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Abstract
We present a general approach to reduce the size of feed-
forward deep neural networks (DNNs). We propose a rank-
constrained topology, which factors the weights in the input
layer of the DNN in terms of a low-rank representation: un-
like previous work, our technique is applied at the level of the
filters learned at individual hidden layer nodes, and exploits the
natural two-dimensional time-frequency structure in the input.
These techniques are applied on a small-footprint DNN-based
keyword spotting task, where we find that we can reduce model
size by 75% relative to the baseline, without any loss in per-
formance. Furthermore, we find that the proposed approach is
more effective at improving model performance compared to
other popular dimensionality reduction techniques, when eval-
uated with a comparable number of parameters.
Index Terms: deep neural networks, low-rank approximation,
keyword spotting, embedded speech recognition

1. Introduction
Deep neural networks (DNNs) have recently emerged as an at-
tractive model for many learning tasks; they offer great rep-
resentational power, without demanding much feature engi-
neering. Computational advances and the availability of large
datasets have made it feasible to train large DNNs, with mil-
lions of parameters [1]. DNNs have become a popular foun-
dation for state-of-the-art automatic speech recognition (ASR)
systems [2], with numerous successful applications in do-
mains such as large vocabulary continuous speech recogni-
tion (LVCSR) [3, 4, 5, 6, 7, 8] and keyword spotting (KWS)
tasks [9, 10].

When used as acoustic models in speech recognition,
DNNs estimate output posterior probabilities for individ-
ual speech units (e.g., context-dependent states, context-
independent phones, syllables or words). In recent work, we
proposed a DNN-based KWS system [9], which requires a
small memory-footprint, thus allowing it to run efficiently on
embedded devices. To improve performance, adjacent speech
frames are typically stacked together to provide temporal con-
text to the DNNs. This results in a considerable growth in the
number of input-to-hidden layer weights, which can be a limi-
tation for models targeted towards embedded devices. For ex-
ample, the embedded LVCSR system described in [5] contains
about 13% of its parameters in the input layer, and this num-
ber goes up to 80% for the embedded DNN-based KWS system
in [9].

Previous work on reducing the number of independent pa-
rameters in a DNN model without significantly affecting per-
formance includes [7], which proposed to zero-out a subset of
DNN weights that are below a certain threshold and the “op-
timal brain damage” procedure [11] which proposed to zero-

out weights based on the second-derivative of the loss function.
Other techniques have been proposed which change the DNN
architecture, e.g., through the use of bottle-neck layers [12, 13],
or through a low-rank matrix factorization of the weights in the
final layer of the DNN [14].

We propose a scheme to compress an existing fully-trained
DNN using a low-rank approximation of the weights associ-
ated with individual nodes in the first hidden layer by means
of a rank-constrained DNN layer topology. This allows us to
significantly reduce the number of independent parameters in
the model, without any loss in performance. Our approach is
similar to previous work on learning separable filters [15, 16]
which is used in image processing for speeding up computa-
tion in convolution neural networks (see, e.g., [17, 18] and the
references contained therein). Our work is also similar to the
work proposed in [14] – which uses a low-rank factorization of
the weight matrix between the hidden and output layers – but
differs fundamentally in the way the low-rank approximation is
obtained and enforced. In particular, the techniques described
in [14] are applied to the hidden-to-output layer weights with
the motivation of speeding up DNN training rather than com-
pressing an existing model. Further, as noted in [14], their tech-
nique was only found to be effective when applied to the final
layer weights in the DNN but not to other intermediate hidden
layers.1 Instead, our technique is applied at the level of indi-
vidual filters learned at nodes of the first hidden layer in the
DNN, which as we show in Section 2 are inherently of low-
rank. Our technique is particularly effective in models with a
large number of parameters in the input-to-hidden layer weight
matrices, e.g., DNN-based KWS models [9] with large input
context windows. Finally, since the compression is “built-into”
the topology, it removes the need for a separate and potentially
expensive decompression step during network evaluation.

In Section 2, we describe the motivation behind the pro-
posed approach, and show how it can be applied to compress a
DNN model. We apply the proposed techniques to the DNN-
based KWS system presented in [9] that is briefly reviewed in
Section 3. We describe the results of our experimental evalu-
ations in Section 4 where we compare against baseline DNNs
and the low-rank approach of [14]. Finally, we conclude with a
discussion of our findings in Section 5.

2. Rank Constrained Neural Network
We denote an input utterance as, X = [X1, · · · ,XT ], con-
sisting of T input frames of speech, where each frame Xt =
[xt,1, · · · , xt,d] ∈ Rd. In our experiments, Xt corresponds to
log-mel filter-bank energies, so d corresponds to the number

1The authors in [14] do not report the effectiveness of the technique
when applied to the input-to-hidden-layer weights.



Figure 1: Visualization of a subset of filters learned in our base-
line DNN (baseline-240K; see Section 3.1). Each rectangle
represents the weights, W (m), associated with a single node
in the first hidden layer, wrapped such that time/frequency are
horizontal/vertical. Intensities encode weight values, such that
larger (positive) weights appear as white and smaller (negative)
weights appear black.

of filter-bank channels. We denote the input to the DNN corre-
sponding to frame t by xt, which is formed by stacking together
Tl and Tr adjacent frames of left- and right-context as is typi-
cal for DNN-based AMs, xt = [Xt−Tl , · · · ,Xt+Tr ], where
C = Tl+Tr+1 denotes the total number of context frames in-
put to the network. Finally, we assume a fully-connected struc-
ture for the input-to-hidden layer weights of the DNN. Thus,
each node m in the first hidden layer, computes its output acti-
vation a(m)

t as,

a
(m)
t = f

(
C−1∑
i=0

d∑
j=1

w
(m)
i,j x(t−Tl+i),j

)
(1)

where, f(·) denotes a non-linear activation function, and

W (m) =
[
w

(m)
i,j

]
denotes the weights connecting the inputs to a

particular nodem of the first hidden layer, which we interpret as
a matrix of size C×d, corresponding to the the time-frequency
structure in the input xt.

2.1. Motivation

The weights, W (m), corresponding to the first hidden layer of
the DNN, act as low-level feature detectors, and can thus be
considered as “filters” of the input signal. These filters – learned
as part of DNN training procedure – tend to have simple struc-
ture, which makes them amenable to compression. This can
be observed, by examining the filters that are learned from the
training data in our baseline DNN (baseline-240K; see Sec-
tion 3). Each rectangle in Figure 1 visualizes an individual
filter as a 2D image, created by wrapping the weights vec-
tor into the matrix W (m) =

[
w

(m)
i,j

]
, as described in Equa-

tion 1. We may consider the operation of each filter as overlay-
ing its weights over the input time-frequency representation of
the speech; thus, intense black or white regions correspond to
regions of the input that strongly influence the output activation
of a particular node. Note that the filters in Figure 1 are indeed
highly structured – many of them are simply vertical lines (cor-
responding to activity across frequencies, at a particular time),
or have only small concentrated patches of activity. This leads
to our key observation: by considering the hidden layer weights
W (m), as a structured weight matrix as described in Equation 1,
we can compress it significantly through a low-rank approxima-
tion. This is further confirmed by computing the explained vari-

Figure 2: Topology comparison: (a.) Baseline DNN. (b.) Rank-
constrained topology of rank-1. The rank-constraint can be en-
coded into the network by introducing an intermediate linear
layer with tied weights, which connects to a unit that computes
the “outer” summation in (2) and applies the original non-linear
activation function.

ance2 of our baseline DNN (baseline-240K – see Section 3.1):
more than 97% of the total variance in the original filters is ex-
plained by retaining just the top 5 singular values of each filter,
which rises to 99% for a rank-10 approximation.

2.2. Rank-Constrained Topology

As described in Section 2.1, the filters learned by the DNN
can be well approximated by equivalent filters of low-rank.
In order to ensure that the network learns low-rank filters di-
rectly (instead of filters of arbitrary rank), we introduce a rank-
constrained layer topology for the input-to-first-hidden layer
weights, which encodes the low-rank constraint into the net-
work itself. We begin by describing the approach for rank-1 fil-
ters, which is then generalized to rank-k filters in Section 2.2.2.

2.2.1. Rank-1 Filters

We approximate the weightsW (m) as rank-1 filters by factoring
the weights in terms of two vectors α(m) ∈ RC and β(m) ∈ Rd
as,

w
(m)
i,j ≈ α

(m)
i β

(m)
j (2)

Note that (2) can be interpreted as performing a mix of selectiv-
ity in time (α(m)) with selectivity in frequency (β(m)). Thus,
we can re-write (1) using (2) as:

a
(m)
t ≈ f

(
C−1∑
i=0

α
(m)
i

d∑
j=1

β
(m)
j x(t−Tl+i),j

)
(3)

This rank-1 approximation can be encoded in the network by
introducing an intermediate layer with a linear activation func-
tion, and weight tying as illustrated in Figure 2.3.

2Ratio of total amount of variance in the low-rank approximation, to

that in the original:
∑k

r=1 σ
2
r∑min(C,d)

r=1 σ2
r

, where σr is the top r− th singular

value in the singular value decomposition (SVD) of W (m).
3In practice, the computation in (3) can be sped-up by caching in-

termediate terms γ(k) =
∑
j=1 β

(m)
j xk,j which appear in the “inner”

summation of (3).



Figure 3: The baseline KWS DNN [9, 10].

2.2.2. Generalization to Rank-k Filters

Since rank-k matrices are the sum of rank-1 matrices, we can
encode rank-k filters as sums of k rank-1 filters, parameterized
by vectors α(m),r ∈ RC and β(m),r ∈ Rd:

w
(m)
i,j ≈

k∑
r=1

α
(m),r
i β

(m),r
j (4)

a
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(
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i=0

α
(m),r
i
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β
(m),r
j x(t−Tl+i),j

)
(5)

Thus, a rank-k topology for a single hidden layer node can be
encoded in the network by k copies of the rank-1 topology.
In practice, this sum is equivalently performed by connecting
all the linear intermediate layers (β(m),1, · · · , β(m),k) of the
copies into the same final node, which then has kC parameters.

2.3. Initializing parameters of Rank-k Topology

The parameters α(m),r, β(m),r of the rank-k topology, are
learned from the input data; we initialize them either randomly,
or from a fully-trained baseline DNN by performing a singular
value decomposition (SVD) on each matrix W (m) and retain-
ing the left and right singular vectors corresponding to the top k
singular values. We note that this is different from the methods
proposed in [14], since we decompose weights corresponding
to each node in the first hidden layer independently. The left
singular vectors (scaled by the matrix of singular values) cor-
respond to α(m),r , and the right singular vectors correspond to
β(m),r . Furthermore, since the rank-constraint is implicit in the
topology itself (as seen in Figure 2), we can leverage traditional
DNN training methods to learn the weights in the model.

2.4. Compression Achieved using a Rank-k Topology

When a rank-k topology is applied to the baseline-DNN, this
reduces the number of independent parameters per-filter from
|W (m)| = Cd to (C + d)k, which results in a significant re-
duction for small k. For example, in our experiments, C =
41, d = 40 and k = 5, resulting in a compression ratio of about
4x.

3. Experimental Setup
In order to determine the effectiveness of the proposed tech-
niques, we evaluate the effectiveness of the rank-constrained
topologies on the DNN-based keyword spotting system pro-
posed in [9], which we review briefly in this section.

3.1. Baseline System

Our baseline system (baseline-240K) is based on the system
in [9], which consists of a DNN trained to predict individ-

System Initialization Total Parameters
baseline-240K random 243,072
baseline-84K random 83,619

rc-init SVD of baseline-240K 85,379
rc-noinit random 85,379

low-rank [14] random 102,019

Table 1: Description of the systems used in our experiments.

ual word targets within a given keyword phrase. The input to
the DNN consists of 40-dimensional log-mel filter-bank ener-
gies (d = 40), with Tl = 30 frames of left and Tr = 10
frames of right-context (C = 41). The baseline DNN con-
sists of 3 fully-connected hidden layers with 128 nodes each,
with a rectified linear unit (ReLU) activation function on each
of the hidden layer nodes [19, 20]. The final softmax output
layer predicts individual word targets corresponding to the key-
phrase. The (word) labels for each frame are determined by a
forced-alignment using a large LVCSR system [4]. The sys-
tem is trained to optimize a cross-entropy criterion using asyn-
chronous stochastic gradient descent (ASGD) implemented in
the large-scale DNN training infrastructure Dist-Belief [21].

During evaluation, a score for each utterance is computed
over sliding windows in the utterance using the modified key-
word scoring function proposed in [10].

3.1.1. Experimental Systems

All of our DNN systems use the same input features – formed
by stacking 41 frames of 40-dimensional features – as described
in Section 3.1.

We consider an additional DNN baseline, wherein we re-
duce the total number of system parameters by reducing the
number of hidden layer nodes: we use 3 fully-connected hid-
den layers, with 48 nodes in each, so that the total number of
system parameters is approximately 84K (baseline-84K).

We also consider a system (low-rank) based on the low-
rank matrix factorization approach proposed in [14]. This sys-
tem factorizes the input-to-hidden-layer weights in terms of two
DNN layers: the DNN inputs are fully connected to a low-rank
layer of size 48 with a linear activation function, which is then
fully connected to a hidden layer with 128 nodes. These are
followed by two additional fully connected hidden layers with
128 nodes each.

Performance is compared against a system that uses the pro-
posed rank-constrained topology of rank-5 (determined based
on the analysis presented in Section 2.1). We consider two ver-
sions of this system: either initialized by computing an SVD
of the input-to-hidden-layer weights of baseline-240K as de-
scribed in Section 2.3 (rc-init) or by initializing the weights ran-
domly (rc-noinit); in either case, the system weights are learned
on the data. A decription of all experimental systems used in
this paper appears in Table 1.

3.2. Datasets

We evaluate the proposed approach on the same training, de-
velopment, and evaluation sets as in our previous work [10].
We train KWS systems for fourteen phrases comprising vari-
ous voice actions.4 The entire dataset consists of about 10K–
15K utterances containing each of the keyword phrases, and a

4Specifically: “answer call”, “decline call”, “email guests”, “fast
forward”, “next playlist”, “next song”, “next track”, “pause music”,
“pause this”, “play music”, “set clock”, “set time”, “start timer”, “take
note”.



much larger set of 396K utterances that do not contain any of
the phrases, which are randomly partitioned into training, devel-
opment and evaluation sets, so that each evaluation set contains
about 2K positive and 35K negative examples per-phrase.

Our systems are trained on multi-style training data created
by adding car and cafeteria noise to the clean training data at an
SNR in the range [-5dB, +10dB] as detailed in [10]. We report
system performance by plotting receiver operating characteris-
tic (ROC) curves on three evaluation sets representing clean,
and noisy conditions (lower curves are better). In addition to
the ‘clean’ evaluation set (clean), we create two noisy sets by
adding car noise at -5dB (car -5dB) and cafeteria noise at +5dB
(cafe 5dB).5 Details of how these datasets were created can be
found in [10].

4. Results
Our goal is to determine whether we can reduce the number of
independent parameters in the DNN without any loss in sys-
tem performance. As can be seen from the results presented in
Figure 4, baseline-85k which reduces model size by reducing
the number of hidden layer nodes in each of the three hidden
layers performs significantly worse than the larger 240k param-
eter baseline in all cases, by about 25% relative across the range
of false alarms (FAs). The proposed rank-constrained topology
(rc init), with 75% fewer independent parameters than baseline-
240k (from which it is initialized) performs as well or better
than baseline-240k across the entire range of FA rates for all
of the evaluation sets and outperforms baseline-85k by a large
margin. We hypothesize that the improvements in performance
seen in rc init over baseline 240k are due to the fact that the
filters learned in the rank-constrained topology are significantly
smoother and simpler than their baseline counterparts, and may
therefore be less sensitive to the effect of noisy training data.

Furthermore, the proposed rank-constrained system with
random initialization, which enforces the rank-constraint during
training (rc noinit) outperforms the system which uses a low-
rank matrix factorization [14] although it has fewer independent
parameters (85k in rc noinit vs. 102k in low-rank). Addition-
ally, performance can be improved further through initialization
based on an SVD as seen by the improvement in performance
between rc init over rc noinit.

Overall, the rank-constrained topology proposed in this
work allows us to reduce the number of parameters in the model
by 75% relative to the baseline, without any loss in perfor-
mance.

5. Conclusions
We presented a technique for reducing the number of inde-
pendent parameters in a DNN system, that we term a ‘rank-
constrained’ topology. Our approach is motivated by the ob-
servation that the filters learned at individual nodes in the first
hidden layer have significant structure and are thus amenable to
compression. In experimental evaluations, we find that the pro-
posed rank-constrained topology allows us to reduce the num-
ber of independent parameters by 75% relative to our baseline
system, without any loss in performance, and is more effective
than previously proposed techniques.

5We also evaluated performance on the far-field sets (clean 100cm)
and (car -5db 100cm) defined in [10], where we observed similar trends
as those reported in Section 4. Therefore, we do not report results on
the far-field sets here in the interest of space.

(a) Clean.

(b) Car noise at -5db.

(c) Cafeteria noise at 5db.

Figure 4: ROC curves comparing performance of our experi-
mental systems described in Section 3.1.1 on the three evalu-
ation sets: clean, car -5db, and cafe 5db, averaged over all of
the fourteen keywords. Values on axes indicate the fraction of
utterances that are incorrectly classified. Lower curves indicate
better performance.
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