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Abstract
We investigate the benefit of augmenting with geo-location in-
formation the language model used in speech recognition for
voice-search.

We observe reductions in perplexity of up to 15% relative
on test sets obtained from both typed query data, as well as tran-
scribed voice search data; on a subset of the test data consist-
ing of “local” queries — search results displaying a restaurant,
some address, or similar — the reduction in perplexity is even
higher, up to 30% relative.

Automatic speech recognition experiments confirm the util-
ity of geo-location information for improved language model-
ing. Significant reductions in word error rate are observed both
on general voice search traffic, as well as “local” traffic, up to
2% and 8% relative, respectively.
Index Terms: language modeling, geo-location, query stream,
voice search

1. Introduction
Mobile is poised to become the predominant platform over
which people are accessing the World Wide Web. Recent devel-
opments in speech recognition, backed by high quality speech
signal acquisition on smartphones and tablets are presenting the
users with the choice of speaking their web search queries in-
stead of typing them. A critical component of an automatic
speech recognition (ASR) system targeting web search is the
language model (LM). Previous work [1]-[2] described the use-
fulness of the typed query stream for voice-search language
modeling.

Another important signal that accompanies most mobile
search queries is the geo-location, available at various levels of
granularity: zip code, locality/city, state, country, or sometimes
none at all.

We find that a simple way of integrating a fairly coarse
geo-location signal, namely identifying one of about 200 desig-
nated marketing areas (DMA, [3]), provides a significant qual-
ity boost to the LM, as measured in both perplexity (PPL) and
word-error-rate (WER); the impact is even higher if we restrict
measurements to the “local” subset of the query traffic.

1.1. Related Work

Geo-location for ASR language models has been found useful
for various applications over the years: [4], [5], [6], [7]. The
most significant difference between such prior work and ours
lies in the data being used for training and evaluating the lan-
guage model: we make use of query logs annotated with geo-
location information, as provided by mobile clients.

1.2. Privacy Considerations

Before delving into the technical details, we wish to clarify the
privacy aspects of our work with respect to handling user data.

All of the query data used for training and testing models is
strictly anonymous; the queries bear no user-identifying infor-
mation. The only data saved after training are vocabularies and
n-gram counts.

2. Geo-location for Language Modeling
Generally speaking, the geo-location signal can contain infor-
mation at various levels of resolution: gps, zip code, local-
ity/city, state, country, or sometimes none at all.

As a first approximation, one can assume a hierarchical
structure on the various geo-location resolution levels and build
a tree that partitions the training and test data into disjoint sub-
sets at each level in the tree1; the root partition of the training
data consists of the data used for building the baseline LM. Data
sources that do not have geo-location information are used to
augment the baseline/root LM.

We build a separate LM at each node in the geo-location
clustering tree. N-gram counts are collected using the vocab-
ulary V of the root LM. Since not all words are present in the
training data at a given node g and we wish to interpolate lan-
guage models up the geo-location clustering tree, we need to
account for the words W that are in the set V \ Vg . A simple
way to do that is to take away probability mass from the un-
known word (UNK) and spread it uniformly over the V \ Vg
set:

P (w|h, g) =


P̃ (w|h, g), w ∈ Vg \ {UNK}
α · P̃ (UNK|h, g), w ∈ {UNK}
(1− α) · P̃ (UNK|h, g) · 1

|V\Vg| , w ∈ V \ Vg

This probability assignment ensures that the LM at each
node g in the geo-location clustering tree is properly normalized
over the root vocabulary V . Whenever measuring PPL values,
we check empirically that the probabilities sum up to 1.0 for a
few contexts chosen at random positions in the test data.

With this in place, we can now interpolate from fine to
coarse geo-locations g1 ≺ g2 ≺ . . . ≺ groot, as available with
a given test query, typed or spoken:

P (w|h, g1 ≺ g2 ≺ . . . ≺ groot) =
∑
k

λk · P (w|h, gk)

1When this is not true, e.g. a zip code straddling the state line, some
heuristic assignment into the higher order location is made.



Figure 1: DMA LM histogram before pruning.

Figure 2: DMA LM histogram after pruning to about 1 billion
n-grams.

In early experiments we compared various types of geo-
location information and settled on using a simple clustering
tree consisting of the root and the designated marketing areas
(DMA, [3]) for the leaves:

P (w|h, gDMA ≺ groot) = λ · P (w|h, groot) + (1)
(1− λ) · P (w|h, gDMA)

The perplexity improvement from using more detailed geo-
location and a deeper tree (zip code, city/locality, state, US/root)
did not justify the increased complexity.

2.1. Pruning

For the on-the-fly rescoring experiments reported in Sec-
tion 3.2.3 we need to prune the geo-LM in Eq. (1). The direct
use of Stolcke entropy pruning [8] becomes far from straight-
forward, especially given that we would like to keep the root
and DMA LMs separate, such that the groot n-grams are reused
across all gDMA geo-locations.

A very simple approach is to prune each model (groot and
gDMA for all DMA values) by specifying a relative decrease
from its unpruned size. This does not take into account the po-
tential overlap between groot and one or more gDMA tags.

In an attempt to deal better with such n-grams we also
explored an alternative whereby we first prune the groot LM
down to a desired size, after which we test each n-gram
in a given gDMA LM using the simplified pruning statistic
D(w|h, gDMA ≺ groot) motivated by the inner term in the
Kullback-Leibler divergence summation:

D(w|h, gDMA ≺ groot) = P (h|gDMA ≺ groot) ·
P (w|h, gDMA ≺ groot) ·
| logP (w|h, gDMA ≺ groot)−
logP ′(w|h, gDMA ≺ groot)|

P ′(w|h, gDMA ≺ groot) = λ · P (w|h, groot) +
(1− λ) · P (w|h′, gDMA ≺ groot)

P (w|h′, gDMA ≺ groot) = α(h, gDMA) · P (w|h′, gDMA)

where h′ denotes the back-off context for h, α(h, gDMA) is the
back-off weight in the gDMA LM and P (h|gDMA ≺ groot) is
computed by the chain rule using Eq. (1) and the pruned groot
LM.

In our PPL and WER experiments using root and DMA
specific LMs pruned aggressively down to 1 billion n-grams,
respectively, we did not observe any significant difference be-
tween the two pruning methods, so we opted for using the first,
simpler approach.

3. Experiments
For training the language model we use a variety of sources,
the largest one by far consisting of typed queries arriving at
the google.com front-end from mobile devices; these are
also annotated with geo-location and we use them for building
DMA-specific LM.

The language models are trained using an extension of the
large LM tools [9] that builds a set of language models in a
single pass over the training data and stores them in a single
distributed data structure, later used for serving them at run-
time.

The vocabulary we use for the root LM consists of 3.4
million words; the root LM is a Katz [10] 5-gram trained
on about 695 billion words of training data from a di-
verse set of sources and pruned down to 15 billion n-grams
(3.4/1969.6/7425.5/4357.8/1115.1 million 1/2/3/4/5-grams, re-
spectively). The 211 DMA 5-gram LMs are trained on 287 bil-
lion words; their size varies from 2.8 million n-grams to 2.4 bil-
lion n-grams; the vocabulary size varies between 99 thousand
and 2.2 million words; the total number of n-grams across all
DMA LMs is 48 billion n-grams.

Figs. 1-2 show histograms for the unpruned and pruned
DMA LM sizes, respectively. The two histograms look very
similar, suggesting a power-law distribution for the amount of
data and LM size across DMAs: a couple of DMAs containing
major cities (Los Angeles, New York) have a lot of data, and
correspondingly large DMA LMs; about half of the DMAs fall
in the left-most bin, with the smallest amounts of data and LMs,
either before of after pruning.

3.1. Perplexity Experiments

We evaluate PPL improvements on mobile typed query data (US
TYPED) from the entire US and on manual transcriptions for



Test Set OoV (%) Perplexity
US US+DMA rel. reduction (%)

US TYPED 0.7 86 78 9
US TYPED/local 0.3 85 63 26
SF BAY 0.2 88 75 15
SF BAY/local 0.08 94 66 30
US 0.2 115 89 23

Pruned (1 billion n-grams) US and DMA LMs
SF BAY 0.2 98 85 13
SF BAY/local 0.08 108 77 29
US 0.2 131 103 21

Table 1: Out-of-Vocabulary (OoV) rates and Perplexity values for baseline (root) LM built on the entire training data for the US LM,
as well as geo-LM interpolating the US LM with a DMA specific one (US+DMA); the interpolation weight λ in Eq. (1) is fixed to 0.5.
; relative reductions in PPL are measured between the US and the US+DMA LMs on each line.

ASR test sets consisting of spoken queries from the San Fran-
cisco Bay Area (SF BAY) and the entire United States (US),
respectively. For both US TYPED and SF BAY test sets we
also evaluate on the “local” subset of the query stream: queries
whose search results display a restaurant, some address, or sim-
ilar; the US test set is somewhat locally biased, as described in
Section 3.2.3.

The US TYPED, SF BAY and US test sets consists of about
1.8 billion, 217 thousand, 133 thousand words, respectively.
The “local” subset consists of about 9% of the entire test set
in both US TYPED, SF BAY cases. About 95% of the queries
encountered in training, or the US TYPED test set2 have a geo-
location annotation; all queries in the SF BAY, US test sets have
geo-location annotation.

Table 1 shows the results. EM estimation for the interpola-
tion weight λ in Eq. (1) showed marginal improvements in PPL
over the initial value of 0.5, so we fixed that throughout our ex-
periments. The geo-location enhanced LM provides significant
reductions in PPL on the query stream, up to 15% relative; the
“local” subset benefits even more from the geo-location, up to
30% relative reduction in PPL. We do not list PPL values for the
DMA only configuration, since it always exceeds the US (root)
value. Since for on-the-fly WER experiments we use pruned
LMs, we also evaluated the PPL of both US and US+DMA LMs
after pruning both the US and the set of DMA LMs down to a
total of approximatively 1 billion n-grams, respectively. Each
of the DMA LMs was pruned individually by setting a target
size relative to unpruned.

3.2. ASR Experiments

3.2.1. Lattice Rescoring Experiments

As a first attempt at using the geo-location LM in voice-search
ASR we tried rescoring lattices generated with a first pass LM
that is geo-location agnostic. We could observe only modest im-
provements in accuracy: no gain on SF BAY and only 0.1% abs
reduction in WER on SF BAY/local, even when using search
and lattice beams that were well above real-time. This was sur-
prising, given the large perplexity reductions observed, in par-
ticular on the “local” subset.

To diagnose this unexpected behavior, we built a first pass
LM targeted at the SF BAY DMA by only using query data

2The PPL calculation includes queries that do not have a geo-
location, in which case λ = 1 in Eq. (1).

originating in the SF BAY DMA in our mix of training data
sources; lattices produced by this LM are then rescored using
either a US or US+DMA large LM.

Such a system produced significant reductions in WER of
-0.2% abs on the SF BAY test set and -1.2% or -1.4% abs on
the “local” subset, respectively, showing the large potential im-
provements attainable when using geo-location in the LM.

To rule out any possible bug in our lattice rescoring setup,
we also partitioned each of the SF BAY, SF BAY/local test sets
into two subsets:

• an “almost there” subset containing the utterances where
the correct transcription was present in the top 10-best
hypotheses output by the 1-st pass LM

• a “not yet” subset containing the remaining utterances,
where the correct transcription was not present in the top
10-best hypotheses output by the 1-st pass LM.

Decoding each of these subsets using the SF BAY DMA system
we observe that all the improvements come from the “not yet”
subsets and there are virtually no improvements on the “almost
there” subsets of both SF BAY and SF BAY/local.

We believe that these two experiments show conclusively
that the geo-location LM needs to be integrated closer to the 1-
st pass of an FST-based ASR system [11] using a geo-location
agnostic CLG, instead of relying on lattice rescoring.

3.2.2. On-the-fly Lattice Rescoring and Generation

Deploying a system where traffic is routed to decoders run-
ning DMA specific 1-st pass LMs is not an appealing solution,
so we continued investigating the use of a LM that switches
DMA context on a per-recognition request basis. To bring
the geo-location LM closer to the 1-st pass, we used the on-
the-fly lattice rescoring architecture suggested by [12]. This
allows us to use the geo-location agnostic LM to drive the
Viterbi search while applying the geo-location LM as the search
space is expanded. Our decoder follows the general form of
the fast dynamic decoding approach described in [13]. We
adapt the rescoring approach of [12] to incorporate the hashed
path-histories used in the [13] decoding algorithm. The path-
histories are used to allow for dynamic determinization when
generating the output lattice. The resulting algorithm requires
keeping a meta-state which encapsulates both the unique path-
histories the relevant geo-location LM states.



Language Model Test Set
SF BAY SF BAY/local

1-st pass on-the-fly lattice rescoring WER (%) rel. reduction (%) WER (%) rel. reduction (%)
US — US 9.3 — 13.0 —
US US US 9.2 1 12.5 4
US US+DMA US 9.1 2 12.3 5
US DMA US 9.2 1 12.2 6
US US+DMA US+DMA 9.1 2 12.1 7
US DMA US+DMA 9.2 1 12.0 8

Table 2: WER results on SF BAY and SF BAY/local test sets in various configurations; for the on-the-fly and lattice rescoring LMs,
we denote with US LMs where λ = 1.0, US+DMA where λ = 0.5 and DMA where λ = 0.0 in Eq. (1), respectively.

Language Model Test Set
US

1-st pass on-the-fly lattice rescoring WER (%) rel. reduction (%)
US — US 10.4 —
US DMA US 10.1 3
US DMA US+DMA 10.1 3

Table 3: WER results on locally-biased US-wide test set in various configurations; for the on-the-fly and lattice rescoring LMs, we
denote with US LMs where λ = 1.0, US+DMA where λ = 0.5 and DMA where λ = 0.0 in Eq. (1), respectively.

3.2.3. On-the-fly Rescoring Experiments

We now use three LMs:

• a relatively small (100M n-grams) geo-location agnostic
first pass LM used for CLG compilation;

• a medium size LM (1B n-grams) used for on-the-fly
rescoring and lattice generation; could be either a DMA
specific LM, λ = 0.0 in Eq. (1), or a US-wide LM,
λ = 1.0 in Eq. (1);

• a large distributed geo-location LM used for lattice
rescoring.

The scores from the three LMs are combined using log-
linear interpolation in two stages:

• the LM cost on CLG arcs is mixed with the on-the-fly
LM using equal weights (0.5) and saved as the LM cost
on lattice arcs

• the LM cost on lattice arcs is mixed with the distributed
LM cost when doing lattice rescoring, again using equal
weights (0.5)

In either stage the state space is computed by taking the cross
product of the state spaces of the LMs being combined.

Table 2 shows the WER results in various configurations;
for the on-the-fly and lattice rescoring LMs, we denote with US
LMs where λ = 1.0, US+DMA where λ = 0.5 and DMA
where λ = 0.0 in Eq. (1), respectively.

We observe significant reductions in WER on both the SF
BAY and the “local” subsets, respectively; the relative improve-
ment on the “local” subset is quite large, close to 8% relative.

It is worth highlighting the large gain on the “local” subset
obtained by simply adding the 1-billion n-gram LM in the on-
the-fly rescoring pass; simply doing this would take us half-way
to the best geo-location augmented system.

As a last set of experiments we transcribed a set of utter-
ances from general US-wide traffic, after asking human raters
to filter out voice-search queries that were definitely not of “lo-
cal” nature. The resulting test set was transcribed 3-way and

utterances on which two or more annotators agreed were kept,
resulting in a test set with 24618 utterances and 111935 words.
Table 3 presents the results, showing significant improvements
in overall WER. We have also compared the system on the last
row of Table 3 against the baseline by sampling from the differ-
ence set and asking human raters which system performs better.
With high confidence (p-value below 0.1%) the raters preferred
the geo-location augmented one; the same was true for the sys-
tem on the second row of Table 2.

4. Conclusions and Future Work
Geo-location is a very useful signal for improving the quality
of the LM used for voice search. Significant reductions in word
error rate are observed both on general voice search traffic, as
well as “local” traffic, up to 2% and 8% relative, respectively.

Better partitioning of the geo-annotated data, as well as
pruning of geo-location LMs jointly with the US root LM
should be investigated more thoroughly. Various LM adapta-
tion techniques can be employed for combining LMs at various
geo-location resolution levels.

An interesting finding is that lattices generated with a geo-
location agnostic 1-st pass LM do not contain the paths that a
LM augmented with geo-location would be able to improve. To
be able to realize the potential of such an LM we need to use
it closer to the 1-st pass, in our case using on-the-fly rescoring.
It is quite likely that being able to bring the large (distributed)
LMs used in lattice rescoring to the on-the-fly rescoring pass
will yield even larger gains in accuracy and simplify the current
architecture using two rescoring passes. This is another impor-
tant direction worth exploring in the future.
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