when Ri,s(t) changes since it takes a long time
to increase the step size. Although MA reaches the goal fast, it
takes long for it to decrease the step size and converge to the goal.
Therefore, we use multiplicative increase and decrease (MM) for
changing the step size; we have also experimentally verified its su-
perior performance.

As an aside, note that our problem is subtly different from fair
bandwidth allocation (e.g., as in TCP). In our setting, different
tasks can have different Ri,s, and the goal is to keep their allocated
resources, ri,s, above Ri,s for more tasks, but fairness is a non-goal.
By contrast, TCP attempts to converge to a target fair rate that de-
pends upon the bottleneck bandwidth. Therefore, some of the intu-
itions about TCP’s control laws do not apply in our setting. In the
language of TCP, our approach is closest to AIAD, since our step
size is independent of ri,s. In contrast to AIAD, we use large steps
when ri,s is far from Ri,s for fast convergence, and we use small step
sizes otherwise for saving resources by making ri,s close to Ri,s.

Spare TCAM capacity, or headroom. Since Ri,s can change over
time because of traffic changes, running the system close to the ca-
pacity can result in low task satisfaction. Therefore, DREAM main-
tains headroom of TCAM counters (5% of the total TCAM capacity
in our implementation), and immediately rejects a new task if the

4 In our implementation, a task is considered rich only if ai,s > A+ δ , where A is
the target accuracy bound. The δ is a hysteresis threshold that prevents a task from
frequently oscillating between rich and poor states.
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Figure 4: Comparing step updates algorithms

headroom is below a target value on any switch for the task. This
permits the system to absorb fluctuations in total resource usage,
while ensuring high task satisfaction.

However, because it is impossible to predict traffic variability,
DREAM may infrequently drop tasks when headroom is insuffi-
cient.5 In our current design, operators can specify a drop priority
for tasks. DREAM lets the poor tasks with low drop priority (i.e.,
those that should be dropped last) steal resources from those tasks
with high drop priority (i.e., those that can be dropped first). When
tasks with high drop priority get fewer and fewer resources on some
switches, and remain poor for several consecutive epochs, DREAM
drops them, to ensure that they release resources on all switches.

DREAM does not literally maintain a pool of unused TCAM
counters as headroom. Rather, it always allocates enough TCAM
counters to all tasks to maximize accuracy in the presence of traffic
changes, but then calculates effective headroom when a new task
arrives. One estimate of effective headroom is sR− sP (the sum of
the step sizes of the rich tasks minus that of the poor tasks). How-
ever, this can under-estimate headroom: a rich task may have more
resources than it needs, but its step size may have converged to a
small value and may not accurately reflect how many resources it
can give up while still maintaining accuracy. Hence, DREAM intro-
duces a phantom task on each switch whose resource requirement
is equal to the headroom. Rich tasks are forced to give up resources
to this phantom task, but, when a task becomes poor due to traffic
changes, it can steal resources from this phantom task (this is possi-
ble because the phantom task is assigned the lowest drop priority).
In this case, if rph is the phantom task’s resources, the effective
headroom is rph + sR− sP, and DREAM uses this to determine if
the new task should be admitted.

5. TASK OBJECTS AND ACCURACY ES-
TIMATION

In DREAM, task objects implement individual task instances.
We begin by describing a generic algorithm that captures task ob-
ject functionality. An important component of this algorithm is a
task-independent iterative algorithm for configuring TCAM coun-
ters across multiple switches. This algorithm leverages TCAM
properties, and does not depend upon details of each task type (i.e.,
HH, HHH or CD). We conclude the section with a discussion of
the task-dependent components of the generic algorithm, such as
the accuracy estimator.

This deliberate separation of functionality between generic, task-
independent, and task dependent parts enables easier evolution of
DREAM. To introduce a new task type, it suffices to design new
algorithms for the task-dependent portion, of which the most com-
plicated is the accuracy estimator.

5 Here, we assume that perimeter defenses are employed (e.g., as in data centers),
so malicious traffic cannot trigger task drops. In future work, we plan to explore
robustness to attack traffic.



Algorithm 1: DREAM task object implementation

1 foreach measurement iteration do
2 counters=fetchCounters(switches);
3 report = createReport(counters);
4 (global, locals) = t.estimateAccuracy(report, counters);
5 allocations = allocator.getAllocations(global, locals);
6 counters = configureCounters(counters, allocations);
7 saveCounters(counters,switches);
8 end

5.1 A Generic Algorithm for Task Objects
A DREAM task object implements Algorithm 1; each task object

runs on the SDN controller. This algorithm description is generic
and serves as a design pattern for any task object independent of the
specific functionality it might implement (e.g., HH, HHH or CD).

Each newly admitted task is initially allocated one counter to
monitor the prefix defined by the task’s flow filter (Section 3). Task
object structure is simple: at each measurement interval, a task
object performs six steps. It fetches counters from switches (line
2), creates the report of task (line 3) and estimates its accuracy (line
4). Then, it invokes the per-switch allocator (line 5, Section 4) and
allows the task to update its counters to match allocations and to
improve its accuracy (line 6). Finally, the task object installs the
new counters (line 7).

Of these six steps, one of them configureCounters() can
be made task-independent. This step relies on the capabilities of
TCAMs alone and not on details of how these counters are used to
measure HHs, HHHs or significant changes. Two other steps are
task-dependent: createReport, and estimateAccuracy.

5.2 Configuring Counters for TCAMs
Overview. After the resource allocator assigns TCAM counters to
each task object on each switch, the tasks must decide how to con-
figure those counters, namely which traffic aggregates to monitor
on which switch using those counters (configureCounters() in
Algorithm 1). A measurement task cannot monitor every flow in
the network because, in general, it will not have enough TCAM
counters allocated to it. Instead, it can measure traffic aggregates,
trading off some accuracy. For example, TCAM-based measure-
ment tasks can count traffic matching a traffic aggregate expressed
as a wild-card rule (e.g., traffic matching an IP prefix).

The challenge then becomes choosing the right set of prefixes
to monitor for a sufficiently accurate measurement while bounding
resource usage. A task-independent iterative approach works as
follows. It starts by measuring an initial set of prefixes in the prefix
trie for the packet header field (source or destination IP) that is an
input parameter to our tasks. Figure 5 shows an example prefix trie
for four bits.

Then, if the count on one of the monitored prefixes is “interest-
ing” from the perspective of the specific task (e.g., it reveals the
possibility of heavy hitters within the prefix), it divides that pre-
fix to monitor its children and use more counters. Conversely, if
some prefixes are “uninteresting”, it merges them to free counters
for more useful measurements.

While this approach is task-independent, it depends upon a task-
dependent component: a prefix score that estimates how “interest-
ing” the prefix is for the specific task. Finally, DREAM can only
measure network phenomena that last long enough for this iterative
approach to complete (usually, on the order of several seconds).

Divide-and-Merge. Algorithm 2 describes this divide-and-merge
algorithm in detail. The input to this algorithm includes (a) the cur-
rent configuration of counters allocated to the task and (b) the new
resource allocation. The output of this algorithm is a new configu-

Figure 5: A prefix trie of source IPs where the number on each node
shows the bandwidth used by the associated IP prefix in Mb in an

epoch. With threshold 10, the nodes in double circles are heavy hitters
and the nodes with shaded background are hierarchical heavy hitters.

ration describing the prefixes to be monitored in the next measure-
ment interval.

In the first step, the algorithm invokes a task-dependent function
that returns the score associated with each prefix currently being
monitored by the task object (line 1). We describe prefix scoring
later in this section, but scores are non-negative, and the cost of
merging a set of prefixes is the sum of their score. Now, if the
new TCAM counter allocation at some switches is lower than the
current allocation (we say that these switches are overloaded), the
algorithm needs to find prefixes to merge. It iteratively finds a set
of prefixes with minimum cost that can be merged into their ances-
tors, thereby freeing entries on overloaded switches (lines 2-4). We
describe how to find such candidate prefixes (cover() function)
below. After merging, the score of the new counter will be the total
score of merged counters.

Next, the algorithm iteratively divides and merges (lines 5-16).
First, it picks the counter with maximum score to divide (line 6) and
determines if that results in overloaded switches, designated by the
set F (line 7). If F is empty, for example, because the resource
allocator increased the allocation on all switches, no merge is nec-
essary, so the merge cost is zero. Otherwise, we use the cover()

function to find the counters to merge (line 10). Next, if the score
of the counter is worth the cost, we apply divide and merge (lines
12-15). After dividing, the score of children will be half of the
parent’s score [42]. The algorithm loops over all counters until no
other counter is worth dividing.

A similar algorithm has been used for individual measurement
tasks (e.g., HH [26], HHH [31], and traffic changes [41]). In this
paper, we provide a general task-independent algorithm, ensuring
that the algorithm uses bounded resources and adapting to resource
changes on multiple switches.

Algorithm 2: Divide and Merge

1 computeScores(counters);
2 while F = {over-allocated switches} 6= Φ do
3 merge(cover(F , counters, allocations));
4 end
5 repeat
6 m = maxIndex(counters.score);
7 F = toFree(m, allocations);
8 solution.cost=0;
9 if F 6= Φ then

10 solution=cover(F , counters, allocations);
11 end
12 if solution.cost<m.score then
13 divide(m);
14 merge(solution);
15 end
16 until no counter to divide;



On multiple switches. We now explain how divide-and-merge
works across multiple switches. We consider tasks that measure
phenomena on a single packet header field, and we leave to future
work extensions to multiple fields. For ease of exposition, we de-
scribe our approach assuming that the user specifies the source IP
field for a given task. We also assume that we know the ingress
switches for each prefix that a task wishes to monitor; then to mon-
itor the prefix, the task must install a counter on all of its ingress
switches and later sum the resulting volumes at the controller.

Dividing a prefix may need an additional entry on multiple switch-
es. Formally, if two sibling nodes in the prefix trie, A and B, have
traffic on switch sets SA and SB, monitoring A and B needs one entry
on each switch in SA and one on each switch in SB, but monitoring
the parent P needs one entry on SP = SA∪SB switches. Therefore,
merging A and B and monitoring the parent prefix frees one entry
on SA ∩ SB. Conversely, dividing the parent prefix needs one ad-
ditional entry on switches in SA ∩ SB. For example, suppose that
S0000 = {1,2} and S0001 = {2,3} in Figure 5 where set elements
are switch ids. Merging S0000 and S0001 saves an entry on 2.

The challenge is that we may need to merge more than two sib-
ling prefixes to their ancestor prefix to free an entry in a switch. For
example, suppose that S0010 = {3,4} and S0011 = {4,1}. To free
an entry on switch 3, we must merge S0001 and S0010. Therefore,
we merge all four counters to their common ancestor 00∗∗. 6

To generalize, suppose that for each internal node j in the prefix
trie (ancestor of counters), we know that merging all its descendant
counters would free entries on a set of switches, say Tj. Further-
more, let the cost for node j be the sum of the scores of the descen-
dant monitored prefixes of j. The function cover() picks those
Tj sets that cover the set of switches requiring additional entries,
F , with minimum total cost. There are fast greedy approximation
algorithms for Minimum Subset Cover [36].

Finally, we describe how to compute Tj for each internal node.
For each node j, we keep two sets of switches, S j and Tj. S j con-
tains the switches that have traffic on j and is simply S jle f t ∪ S jright

when j has two children jle f t , jright . Tj contains the switches that
will free at least one entry if we merge all its descendant counters to
j. Defining it recursively, Tj includes Tjle f t and Tjright , and contains
(by the reasoning described above) the common entries between the
switches having traffic on the left and right children, S jle f t ∩ S jright .
Tj is empty for prefixes currently being monitored.

5.3 Task-Dependent Algorithms
Beyond these task-independent algorithms, each task object im-

plements three task-dependent algorithms. We present the task-
dependent algorithms for HH, HHH, and CD tasks. A key task-
dependent component is accuracy estimation, and we consider two
task accuracy metrics: precision, the fraction of retrieved items that
are true positives; and recall, the fraction of true positives that are
retrieved. For these definitions, an item refers to a HH, HHH or
change detection. Depending on the type of measurement task,
DREAM estimates one of these accuracy measures to determine
TCAM resource allocation.

The task-dependent algorithms for these tasks are summarized in
Table 1, but we discuss some of the non-trivial algorithms below.

Heavy hitters: A heavy hitter is a traffic aggregate that exceeds a
specified volume. For example, we can define heavy hitters as the
source IPs whose traffic exceeds a threshold θ over a measurement
epoch. Figure 5 shows an example of bandwidth usage for each IP
prefix during an epoch. With a threshold of θ = 10Mb, there are a

6 Although we could just merge those two to 00∗∗, this creates overlapping counters
that makes the algorithm more complex and adds delay in saving rules at switches.

Task Create report Estimate accuracy Score

HH Report exact counters with
volume > θ

Estimate recall by estimat-
ing missed HHs

volume
#wildcards+1

HHH

Traverse prefix trie bottom-
up and report a prefix h
if volumeh − ∑i volumei > θ

where i is a descendant de-
tected HHH of h [15]

Estimate precision by
finding if a detected HHH
is a true one

volume

CD Report exact counters with
|volume−mean|> θ

Estimate recall by estimat-
ing missed changes

|volume−mean|
#wildcards+1

Table 1: Task dependent methods

total of two leaf heavy-hitters shown in double circles. Our divide-
and-merge approach iteratively drills-down to these two leaves.

Accuracy Estimation: For our TCAM-based algorithm, all de-
tected HHs are true, which means the precision is always one in this
algorithm. For this reason, we use recall as a measure of accuracy
for HH detection. Doing so requires an estimate of the number of
true HHs the algorithm misses. We use the smaller of the following
two bounds to estimate the missed heavy hitters under a non-exact
prefix. First, a prefix with b wildcard bits cannot miss more than
2b heavy hitters. For example, prefix 0∗∗∗ in Figure 5 has 8 heavy
hitters at most. Second, if the volume of the prefix is v, there can
only be b v

θ
c missed heavy hitters. This bound for prefix 0∗∗∗ will

be 4.
Finally, we need to estimate both local and global recall (Sec-

tion 4). We compute the local recall for a switch based on detected
HHs, and we estimate missed HHs from prefixes that have traffic
on the switch. However, there are cases where only a subset of
switches are bottlenecked (i.e., they have used all available coun-
ters, so it is not possible to further divide prefixes). In this case, we
only consider missed HHs on these switches.

Hierarchical heavy hitters: A variant of heavy hitters, called Hi-
erarchical Heavy Hitters (HHHs) [15] is useful for anomaly detec-
tion [42] and DDoS detection [33]. A HHH is (recursively) defined
by the longest IP prefixes that contribute traffic exceeding a thresh-
old θ of total traffic, after excluding any HHH descendants in the
prefix trie. For example in Figure 5, prefix 010* is a HHH as IPs
0100 and 0101 collectively have large traffic, but prefix 01** is not
a HHH because excluding descendent HHHs (010* and 0111), its
traffic is less than the threshold.

Accuracy Estimation: For HHHs, our algorithm estimates preci-
sion by determining whether a detected HHH is a true positive or a
false positive. Our algorithm assigns a precision value to each de-
tected HHH: the value is either 0 if it is a false positive, 1 if a true
positive, or fractional if there is ambiguity in the determination, as
discussed below. The overall accuracy estimate is an average of
these values. The method for making these value assessments is
different for HHHs without and with detected descendant HHHs.

If a detected HHH h has no detected descendant HHHs (e.g.,
0000, 010*, 0111 in Figure 5), it is a false positive HHH if it has
been detected instead of one of its descendants. So, for it to be a
true positive HHH, we need to ensure that none of its descendants
could have been a HHH. There are three cases. (1) h is an exact IP.
(2) We monitored the descendants of h and their volume is below
the threshold θ . For example, if we monitor 0100 and 0101, we
can confirm that the detected HHH 010* is a true one. In these two
cases, it is easy to tell h is a true HHH. (3) We only monitored h
and do not know about its descendants. If h has a count larger than
2θ , then h cannot be a true HHH, because the volume of at least
one of its children must be above θ . If the volume is smaller than
2θ , either the detected prefix or one of its sub-prefixes is HHH, so
we set its precision value to 0.5.

For an HHH h with detected descendant HHHs, the error in the
detected descendant HHHs can make h a false HHH. For example



in Figure 5, suppose that we report 0000, 010* and 011* as HHHs.
Now, the volume for 0*** excluding descendant HHHs will be 8
because of false detection of 011*. Therefore, instead of 0***, we
detect **** as HHH. In this scenario, we have over-approximated
the traffic from descendant HHHs of ****. In the worst case, the
over-approximated traffic has been excluded from a child of the de-
tected HHH. Thus, for each child prefix, we find if adding up these
over-approximations could make them a HHH. If any child with a
new volume becomes HHH, the parent cannot be, so as a heuristic,
we halve the precision weight of h. The over-approximation for
a HHH confirmed to be true is 0, and the over-approximation for
other HHHs can be at most volume−θ .

The global precision is the average precision value of detected
HHHs. To compute the local precision per switch, we compute
the average precision value of HHH prefixes from each switch. If
a HHH has traffic from multiple switches, we give the computed
precision value only to bottleneck switches, and precision 1 to other
switches.

For HHH tasks, recall can be calculated similar to HH tasks. We
have experimentally found that, for HHH, recall is correlated with
precision.

Change detection: A simple way to define the traffic change of a
prefix is to check if the difference between its current volume and
a moving average of its volume exceeds a specified threshold. In
this sense, change detection is similar to HH detection: a change is
significant if |volume−mean| > θ . Thus, for change detection,
reporting, prefix scoring, and accuracy estimation are similar to
those for HH tasks (Table 1): wherever volume is used in HH tasks,
|volume−mean| is used for CD.

6. EVALUATION
We have implemented a complete prototype of DREAM, and use

this to evaluate our approach and compare it with alternatives. We
then use simulations to explore the performance of DREAM on
larger networks, and also study its parameter sensitivity.

6.1 Evaluation Methodology
DREAM Implementation: We have implemented the DREAM
resource allocator and the task objects in Java on the Floodlight
controller [4]. Our implementation interfaces both with hardware
OpenFlow switches, and with Open vSwitch [5]. We have also im-
plemented alternative resource allocation strategies, described be-
low. Our total implementation is nearly 20,000 lines of code.

DREAM Parameter Settings: We use a one second measurement
interval and a two second allocation interval. We set the headroom
to 5% of the switch capacity and drop tasks if their global accuracy
is below the bound for 6 consecutive allocation iterations. The sen-
sitivity of DREAM to these parameters is explored in Section 6.4.

Tasks: Our workload consists of the three types of tasks, HH,
HHH and CD, both individually and in combination. We choose
80% as the default accuracy bound for all tasks since we have
empirically observed that to be the point of diminishing returns
for many tasks, but also explore DREAM’s performance for other
choices of accuracy bounds. We smooth the local and global ac-
curacies using EWMA with history weight of α = 0.4. The flow
filters for the tasks are chosen randomly from prefixes with 12 wild-
card bits to fit all our tasks. The default threshold for the above
tasks is 8Mb, and for change detection we also use the history
weight of α = 0.8. Our default drop priority is to drop the most
recent task first.

By controlling the mapping of prefixes to switches, we create
different scenarios of tasks on switches. For example, a tenant can
own a subnet of /12, and its virtual machines in this subnet can be
located on different switches. If we assign multiple /10 prefixes to
switches (i.e., each switch sees traffic from many tenants), each task
will have traffic from one switch. However, if we assign /15 pre-
fixes to switches (i.e., one tenant sends traffic from many switches),
each task monitors traffic from 8 switches at most.

Tasks run for an average of 5 minutes. For evaluations on our
prototype, 256 tasks having traffic from 8 switches arrive based on a
Poisson process during 20 minutes. For the large-scale simulation,
4096 tasks having traffic from 8 out of 32 switches arrive during
80 minutes. We note that these are fairly adversarial settings for
task dynamics, and are designed to stress test DREAM and other
alternatives.

Finally, we use a 5-hour CAIDA packet trace [3] from a 10Gbps
link with an average 2Gbps load. We divide it into 5-min chunks,
each of which contains 16 /4 prefixes, of which only prefixes with
>1% total traffic are used. Each task randomly picks a /4 prefix
which is mapped to its /12 filter

Evaluation metrics: We evaluate DREAM and other alternatives
using three metrics. The satisfaction of a task is the percentage of
time a task has an accuracy above the bound when the task was
active. In results from our prototype, we use estimated accuracy
because delays in installing TCAM counters in the actual experi-
ment make it difficult for us to assess the ground-truth in the traffic
seen by a switch. We have found in our evaluations that the esti-
mated accuracy consistently under-estimates the real accuracy by
5-10% on average, so our prototype results are a conservative esti-
mate of the actual satisfaction that tasks would see in practice. In
our simulation results, we use the real accuracy.

We show both the average and 5th percentile for this metric over
all tasks. The latter metric captures the tail behavior of resource
allocation: a 5-th percentile of 20 means that 95% of tasks had an
accuracy above the bound for 20% of their lifetime. The drop and
rejection ratios measure the percentage of tasks that are dropped
and rejected, respectively. While the rejection ratios can be a func-
tion of the workload and can be high in highly overloaded condi-
tions, we expect drop ratios to be small for a viable scheme (i.e., it
is desirable that a task, once admitted, is not dropped, but may be
rejected before admission).

Alternative Strategies: One alternative we explore is to reserve a
Fixed fraction of counters on each switch for a task, and reject tasks
for which this fixed allocation cannot be made. While we evaluated
fixed allocation with different fractions, here we only show the re-
sults for the scenario that allocates 1

32 of the resources on a switch
per task. Larger allocations result in higher satisfaction for fewer
tasks and a higher rejection ratio, and smaller fixed allocations ac-
cept more tasks at the expense of lower satisfaction. A more com-
plex algorithm is to give Equal amounts of resources to each task.
When a task joins, it gets an equal share of counters as other tasks
on the switches it has traffic from. The allocations are also updated
when a task leaves, and Equal does not reject tasks.

Experimental setup: We replay the CAIDA traffic on 8 switches.
We attempted to evaluate DREAM on a modern hardware switch
(the Pica8 3290 [6]) but its delay for rule installation is unaccept-
ably high: 256 rules take 1 second, and 512 rules take 10 seconds.
We believe better engineering will result in improved installation
times in the future; indeed, for applications with tight control loops
like ours, it is essential to improve installation times in hardware
switches. Our evaluations are conducted on software switches [5]
that can delete and save 512 rules in less than 20ms. We also reduce



control loop delay by using incremental update of TCAM counters
and associated rules, updating at each epoch only the rules that have
changed from the previous epoch. We show below that this strategy
results in acceptable rule installation performance (Section 6.5). In
our experiments, the DREAM prototype runs on a Floodlight con-
troller [4] on a quad core 2.4 Ghz Xeon processor connected to the
switches through a 1Gbps shared link with ping delay of 0.25ms.

6.2 Results from Prototype
Figure 6 shows, for different switch capacities, the 5th percentile

and mean satisfaction of tasks for HHH, HH, and CD separately,
as well as a combined workload that runs a mixture of these tasks.
The mean value is the upper end of each vertical bar, and the 5th

percentile is the lower end. These figures demonstrate DREAM’s
superior performance compared to the alternatives, both in terms of
the mean and the 5th percentile.

Large capacity switches. For large switches, DREAM can keep
almost all tasks satisfied by temporally and spatially multiplexing
TCAM resources without rejecting or dropping any task (Figure 7).
For example, Figure 6(b) shows that 95% of tasks were satisfied
for more than 94% of their lifetime. By contrast, a high mean and
a dramatically lower 5th percentile (about 40%, or nearly 2× less
than DREAM) for Equal indicate that this scheme has undesirable
tail behavior: it keeps tasks that require fewer resources satisfied,
but leaves large tasks unsatisfied. This is undesirable in general:
larger tasks are where the action happens, in a manner of speaking,
and cannot be left dissatisfied. The Fixed approach achieves high
average satisfaction, but has two drawbacks: poor tail performance,
and a high rejection ratio of about 30%.

Highly resource-constrained switches. For smaller switches, where
our workload overloads the resources on switches, DREAM lever-
ages rejection to limit the load and keep active tasks satisfied by
multiplexing resources. For example, in Figure 6(a) for a switch
with 512 counters, DREAM rejects about 50% of tasks, but can
keep 95% of tasks satisfied for more than 70% of their lifetime. By
contrast, in this setting, Equal performs pathologically worse: its
average satisfaction is 20% and 5% of tasks under Equal get nearly
zero satisfaction. This is because Equal does not perform admis-
sion control and it under-provisions resources in small switches and
thus gets low satisfaction. We emphasize that this is an adversarial
workload and represents a high degree of overload: DREAM has to
reject nearly 50% of the tasks, and drop about 10% in order to sat-
isfy the remaining tasks. Also, DREAM’s mean and 5th percentile
satisfaction is a little lower than for the larger switch capacity case,
mostly because the adaptation required to fit tasks into the smaller
switch requires more allocation epochs to converge.

Across different task types, the results are qualitatively consis-
tent, save for two exceptions. First, the drop ratio for HH detection
(Figure 7(a)) increases from switch capacity of 512 to 1024, which
is likely because of a decrease in the rejection ratio. Moreover, its
drop rate is higher than other tasks, which we believe is because
we under-estimate the accuracy of tasks. Remember that to calcu-
late the number of missed HHs under a prefix we used the bound
of volume

θ
. However, the missed HHs could have larger volumes

than θ and make this upper bound loose. This loose upper bound
ensures better 5th percentile performance than other schemes we
have tried, so it seems a better design choice: it drops more tasks
to favor satisfying more. Second, the average satisfaction of Equal
and Fixed is higher than other task types for change detection (but
the tail performance is poor). This is because, in our dataset, not
all epochs have a significant change, thus the tasks are satisfied in
those epochs even with very small resources.
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Figure 8: Large scale simulation (combined workload)

60 70 80 90
0

20

40

60

80

100

Accuracy bound

S
at

is
fa

ct
io

n

 

 

DREAM
Equal
Fixed

(a) Satisfaction

60 70 80 90
0

20

40

60

80

100

Accuracy bound

%
 o

f t
as

ks

 

 
DREAM−reject
Fixed−reject
DREAM−drop

(b) Rejection and drop

Figure 9: Accuracy bound paramter sensitivity analysis

6.3 Results from Simulation at Scale
We use simulation to study the performance of DREAM and

other alternatives at larger scale. Our simulator uses the same code
base as the prototype and is validated for the same setting [32].

DREAM’s superior performance is also evident in larger net-
works. Figure 8 compares the satisfaction and rejection ratio of
the combined workload on 32 switches with 4096 tasks (results for
individual task types are quantitatively similar). In this much larger
setting, the superior tail satisfaction of DREAM at low load (high
capacity) and the superior average satisfaction at high load (low ca-
pacity) are strikingly evident. As with smaller networks, DREAM
has a small drop ratio (less than 5%) at high load.

6.4 Parameter Sensitivity Analysis
To understand how sensitive our results are to changes in vari-

ous parameters, we conduct several experiments with a switch ca-
pacity of 1024 TCAM entries, but vary several other parameters.
We note that for our baseline workload, 1024 TCAM entries repre-
sent a constrained setting. For this set of results, we show results
for a specific type of task (HHH), rather than using results from a
combined workload, as this makes it easier to interpret the results
(Figures 9). A companion report [32] evaluates sensitivity to HHH
threshold, number of switches per task, task duration and task ar-
rival rate. The qualitative behavior of other tasks is similar.

DREAM keeps tasks satisfied for different accuracy bounds.
With higher accuracy bounds the allocation becomes harder, since
tasks in general need more resources, but DREAM can keep more
tasks satisfied with a smaller rejection rate compared to Fixed al-
location (Figure 9). DREAM is also uniformly better than Equal
allocation because it effectively multiplexes resources across tasks.

Headroom is important to keep drop rate low. If DREAM does
not reject tasks a priori, many tasks will starve just after joining
the system. For example, Figure 10(b) shows a drop rate of 30%
for DREAM when there is no headroom at an allocation interval of
2s. Interestingly, the level of headroom does not seem to make a
significant difference in the statistics of satisfaction, but can affect
drop rates. With a 5% and 10% headroom, drop rates are negligible.

Other DREAM parameters include allocation interval, drop thresh-
old, and the MM algorithm multiplicative factor. Figure 10(a) shows
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Figure 6: Satisfaction in prototype
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Figure 7: Rejection and drop in prototype

that allocating resources infrequently with a larger allocation inter-
val results in lower satisfaction because DREAM cannot adapt re-
sources quickly enough. Smaller drop threshold increases the drop
rate and satisfaction, and increasing the multiplicative factor of the
MM algorithm causes higher rejection rate because poor tasks over-
shoot their goal by large change step sizes and thereby reduce head-
room. Note that a smaller multiplication factor requires a larger
drop threshold to avoid unnecessary drops in under-loaded cases.
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Figure 10: Headroom and allocation epoch (combined workload)

6.5 Control Loop Delay
The delay of the control loop – the process of configuring coun-

ters and updating rules in TCAMs – can affect the accuracy of
real prototypes because important events can be missed while these
counters are being updated. We calculate the control loop delay by
calculating the average delay between fetching the counters from
the switches to receiving the OpenFlow barrier reply from all switch-
es after installing incremental rules on the prototype.

Figure 11(a) breaks down the delay of control loop into: saving
the incremental rules, fetching the counters, allocating resources,
creating the report and estimating its accuracy, configuring coun-
ters through divide and merge algorithm and the runtime overhead
for combining counter statistics from multiple switches and creat-
ing a counter on multiple switches for all tasks. The interesting
points are: (1) the allocation delay (the overhead of computing new
allocations) is negligible compared to other delays; (2) the aver-
age (95th%) allocation delay decreases with increasing switch size
from 0.65 (3.1) ms to 0.5 (1.3) ms, because for larger switches,
fewer tasks are dissatisfied although more tasks have been admit-
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Figure 11: Control loop delay (combined workload)

ted; (3) fetch times dominate save times (although it takes longer
to save or delete a counter than to fetch one) because we fetch all
counters, but only delete and save incrementally. For example, for
the case of switches with 1024 TCAM capacity, on average in each
epoch 90% of the counters did not change. This number increases
for larger switch capacities as tasks need to configure their coun-
ters less frequently because (a) they already have an accurate view
of network (b) their allocations changes rarely as more tasks are
satisfied with more resources.

Finally, the DREAM controller scales to many tasks because it
is highly parallelizable; each task can run on a core and each per-
switch allocator can run separately. The per-switch resource allo-
cator does more work as we increase the number of switches per
task, since each switch sees more tasks. Figure 11(b) shows that
the mean, and 95th percentile of allocation delay in the large scale
simulation environment (on a 32 core machine) increases for larger
number of switches per task, but the mean is still less than 10ms
and the control loop delay is still dominated by other (unavoidable)
latencies in the system.

7. RELATED WORK
Software-defined measurement and programmable measure-
ment: Prior work has explored different measurement primitives [20,
35], but, unlike DREAM, assumes offline analysis of collected mea-
surement data, and thus cannot dynamically change their measure-
ment resource usage when traffic changes or more measurement
tasks come.

Previous work on software-defined measurement [39, 31, 25]
and programmable measurement [18, 40] has shown the benefits of



allowing operators or cloud tenants to customize the measurement
for their traffic with different measurement primitives. Amazon
CloudWatch [2] also provides simple customized measurement in-
terface for tenants. Like these, DREAM allows measurement tasks
to specify the flows and traffic characteristics to measure, but, be-
yond prior work, provides dynamic resource allocation solutions to
enable more and finer-grained measurement tasks.

Resource allocation of measurement tasks: OpenSketch [39]
uses worst case theoretical bounds of sketches to allocate resources
on a single switch to measurement tasks. CSAMP [34] uses consis-
tent sampling to distribute flow measurement on multiple switches
for a single measurement task and aims at maximizing the flow
coverage. Volley [29] uses a sampling-based approach to moni-
tor state changes in the network, with the goal of minimizing the
number of sampling operations. Payless [14] decides the measure-
ment frequency for concurrent measurement tasks to minimize the
controller bandwidth usage, but does not provide any guarantee
on accuracy or bound on switch resources. In contrast, DREAM
focuses on flow-based rules in TCAM. DREAM dynamically al-
locates network-wide resources to multiple measurement tasks to
achieve their given accuracy bound.

TCAM-based measurement and accuracy estimators: Previ-
ous TCAM-based algorithms for specific measurement tasks either
only work on a single switch [31, 26, 25] or do not adjust counters
for bounded resources at switches [41, 26]. We designed a generic
divide-and-merge measurement framework for multiple switches
with resource constraints. Previous work has proved the theoreti-
cal bounds for the worst case resource usage for only hash-based
measurements [17, 16]. We proposed heuristics for estimating the
accuracy of TCAM-based measurement algorithms by exploiting
relationships between counters already collected.

8. CONCLUSIONS
Measurement is fundamental for network management systems.

DREAM enables operators and cloud tenants to flexibly specify
their measurement tasks in a network, and dynamically allocates
TCAM resources to these tasks based on the resource-accuracy
tradeoffs for each task. DREAM ensures high accuracy for tasks,
while taking network-wide resource constraints as well as traffic
and task dynamics into account.
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