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Abstract

Contemporary open systems use components developed by
many different parties, linked together dynamically in un-
foreseen constellations. Code needs to live up to strict secu-
rity specifications: it has to ensure the correct functioning of
its objects when they collaborate with external objects which
may be malicious.

In this paper we propose specifications that model risk
and trust in such open systems. We specify Miller, Van
Cutsem, and Tulloh’s escrow exchange example, and discuss
the meaning of such a specification. We argue informally
that the code satisfies its specification.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory; D.4.6 [Secu-
rity and Protection]: Verification; K.4.4 [Electronic Com-
merce]: Payment Schemes, Security

1. Introduction

Playground Swapsies Imagine you are a child swapping
football stickers in your school playground [40]. Perhaps
you’ve got three Zinedine Zidanes, but you really want a
Wiremu Reid? If you hand over the stickers you’ve got to
trade to a gorilla from year ten, how do you know he won’t
run off with them before he gives you the stickers you need?

Football sticker swapsies illustrates the two complemen-
tary forces of trust and risk. When you show some of the
stickers you’ve got to someone you do not trust, you risk
that they might run off with those stickers, or rip them up.
Awareness of trust means you can manage the amount of
risk you are willing to tolerate. You’re quite likely to lend
your sticker book to your best friend, but you’d probably be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PLAS 2015, July 06 2015, Prague, Czech Republic.

Copyright © 2015 ACM 978-1-4503-3661-1/15/07... . $15.00.
http://dx.doi.org/10.1145/2786558.2786564

careful to take only stickers you’re definitively willing to risk
losing when you go to meet the gorilla in year ten.

Internet Swapsies Playground swapsies is just one example
of an interaction between mutually untrusting parties in an
open system — other examples include so-called dark Inter-
net markets (like Silk Road and Evolution) and even larger
trading systems like eBay when participants choose not to
rely on protection systems like PayPal. The systems are com-
posed of different components (i.e. objects) from a range of
different providers. There is no central trusted authority, no
effective recourse to a universal clearing house, or a gov-
ernment or supranational agency — teachers don’t interfere,
and the kids don’t want them to interfere anyway. This is for
both political and technical reasons: a single trusted compo-
nent becomes a single point of failure for the system if it is
compromised, and typically requires a centralised architec-
ture, such as shared databases or trusted transaction services.

Escrow Agents As a motivating example, we use the Es-
crow Exchange [27]], a trusted third party that manages ex-
changes of different goods (e.g. money and shares) between
two counterparties. The escrow exchange is a good example
because:

* The escrow does not rely on a central agency to determine
a party’s trustworthiness, but it can ask one party whether
it vouches for the other party’s trustworthiness.
The exchange must be transactional. If some requirement
is not met the whole transaction must be aborted; if ev-
erything is OK the whole transaction must succeed.
The escrow cannot guarantee that it will not attempt the
operation if one or more of the counterparties are untrust-
worthy, and thus cannot guarantee absence of risks; its
aim is to minimise the risks involved.

The escrow example is important because it gauges how
robustly trust and risk are managed. Risk and trust are the
focus of our interest, rather than the particulars of exchanges.
Supporting the escrow exchange is insufficient to build a
whole system, but we consider it necessary: a system that
cannot support the escrow exchange will not be fit for most
purposes.

Our Contributions We address the following questions:
* How can we specify trust?



* How can we gauge risk?

* How can we express the open nature of systems?

* How can we prove that program code meets the specifi-
cations for risk and trust?

To specify trust, we were inspired by Lampson et al.’s
“speaks for” and “says” authentication constructs [21] and
propose an obeys predicate that describes whether the cur-
rent object trusts another object to satisfy some specifica-
tion. As in [21], the obeys predicate is relative because it
relates two objects to a specification: objects (or even the
same objects) may have different relationships with differ-
ent specifications. It is also hypothetical, in the sense that
there is no “trust-bit” to observe in the run-time configura-
tion. Rather, obeys states that in all future configurations,
one object trusts another to satisfy the specification. Trust is
often conditional, in the sense that trust can sometimes be
established only under the condition that some other object
is trusted.

To address risk, we propose further hypothetical predi-
cates MayAccess and MayAffect, which describe whether
an object may access or may modify a certain property.

To address the open nature of the systems, we make the
meaning of such assertions parametric with any code that
may be linked to the current system. Thus, in order for the
software to guarantee its specification, it must be written in
a very robust manner, so that no further, malicious code can
steal its secrets or break its integrity.

To prove program’s adherence to risk/trust specifications,
we have developed Hoare-style rules dealing with these hy-
pothetical predicates. We do not discuss these in this paper.

Findings We have developed a specification of the escrow
system, and we informally argue that the code adheres to it.

We were surprised to find that the specification for the
Escrow is weaker than originally anticipated in two signif-
icant aspects: the escrow cannot guarantee that a reported
successful transaction implies a) that the participants were
trustworthy, nor that b) the participants are exposed to no
risk by an untrustworthy participant (but we were able to
characterize the risk to which participants are exposed). We
were even more surprised to realize that it is impossible to
write an escrow which would give guarantees a) and b) —
all the more striking given that the third co-author is one of
the original developers of the escrow example.

Research Context An important aspect of the escrow ex-
ample is that it does not prevent the exchange from happen-
ing with untrusted parties; indeed, as we mentioned above,
it cannot do so. Many common approaches to security can-
not deal with this example, because they aim to prevent
such exchanges, and avoid the risk altogether. Information
flow systems detect when information leaks to an untrusted
party; confinement systems guarantee that state is not read
or leaked to other components; sandboxes ensure that com-
ponents cannot affect the world outside the sandbox. In the
absence of a central universally trusted authority, the escrow

cannot characterize parties as high or low, or maintain sand-
boxes, and thus cannot prevent exchanges between untrust-
worthy parties. Instead, it can only manage the associated
risk. Our approach is to reason explicitly about code’s secu-
rity properties and guarantees, as trusted and untrusted com-
ponents interact in an open world. We aim to describe how
components codperate to establish trust gradually, and to de-
lineate the risks involved in that codperation.

Paper Organization Section 2 introduces the Escrow Ex-
change, and shows why a traditional specification is not de-
scriptive enough and why a naive implementation is not ro-
bust enough. Section 3 introduces our constructs for mod-
elling trust and risk; we use them to give revised specifica-
tions, and argue that revised code satisfies these specifica-
tions. Section 4 sketches our specification language; section
5 discusses related work, and section 6 concludes.

Disclaimers Throughout this paper, we make the simplify-
ing assumptions that no two different arguments to meth-
ods are aliases, that the program is executed sequentially,
that we can quantify over the entire heap, that objects do
not breach their own encapsulation or throw exceptions, that
machines on open networks are not mutually suspicious, and
that any underlying network is error-free. While these prob-
lems are correctly addressed in the code proposed in [27],
we do not address them in this work. This allows us to keep
the specifications short, and to concentrate on the questions
of risk and trust. Aliasing, concurrency, quantification, con-
finement, network errors, and exceptions can be dealt with
using known techniques, but doing so would not shed any
further light on the questions addressed here.

2. Purse and Escrow

We will now work our way though a first version of an es-
crow exchange implementation (developed from [32]]), and
give a “traditional” specification, where trust is assumed and
risk is implicit. In the next section we show how explicit rep-
resentations of trust and risk let us specify components more
precisely, and reason about program code more accurately.

2.1 Purses

The escrow exchange example is based upon a system for
modelling resources proposed in [28]]. The “mints” and
“purses” (or alternatively “banks” and ‘“accounts”), can
model anything fungible, including currencies or commodi-
ties: a mint models a type of currency or commodity, and a
purse models an amount of that currency or commodity. We
can model both money and goods by purses, although we
distinguish them dynamically by using purses from different
mints for money and goods respectively.

Figure |1 shows a traditional specification of the Mints
and Purses. Specifications consist of sets of (ghost) fields
and policies, and are predicates over classes and objects.



specification Purse {
field mint // Mint
field balance // Number

policy Pol_deposit_1 // st case:

7 { res = dest.deposit (amt, src) }
8 res A

10 Vp:prePurse\{dest,src} p.balance=p.balancepre

17 policy Pol_sprout
18 p:Purse
19 { res = p.sprout() }

}

6 dest, src:Purse A SameMint (dest,src) A 0 <amt<src.balance

9 dest .balance=dest.balancepretamt A src.balance=src.balancepre—amt A

12 policy Pol_deposit_2 // 2" case:

13 prs,src:Purse A —( SameMint (dest,src) A O0<amt<src.balance )
14 { res = dest.deposit (amt, src) }

15 -res A Vp:meurse. p.balance=p.balancepre

20 res:Purse A SameMint (res,p) A res.balance=0 A Vp:prePurse. p.balance=p.balancepre A res # p

3| predicate SameMint (prsl,prs2) = prsl:Purse A prs2:Purse A prsl.mint=prs2.mint

Figure 1. Specification of Purse — First Attempt

Any object which adheres to a specification may be safely
assumed to satisfy all the policies in the specification.

A Purse has two ghost fields: mint, which is expected
to point to an object of class Mint, and balance which is
expected to be a value of type Number. Note that ghost fields
need not appear as such within Purse objects.

A Mint object acts as a token representing a particular
currency or type of goods. Mints have no public methods,
but can e.g. be tested for identity to help verify transactions
between purses.

The specification of Purse consists of three policies:
Pol_deposit_1and Pol_deposit_2 describe the behaviour
of the method deposit, and Pol_sprout describes the be-
haviour of sprout.

We use the standard convention and distinguish the values
of terms trm before and after execution of a method through
the subscripts trmy,. and trmp,s;. Moreover, when omit-
ting the subscript, we mean the value after execution. For ex-
ample, the assertion dest.balance = dest.balancey,. +
amt says that the balance of dest after execution of the
method will be the sum of amt and the balance of dest be-
fore execution of the method. All methods either return a
boolean value, or a pointer to an object. We follow the con-
ventions that the result of a method call is assigned to a vari-
able, res. We simulate exceptions and exception handling,
by checking the return value, and if it is false, returning
from the method. A full model for exceptions will be part of
future work.

A Purse object represents a particular purse (account).
Money can be transferred between any two purses of the
same mint through the method deposit. If the destination
and source are purses (dest,src:Purse) from the same

mint (predicate SameMint), and the source purse’s bal-
ance covers the amount to be deposited, then the amount
is transferred to the destination purse without modifying
any other purses, and the call returns true — c.f. policy
Pol _deposit_1. If the two purses are not from the same
mint, or the source purse has insufficient funds, the transac-
tion does not take place, all purses remain unaffected, and
the call returns false — c.f. policy Pol_deposit_2.

A new purse can be created at any time by asking an
existing purse to sprout — this returns a new, empty purse
from the same mint — c.f. Pol_sprout. The new purse has a
zero balance but can then be filled via deposit.

All three policies have a post-condition of the form

thpre Purse. p.balance=p.balancepre
or a variation thereof. This post-condition guarantees that the
method call will not modify the balance of any pre-existing
purse. This assertion is necessary when reasoning about the
effect of calling Purse-methods from the Escrow, and is,
essentially, a primitive way of expressing framing. We will
study better framing in further work.

To make a secure payment, the payer will typically make
a new, empty, temporary purse from one of their existing
purses via sprout, and deposit only enough funds for the
payment into the temporary purse. The payer then passes
the temporary purse to the payee, who then empties it back
into their primary purse. This allows two mutually untrusting
components to transfer funds, provided that they both trust
the mint and purse system.

2.2 Specifying Swapsies

Figure [2| is our first attempt at specifying an escrow ex-
change deal. An Escrow object has fields sellerMoney,




specification Escrow {
fields sellerMoney, sellerGoods, buyerMoney, buyerGoods // Purse
fields price, amt // Number
policy Pol_deal_ 1 // st case:
6 SameMint (buyerMoney, sellerMoney) A SameMint (buyerGoods, sellerGoods) A price, amt:N A
7 buyerMoney.balancepre >price A sellerGoods.balancepre >amt
8 { res = deal( ) }
9 res A
10 buyerMoney.balance=buyerMoney.balancepre—price A sellerMoney.balance=sellerMoney.balancepretprice A
1 buyerGoods.balance=buyerGoods.balancepretamt A sellerGoods.balance=sellerGoods.balancepre—amt A
12 Vp:prePursepre\{sellerMoney,sellerGoods, buyerMoney,buyerGoods}: p.balance=p.balance.pre

>nd

18 —res A
19 Vp:prePurse: p.balance=p.balance.pre

14| policy Pol_deal_2 / / 2 case:

15 —( SameMint (buyerMoney, sellerMoney) A SameMint (buyerGoods, sellerGoods) A
16 buyerMoney.balancepre >price A sellerGoods.balancepre >amt )

17 { res = deal( ) }

Figure 2. Specification of Escrow :: deal — First Attempt

sellerGoods, buyerMoney, and buyerGoods, which rep-
resent the money and the goods purses of the buyer and
the seller. The fields amt and price serve to describe the
amount of goods to be exchanged, and the price of this ex-
change. These fields will be supplied by other methods (see
[27]) which create the contract.

Even though we expect sellerMoney, sellerGoods,
buyerMoney, and buyerGoods to be objects representing
Purses, the Escrow cannot guarantee nor check this. The
first, superficial reason for this is, that our language is dy-
namically typed. The deeper reason is that Escrow does not
necessarily know all the classes which are legitimate im-
plementations of Purse objects. As we shall see later, the
Escrow can successfully co-ordinate objects of many differ-
ent classes which implement the Purse functionality.

The specification consists of two policies: Pol deal_1
promises that if the purses come from the same mints, and
have sufficient funds (lines 6-7), then the result will be true
(line 9), the transfer of the monies and the goods will take
place (lines 10-11), and all other purses will remain unaf-
fected (line 12). Pol_deal 2 promises that if the purses do
not come from the same mints, or have insufficient funds,
then the result will be false and all purses will be unaf-
fected.

2.3 Swapping via an Escrow Purse

The deal method in Figure 3] shows a first attempt at its
implementation. To make the exchange transactional, it uses
a pair of private escrow purses, one for on each side of
the transaction (money and goods). Rather than swapping
money and goods between buyer’s and seller’s purses in one
go, the buyer’s money and seller’s goods are moved first
into escrow purses, and then from the escrow purses into the
final destinations. In this way, we only complete the second
half of the transaction when we are sure enough money and

goods are securely in the escrow purses. If the transaction
needs to be abandoned halfway through, we can return the
buyer’s money from the escrow purse without any reference
to the seller.

This code from Figure E] is based on [27] and [32]. First,
two escrow purses (escrowMoney and escrowGoods) are
sprouted from the inputs — lines 3—6. The escrow purses
are newly created within the method, and so cannot be ma-
nipulated by the buyer or seller.

Second, we attempt to escrow the buyer’s money by
transferring it from the buyerMoney purse into the new
escrowMoney purse — line 8. According to the specifi-
cation (Fig. [I), if this request returns true, then the money
will have been transferred and both purses must be from the
same mint. If the request fails we abort the transaction.

Third, we attempt to escrow the seller’s goods — line 14,
again by depositing them into the escrow purse. If we are
unsuccessful, we again abort the transaction, after we have
returned that money to the buyer — lines 21 and 22.

At this point (line 24) the deal method should have sole
access to sufficient money and goods in the escrow purses.
The method completes the transaction by transferring the
escrowed money and goods into the respective destination
purses — lines 26 and 27. Thanks to the escrow purses,
these transfers should not fail so this code should meet the
Figure[J]'s specification. If only the truth were that simple.

2.4 The failure of dealV1

The dealV1 method in Figure[3|does not satisfy the Escrow
specification in Figure[2]— in fact, in an open system, it can-
not. The critical problems are assumptions about trust: both
the code and the specification implicitly trust the purse ob-
jects with which they interact. Considering both the Purse
and Escrow specifications: what happens if a purse or es-
crow is asked to interact with an untrustworthy purse? How




method dealV1l( )
{

1
2

3 // make temporary money Purse

4 escrowMoney = sellerMoney.sprout
5 // make temporary goods Purse

6 escrowGoods = buyerGoods.sprout

8 res = escrowMoney.deposit (price, buyerMoney)
9 if (!res) then

10 // insufficient money in buyerMoney

11 // or different
12 { return false }

'/ fficient money, same min

scrowMoney

st
15 // price transferred to

escrowGoods.deposit (amt, sellerGoods)

16 res
17 if (!'res) then

18 // insufficient 00

19 // or differ

20 { // undo the money transaction

21 buyerMoney.deposit (price, escrowMoney)
22 return false }

23

24 // pric amt in es

25 // now complete the ransactior

26 buyerMoney.deposit (price, escrowMoney)

27 sellerGoods.deposit (amt, escrowGoods)

Figure 3. First attempt at escrow deal

much risk is involved: just the potentially untrustworthy
purse? That purse plus any other purse it knows about, or
interacts with (e.g. both are passed into the same method)?
Any purse (or indeed any object) anywhere in the system?

Classical specifications like Figures [T and 2] have no no-
tion of the risks involved when an object does not meet
its specification. All bets are off: the world ends. Just be-
cause we can’t write specifications, however, doesn’t mean
that we can’t write programs: unfortunately the code in Fig-
ure [3| is in no better shape than the specification. Imagine
if sellerMoney was a malicious, untrustworthy object. At
line 4, the sprout call could itself return a malicious ob-
ject, which would then be stored in escrowMoney. Then at
line 1 1, during execution of escrowMoney.deposit (price,
buyerMoney) the malicious escrowMoney purse could steal
all the money out of buyerMoney purse, and still return
false. As a result, the buyer would lose all their money,
and receive no goods! Even if the buyer was more cautious,
and themselves sprouted a special temporary purse with a
balance of exactly price to pass in as buyerMoney, they
would still lose all this money without any recompense.

Perhaps there is something else we could do — a trusted
method on every object, say, that returns true if the object
is trusted, and false otherwise? The problem, of course, is
that an object that is untrustworthy is, well, untrustworthy:
we cannot expect a trusted method ever to return false.
This leads to our definition of trust: trust is hypothetical, and
in relation to some specification.

3. Specifying Trust and Risk Explicitly

The key claim of this paper is that we need specifications
that let us talk about trust and risk explicitly. In this section,
we begin by informally introducing three novel specification
language constructs: obeys to model trust, and May.Access
and MayAffect to model risk. We then revisit the specifica-
tions from the previous section using these constructs, show-
ing how they can be used to specify the purse and escrow
examples, and we argue informally that a revised escrow
method can in fact meet revised specifications.

3.1 Modelling Trust: obeys

To model trust, we introduce a special predicate, “ obeys ",
of the form o obeys Spec which we interpret to mean that
the current object trusts o to adhere to the specification Spec.

Because we generally can’t be sure that an object — es-
pecially one supplied from elsewhere in an open system —
can actually be trusted to obey a particular specification,
our reasoning and specifications tend to be hypothetical:
analysing the same piece of code under different trust hy-
potheses — i.e. assuming that particular objects may or may
not be trusted to obey particular specifications.

Thus, if object o can be trusted to obey specification
Spec, and Spec had a policy describing the behaviour of
some method m, then we may expect the method call o.m(...)
to behave according to that policy — otherwise, all bets
are off. This also leads to chains of hypothetical reasoning;
every method request on an object introduces a case-split on
whether the object satisfies its specification.

More about the formal treatment of the obeys predicate
in section 4, definition [6}

3.2 Modelling Risk: May.Access and May Affect

To model risk, we introduce predicates May.Access and
MayAffect, which express whether an object may read
or may affect another object or property. We will write
“MayAffect (o,p)” to mean that it is possible that some
method invocation on o would affect the object or property
p. Similarly, we will write “May.Access (o, p)” to mean that
it is possible that the code in object o could potentially gain
a capability to access to p — that is, a reference to p. In
practice, MayAccess (o, p) means that p is in the transitive
closure of the points-to relation on the heap starting from o.

More about the formal foundation of May.Access and
MayAffect in definition[I]in section 4.

3.3 Valid Purse: the Policies of Purse

We will now revisit the specifications for Purse and Escrow
and give their policies using the new features introduced in
the previous section. Once again, we begin by considering
the specification of purses, before going on to the specifica-
tion and then implementation of the escrow itself.



specification ValidPurse (dest) {
field balance // Number

W -

policy Pol_deposit_1 //
5 amt€e N

6 { res = dest.deposit (amt, src) }
7 res — (
8

S

// TRUST

10 // FUNCTIONAL SPECIFICATION
11 A O0<amt<src.balancepre A

9 srcobeys preValidPurse A CanTrade (dest, src)pre

12 dest.balance=dest.balancepretamt A src.balance=src.balancepre—amt A

13 //RISK

14 Vp. (pobeyspreValidPurse A p¢ {dest,src} — p.balance=p.balancepre) A

15 Vo:preObject. V pobeyspreValidPurse. MayAccess(o,p) — MayAccesspre (0,p) )
16

17 policy Pol_deposit_2 // ond case:

18 amt€ N

19 { res = dest.deposit (amt, src) }

20 —res — (

21 // TRUST and FUNCTIONAL SPECIFICATION

2 —( src obeyspr. ValidPurse A CanTrade (dest,src)pre A 0<amt<src.balancepre) A
23 // RISK

2 Vp. (pobeys preValidPurse —+ p.balance=p.balancepre) A

25 Vo:preObject. V pobeyspreValidPurse. MayAccess(o,p) — MayAccesspre (0,p) )

27 policy Pol_sprout

28 true

29 { res = dest.sprout() }

30 // TRUST

31 resobeys ValidPurse A CanTrade (dest,res)pre A

32 // FUNCTIONAL SPECIFICATION

33 res.balance=0 A

34 // RISK

35 Vp. (pobeys preValidPurse — p.balance=p.balancepre A res # p) A

36 Yo:preObject. V pobeyspreValidPurse.

38 policy Pol_can_trade_constant
39 true
40 { any_code }

43 policy Pol_protect_balance
44 // RISK

48| abstract predicate CanTrade (prsl,prs2) is transitive,

MayAccess (o,p) — MayAccesspre (0,p) )

41 A prsl,prsZObeysm@ValidPurse. CanTrade (prsl,prs2) «— CanTradepre (prsl,prs2)

45 V o,p:0bject. pobeysvalidPurse A MayAffect(o,p.balance) — MayAccess(o,p)

symmetric

Figure 4. Specification of ValidPurse

Figure [] revisits the purse specification policies from
Figure[I} making the risk and trust explicit.

Note that the specification is parametric with dest, the
receiver of all method calls described in the policies. This
reflects the fact that policies are essentially predicates over
objects. Any object which obeys the specification may be
safely assumed to satisfy all the policies in that specification.
More details and definitions in section 4.

Note also that instead of the concrete predicate SameMint,
we are using an abstract predicate CanTrade which holds
when two Purses can trade with each other. CanTrade must
be transitive and symmetric, but does not require that its ar-

guments have the same class or mint: just that deposit can
transfer currency from one purse to another. This could in-
volve a clearing house, interbank exchange, or could simply
boil down to SameMint. The point is that an abstract predi-
cate can be satisfied in different ways by different classes.
We now consider the policies in turn. Pol_deposit_1
and Pol _deposit_2 taken together distinguish between a
successful and an unsuccessful deposit, signalled by re-
turning true or false respectively. In the first case, i.e.
Pol _deposit_1 where the result is true, argument src
must have been a valid purse (‘“’src obeys ValidPurse”)
which could trade with the receiver , and src must have




sufficient balance. In the second case, i.e. Pol_deposit_2
where the result is false, either src was not a valid purse,
or would not trade with the receiver, or had insufficient
funds.

The last two lines in the postcondition of Pol_deposit_1
and Pol_deposit_2 provide framing conditions: In the first
case, that all other purses will be unmodified (line 14 in fig-
ure E]) , whereas in the second case no purses will be modi-
fied (line 24 in figure {). Moreover, the framing conditions
from lines 15, 25 and 36 of figure ] and not stated in fig-
ure 1, require that the methods do not leak access to any
ValidPurse object. In other words, if after the method call,
a pre-existing o has access to a ValidPurse object p, then
o had access to a p already before the call.

The key difference between the ValidPurse specifica-
tion and the earlier Purse specification is that ValidPurse
uses obeys clauses to reason about trust explicitly. For the
reasons described above, ValidPurse cannot make absolute
statements about trust, but can support relative, hypothetical
statements. Consider the request

res=dest.deposit (amt, src)
If the destination purse accepts the deposit, then we would
like to deduce that it has been able to retrieve the funds from
the source purse, and so assert the absolute statement that

res —
Unfortunately, the ValidPurse specification only applies if
the receiver dest is trustworthy: we can get only as far as the
conditional conclusion

res A destobeysValidPurse — srcobeysValidPurse
meaning that, if the deposit method returns true, then we
can trust src if we were willing to trust dest. So, if an
amount is deposited successfully into a trustworthy destina-
tion ValidPurse, that purse vouches that the src is itself
trustworthy. To quote [28]]: “A reported successful deposit
can be trusted as much as one trusts the purse one is de-
positing into”.

Pol_sprout, the third policy, is basically the same as the
earlier version in Figure[T] except that the first postcondition
now is slightly weaker, as it only promises that the result is a
trusted purse, without guaranteeing which class it belongs to.
We also have the additional framing rule about May.Access.

The fourth policy, Pol_can_trade_constant, guaran-
tees that whether two purses can trade with each other can
never change, no matter what code is run. This is another key
ingredient of our approach: we can require that execution of
any unknown code linked with our code must preserve some
properties.

Finally, the fifth policy, Pol_protect_balance, delimits
the risk involved with the purses. This policy guarantees that
a valid purse p’s balance can only be changed (“MayAffect
(o,p.balance)”) by some object o that may access that
purse(“AAayo4ccess(o,p)”)

src obeys ValidPurse

class Purse {

1
2 private myMint;

3 Purse (aMint) { myMint = aMint);

4 method sprout { return myMint.newPurse (0) }
5 method deposit (source, amount) {

6 return myMint.deposit (self, amount, source)
7 }

8| }

9| class Mint {

10 private ledger = new HashMap;

12 method makePurse (balance) {

13 p = Purse(self)

14 ledger.put (p,balance) }

15 }

16 method deposit (into, amount, from) {

17 if ( (amount >=0)

18 && ledger.contains (from)

19 && ledger.contains (into)

20 && ledger.get (from) > amount) )

21 then {

2 ledger.put (from, ledger.get (from) —amount)
23 ledger.put (into, ledger.get (into) H+amount)
24 } else { return false }

Figure 5. An implementation of Mint and Purse

3.4 Implementing ValidPurse

Figure [5] shows a Purse class that meets the ValidPurse
specification, and its associated Mint class, to which Purse
delegates its behavior. (Note methods are public, classes,
types and specifications are Uppercased and objects lower-
cased.) A Mint is key to the security of all its purses: any-
one with access to a Mint can create money “out of thin air”
by calling newPurse, so access to mints must be carefully
controlled. This is another reason why the Escrow must as-
sess the trustworthiness of the purses without recourse to the
mint.

On the other hand, Purses can be passed around with-
out affecting the total money held by all the purses in the
mint. Each mint has a 1edger that records the balance of its
purses, and a deposit method that transfers currency be-
tween purses. A deposit request will return true only if
both purses are listed in the mint’s legder and the source
purse has sufficient funds.

We present this implementation to illustrate two key
points about the ValidPurse specification. First, this imple-
mentation shows the key trust property of the ValidPurse
specification: that if a request like dest.deposit(0, src)
returns true, then the dest purse has effectively vouched
that the src purse can be trusted. In this implementation,
purses only trust other purses from the same mint: as all
purses are listed in their mint’s ledger, a transfer validates
the source purse by testing that it is listed in the same ledger
as the destination purse. Second, there can be many differ-
ent families of purses and mints in the system, both from this



method dealV2( ) // returns Boolean

1
2| {

3 //setup and validate Money purses

4 escrowMoney = sellerMoney.sprout

5 res=escrowMoney.deposit (0, sellerMoney)
6 if ('res) then {return false}

7 res = buyerMoney.deposit (0, escrowMoney)
8 if (!res) then {return false}

9 res = escrowMoney.deposit (0, buyerMoney)
10 if (!res) then {return false}

1

12 //setup and validate Goods purses

13 escrowGoods = buyerGoods.sprout
14 res=escrowGoods.deposit (0, buyerGoods)

15 if (!'res) then {return false}

16 res = sellerGoods.deposit (0, escrowGoods)

17 if (!res) then {return false}

18 res = escrowGoods.deposit (0, sellerGoods)

19 if (!res) then {return false}

20

21 res = escrowMoney.deposit (price, buyerMoney)
2 if (!'res) then {return false}

23 res = escrowGoods.deposit (amt, sellerGoods)
24 if (!'res) then {

25 buyerMoney.deposit (price, escrowMoney)

26 return false}

27

28 sellerMoney.deposit (price, escrowMoney)

29 buyerGoods.deposit (amt, escrowGoods)

31 return true

Figure 6. Revised Escrow method

and other implementations of the ValidPurse specification.
In an open system, we cannot expect a central authority to
know which are trustworthy and which are not.

3.5 Establishing Mutual Trust

The key to successful swapsies — or any other trading —
is establishing just enough mutual trust for just long enough
for the two parties to be able to complete the transaction. We
have argued that a call like:

resl=dest.deposit (amt, src)
lets us conclude that

resl A destobeysvValidPurse — srcobeysValidPurse

This trust is just one way: from the destination to the source
purse. [32]] offers a key insight: we can establish mutual trust
between two purses by attempting a second deposit in the re-
verse direction:

res2=src.deposit (amt, dest)
which gives

res2 A srcobeysValidPurse — dest obeysvValidPurse
Reasoning conditionally, on a path where res1 A res2 are
true, we’ll have established mutual trust:

dest obeys ValidPurse <— src obeys ValidPurse

As with much of our reasoning, this is both condi-
tional and hypothetical: at a particular code point, when two
deposit requests have succeeded (or rather, that they have

seller
Money
sprout deposit
(line 4) (line 5)
escrow
Money
deposit deposit
(line 9) (line 7)
buyer
Money

Figure 7. Establishing Mutual Trust

both reported success) then we can conclude that either both
are trust worthy, or both are untrustworthy: we have only
hypothetical knowledge of the obeys predicate.

3.6 Escrow with Explicit Mutual Trust

Two way deposit calls are sufficient to establish mutual trust,
but come with risks. For example, as part of validating that
a buyer’s money purse mutually trusts the seller’s money
purse, we must pass the buyer’s purse as argument in a
deposit call to the seller’s money purse, e.g.
sellerMoney.deposit (0, buyerMoney)

If the seller’s purse is not in fact trustworthy, then it can take
this opportunity to steal all the money in the buyer’s purse
before the transaction officially starts, even if the amt that is
supposed to be deposited is 0.

We can minimise this risk by careful use of escrow
purses. Rather than mutually validating buyers and sellers
directly, we can create an escrow purse on the destination
side of the transaction (the seller’s money and the buyer’s
goods) and then mutually validate the buyer’s and sellers ac-
tual purses against the escrow — resulting in a chain of mu-
tual trust between the destination purse and the escrow purse,
and the escrow purse and the source purse. This allows us to
hypothesise that the source and destination purses are mutu-
ally trusting before we start on the transaction proper.

The resulting escrow method is in Figure [6] Line 4 cre-
ates an escrowMoney purse and then lines 5-10 hypothet-
ically establish mutual trust between the escrowMoney,
sellerMoney, and buyerMoney purses. Figure[/|illustrates
the trust relationship: After line 4, we have

sellerMoney obeys ValidPurse —



escrowMoney obeys ValidPurse,
and after line 6, we have

escrowMoney obeys ValidPurse —

sellerMoney obeys ValidPurse.
If any of these deposit requests fail, we abort.

Lines 13-19 do exactly the same, but for goods purses
rather than money purses. Finally, lines 21-31 carry out
the escrow exchange itself, in exactly the same manner as
lines 8-27 of the first escrow implementation in Figure 3]

3.7 Specifying the Mutual Trust Escrow

Figure [§] shows a specification for the revised escrow deal
method from Figure[6] Whereas our original specification in
Figure [2] consisted of two cases based on the value of the
result, our revised ValidEscrow specification distinguishes
four cases, based on the value of the result, as well as the
trustworthiness of the participants. We use these auxiliary

definitions:
GoodPrs={ p | p obeyspr. ValidPurse }

PPrs:{ sellerMoney, sellerGoods, buyerMoney,
buyerGoods }

OthrPrs=GoodPrs \ PPrs

BadPPrs=PPrs \ GoodPrs

The set PPrs contains the four “participant purses” passed as
arguments. BadPPrs contains the untrustworthy participant
purses. GoodPrs are all trustworthy purses in the system that
do conform to the ValidPurse specification, and OthrPrs
are the trustworthy purses that do not participate in this
particular deal.

We now discuss the four cases of the policy
15t case: The result is true and all participant purses are

trustworthy. Then, the goods and money purses were
from the same mints respectively, and there was sufficient
money in the buyer’s purse and sufficient goods in the
sellers purse. In this case, everything is fine, so we can
play swapsies: price will have been transferred from
the buyer’s to the seller’s money purse, and amt will
have been transferred from the seller’s to the buyer’s
goods purse. No risk arises: no other purses’ balance will
change (whether passed in to the method or not).

274 case: The result is false and all participant purses are
trustworthy. Then one or more of the functional correct-
ness conditions are not satisfied: purses’ mints did not
match appropriately, or input purses did not have suffi-
cient balance. Again, no risk arises to any purses.

374 case: The result is false and some participant purse is
untrustworthy. In this case, no trustworthy purses’ bal-
ances have been changed — unless they were already
accessible by an untrustworthy purse passed in to the
method.

4" case: The result is true and some participant purse is
untrustworthy — actually at least two matching partici-
pant purses are untrustworthy. That is, the pair of match-

''We don’t need the sellerMoney purse to validate the escrowMoney
purse explicitly because the sprout method specification says sprouted
purses can be trusted as much as their parent purses.

ing purses have cooperated to suborn the escrow and we

cannot tell. Therefore, either both money purses are un-

trustworthy, (as per line 41), or both goods purses are un-

trustworthy, (as per line 42), or all four are bad.

The risk is that an uninvolved trustworthy purse’s balance

can be changed if it was previously accessible from a bad

purse.

The first and second case correspond to the traditional
Escrow specification in Figure 2] because traditional speci-
fications assume all objects are trustworthy.

Discussion The 3"% and 4'" case represent more of a risk
than we would like: ideally (as in the 2" case) we’d hope
nothing should have changed. But an escrow method cannot
undo a system that is already suborned — if one of the par-
ticipant purses is already benefiting from a security breach,
passing that purse in to this method gives it an opportunity to
exercise that breach. On the other hand, the risk is contained:
this method cannot make things worse.

The 4" case does not prevent trustworthy participant
purses from being modified, to cater e.g., for the possibility
that the two money purses are trustworthy, while the two
goods purses are not, in which case the money transaction
will take place as expected, while all bets are off about the
goods transaction. We can give the stronger guarantee for
the 377 case, because by the time the escrow starts making
non-0 transactions it has established that the purses in each
pair are either both trustworthy or both not trustworthy.

Most importantly, and perhaps surprisingly, the return
value of the method, res, does not indicate whether the
participants were trustworthy or not. Namely, a true result
may be obtained in the 15! case (all purses trustworthy)
as well as the 4" (some purses are untrustworthy). The
return value indicates only whether the escrow attempted to
complete the transaction (returning true) or abort (returning
false). This came indeed as a surprise to us, as well as the
original developers of the deal method. As with much of
our reasoning around trust, this leads to yet more conditional
reasoning, which must be interpreted hypothetically.

Nevertheless, the return value does communicate a valu-
able guarantee to an honest participant, whose money and
goods purses are both trustworthy: If deal returns true,
then the swap has taken place. Furthermore if it returns
false, the swap has not taken place and with no more risk
to the honest purses than those that existed before the call.

This ValidEscrow specification also gives a guarantee
to other purse objects, who do not necessarily take part in
the deal. Namely, if the participants had no prior access to
these purses, then even if those participants were dishonest,
the purses’ balance can never be affected.

Reasoning We have 16 pages of hand-developed proof
that the code from Figure [6] adheres to the specification
from Figure |8 Some of the arguments used in that proof
are discussed at the end of section 4.



specification ValidEscrow (e) {

W -

fields price, amt // N
4
5] policy Pol_deal_1 // 15t case:
6 price,amte€ N A price,amt>0
7 { e.deal( ) }
8 res A BadPPrs=0 — (
9 // FUNCTIONAL SPECIFICATION

fields sellerMoney, sellerGoods, buyerMoney, buyerGoods //

Purse—s

10 buyerMoney.balance=buyerMoney.balancepre—price AsellerMoney.balance=sellerMoney.balancepretpriceA
11 buyerGoods.balance=buyerGoods.balancepret+amt A sellerGoods.balance=sellerGoods.balancepre—amt A

12 // RISK

13 Vp:preOthrPrs. p.balance=p.balance.pre A

14 Yo:preObject, p:preGoodPrs. MayAccess(o,p) — MayAccess(0,p)pre )
15

16| policy Pol_deal_2 // 2nd case:

17 price,amte€ N A price,amt>0

18 { e.deal( ) }

19 —-res A BadPPrs=0 — (

20 // FUNCTIONAL SPECIFICATION

21 = ( CanTrade (buyerMoney, sellerMoney) A CanTrade (buyerGoods,sellerGoods) A
2 buyerMoney.balancepre > price A sellerGoods.balancepre > amt ) A
23 // RISK

24 Vp:preGoodPrs. p.balance=p.balance.pre A

25 Vo:preObject, p:preGoodPrs. MayAccess(o,p) — MayAccess(0,p)pre )

27| policy Pol_deal_ 3 // 3rd ¢
28 price,amte€ N A price,amt>0
29 { e.deal( ) }

30 —res A BadPPrs#() — (

31 //RISK

3| policy Pol_deal_4 // 4th

37 price,amt€ N A price,amt>0

case:

32 Vp:preGoodPrs. ( p.balance=p.balance.pre V 3 bpEBadPPrspre. MayAccess (bp,p)pre A
33 Vo:preObject, p:preGoodPrs. MayAccess (o,p) = (MayAccess (0, p) pre VIDEBadPPrsyre . MayAccess (b, p) pre) )

38 { e.deal( ) }

39 res A BadPPrs# 0 —

40 // TRUST

41 buyerMoney obeys PurseSpec <— sellerMoneyobeysPurseSpec A

42 buyerGoods obeysPurseSpec <— sellerGoodsobeysPurseSpec A

43 / /RISK

44 Vp:preOthrPrs. ( p.balance=p.balance.pre V 3 bp€ BadPPrspre. MayAccess (bp, p) pre A
45 Vo:preObject, p:preGoodPrs. MayAccess (o, p) —

46 (MayAccess (0,p) pre VIDEBadPPrsyre . MayAccess (b, p) pre) )

Figure 8. ValidEscrow specification

Stength of Specification The risk specification is weaker
than we would have liked. We currently guarantee that a
preéxisiting purse’s balance will remain unaffected, unless a
rogue purse had access to it before the call. A guarantee that
the balance is unaffected, unless a rogue purse could affect
the balance before the call would be stronger, and more use-
ful. Unfortunately, the current specification of ValidPurse
is too weak for this guarantee to be implementable. Namely,
imagine a “gullible” object, which has access to some third,
“victim” purse and which, when given a purse which the
victim can trade with, will transfer moneys from the vic-
tim. Then, a rogue purse could pass the escrow purse with
0 balance to the gullible, and thus remove moneys from the

victim. We expect to tackle this problem by applying notions
of encapsulation.

4. Formal Definitions — a Sketch

In this section, we sketch the most salient features of the
formal underpinnings of our system; we leave the full expo-
sition to further work.

Underlying Programming and Specification Language
We assume a small object oriented language, FOCalL
Therefore (Featherweight Object Capability Language, not
to be confused with FOCAL [24]) which supports classes,
fields and methods. FOC'aL is memory-safe: it does not al-




low addresses to be forged, or non-existent methods or fields
to be called, read or written. FOC'aL is dynamically typed:
it does not check that the arguments to a method call or a
field write are of the appropriate type either statically or dy-
namically: in this sense, FOCaL is inspired by JavaScript,
E, and Dart’s unchecked mode.

FOCaL supports modules, M, which are mappings from
class identifiers to class definitions. The module linking op-
erator * combines these definitions, provided that the mod-
ules’ mappings have separate domains, and performs no
other checks. This reflects the open world setting, where ob-
jects of different provenance interoperate without a central
authority. For example, if the mint and purse module (Fig-
ure(7)) is M,,,, and the escrow module (Figure@ is M., then
My, * M, is defined but M, * M, is not.

FOCaL dynamically enforces private fields and meth-
ods. Accessing or calling private fields or methods is only
allowed from method bodies of the same class; if not, the
exception error is thrown. We model private fields as they
are simpler than nested lexical scopes.

The operational semantics of FOCaL has the shape

M, k, code ~ k', T,
where M is a module containing all class declarations used,
K, k' are runtime configurations, code is some code in the
syntax of FOCalL, and r is a result. Results are addresses,
or the exception error.

Paths are written as p. They start with the receiver this,
or the formal parameter x, followed by a sequence of field
identifiers (£). We define |p]|, the lookup of a path p in a
context x in the expected way, where we read the receiver or
argument from the frame, and follow the values of the fields
in the heap. Therefore, if execution of a path is defined, then
looking up that path in the same configuration will return the
same value, i.e., M, K, p ~» K, vimplies |p], =v.

We assume an underlying specification language with as-
sertions indicated by P. Validity of these assertions is ex-
pressed through the judgment M, k |= P. We also expect sup-
port for the assertion p:ClassId which expresses that path
p is pointing to an object of class ClassId. When writing
method specifications, we need to compare properties of the
state before with properties of the state after method call.
For this, we use annotations pre, or post and write two-state
assertions, whose validity has the form M, k, k' |= P.

If |x.balance], = 4, and |x.balance], = 14, then
Mup, K [= x.balance < 10, and Myp, 5, k' |= x.balance =
x.balance,,. + 10. Also, if My, 51 |= 2 : Purse, and
execution of y = x.sprout() leads to configuration x4, then
we expect that My, ko |= ¥ : Purse.

Hypothetical Access and Affect We expand the specifica-
tion language with the special predicates MayAffect, and
MayAccess which we use to model risk.

Definition 1 (MayAffect and MayAccess).
We expand the definition of assertions with the predicates

MayAffect(_, ), and MayAccess(_,_). We define their
validity as follows:
* M, k = MayAccess(p,p’) iff
Afields £1...5p. |p-f1--Enle = [P']x
"M,k | MayAffect(p, p') iff
I public methodm, paths ,p, and configuration v’
M, s, p:0(5) ~> ' and [p') # [P}

We expand validity of MayAccess and MayAffect to
two state assertions, e.g., M, k, K’ = MayAccess(p, p’), iff
M, k" |E MayAccess(p,p’), where " = & if t=pre, else
k' =K.

Arising Runtime Configurations To give meaning to our
policies, it is essential to examine only those runtime con-
texts (i.e. configuration and code pairs) which may arise
through the execution of the given modules.

We therefore define Arising(M) as the set of runtime
contexts which may be reached during execution of some
initial context (kg,codep). A context is initial if its heap
contains only objects of class Object, its stack contains only
one frame, and the code contains exclusively method calls of
methods defined in M. The set Reach(M, x, e) collects all
contexts at the start of any method call during execution of
K, e — as in visible states.

Definition 2.
Arising . Program — P(Configuration x Expr)
ArisingM) = U, coae)eznitn Reach(M, k, code)

Policies and Specifications Policies have one of the three
following forms: a) invariants of the form P, which require
that some property holds at all visible states of a program;
b) Hoare-logic-like triples, P {code} P’ where P must be
a one-state assertion, and which require that execution of
code in any state which satisfies P will lead to a state
which satisfied P’; ¢) P {any_code} P’ which, like two
state invariants require that execution of any code in a state
which satisfies P will lead to a state which satisfies P’.

Definition 3 (Policies).
Policy == P|P{code} P| P {any code} P

Weak adherenceM, k |Eyear Policy, ensures that the re-
quirements of Policy are satisfied if « arises from M.

Definition 4 (Weak Adherence to Policies).
* M7 R ':weak P lﬁc
(k,_) € Arising(M) — M,k P
* M,k Fuweak P {code} P" iff
(K, code) € Arising(M) N M,k = P
AN M, k,code ~ res, K’
- Mk, EP
* M,k FEweak P {any_code} P’ iff
(K, code) € Arising(M) N M,k = P
AN M, k,code ~ res, K’
= M,k EP

For example, taking any «, and taking M,,,, as before,
we obtain that M,,,, K Fweak Pol_protect_bal. Taking



an M,,, similar to M,,;, but where instead of the ledger, the
Mint kept a map from Purses to codes, and another map
from codes to balances, and where the latter map was public,
we would also obtain that M,’np Eweak Pol_protect_bal.
This is so because none of the methods offered by M,
modify a Purse without access to it. However, clearly M,’np
is not robust enough. We have not yet taken the open nature
of systems into account.

In order to model open systems, we require that after
linking any module with the module at hand, the policy will
be satisfied. As stated in [30]], "A programmer should be able
to prove that his programs have various properties and do not
malfunction, solely on the basis of what he can see from his
private bailiwick." For example, to express that M, satisfies
EscrowSpec we need to allow any possible implementation
of Purse as well as any other code to be linked, and still
ensure that the policies from figure [§] are satisfied.

Definition 5 (Strong Adherence to Policies).
* M = Policy iff
VM, k.
M x M'is defined N (k,_) € Arising(M * M)
— M x M', Kk FEwear Policy

Therefore, M |= Policy not only ensures that execution
of M will guarantee Policy, but also, that the code of M is so
robust, that any further other module linked with M cannot
break Policy. With this definition, we obtain that M,,, =
Pol protect bal, but M, [~ Pol protect bal — as
expected .

Policy Specifications and obeys assertion A policy speci-
fication consists of a name, a parameter, and a set of policies.

Definition 6 (Policy Specifications).
PolicySpec ::= specification PolSpecld(PId)
{ Policy* }
An object o satisfies a PolSpecld in a configuration x, if
it satisfies all the Policys from PolSpecld. A class satisfies a
PolSpecld if all objects of that class are guaranteed to satisfy
the policies from that specification.

Definition 7 (Adherence to Policy Specifications). Assum-
ing a PolSpecld defined by
specification PolSpecld (PId){ Policy,, ...Policy,, },
then
* M, k |= oobeys PolSpecld iff
vie{l..n} VM.
M«M' defined — M+M', Kk =year Policy,[o/PId]
* M k= Classld obeys PolSpecld iff
Vie{l.n}.VM'.
MM’ defined —
M«M' Kk Eyear 0 : Classld — Policy;[o/PId|

Thus, we want to have M,,, = Mint obeysValidPurse,
and M, |= Escrow obeys ValidEscrow.

Validity of Escrow :: deal, Reasoning about Accessibil-
ity Reasoning about accessibility is central to arguing that

Escrow :: deal satisfies its risk specification. The argu-
ment hinges, essentially, on the observation that if any pre-
existing purse’s money were to be affected by the call of
Escrow :: deal, then one of the parties must have had ac-
cess to that purse at some time during execution of the call
(policy Pol protect_balance). However, since neither
the escrow, nor ValidPurses grant to any objects access
to any pre-existing purses, the only way for a malicious par-
ticipant to have access to a pre-existing purse, is if it already
had the access before the call of Escrow :: deal.

We can reason about accessibility based on one of the un-
derlying properties of object-capability systems, that “only
connectivity begets connectivity” [26]. Namely, object refer-
ences can only be created through object creation, and can-
not be forged. Thus the only way one object o can get access
to another object o’ is if o creates o’; or if o’ is passed to o
as a method argument in a method call; or if both o and o’
are passed as arguments in a method call; or if o’ is returned
from a method call to o. In all previous assertions, the term
“o passed” is a shorthand for “some object o’ with access to
o is passed”, and similar for o’.

This is expressed through the following Hoare-logic con-
nectivity rule:

ConnRule_MethCall:
{ true }
x.n(y)

{Vz, 2 pre Object.

( MayAccesspost(z,2') N ~MayAccesspre(z,2') —
[(MayAccess(x, z) pre V MayAccess(y, 2)pre) A
(MayAccess(x, 2') pre V MayAccess(y, 2 )pre)] )

We have similar rules for field and variable assignment,
which we omit here. The rules are independent of the trust-
worthiness of x and y. Soundness follows from memory
safety of the underlying programming language. A stronger
version of ConnRule_MethCall, to be used for concur-
rency, guarantees that accessibility restrictions hold through-
out the method’s execution and not just at the post-state.

5. Related Work

Object Capabilities and Sandboxes. Capabilities as a
means to support the development of concurrent and dis-
tributed system were developed in the 60’s by Dennis and
Van Horn [10], and were adapted to the programming lan-
guages setting in the 70’s [30]. Object capabilities were first
introduced [26]] in the early 2000s, and many recent studies
manage or verify safety or correctness of object capability
programs. Google’s Caja [29] applies sandboxes, proxies,
and wrappers to limit components’ access to ambient au-
thority. Sandboxing has been validated formally: Maffeis et
al. [23] develop a model of JavaScript, demonstrate that it
obeys two principles of object capability systems and show
how untrusted applications can be prevented from interfer-
ing with the rest of the system.



JavaScript analyses. More practically, Karim et al. apply
static analysis on Mozilla’s JavaScript Jetpack extension
framework [20]], including pointer analyses. Bhargavan et
al. [5] extend language-based sandboxing techniques to sup-
port “defensive” components that can execute successfully
in otherwise untrusted environments. Politz et al. [34] use a
JavaScript type checker to check properties such as “multi-
ple widgets on the same page cannot communicate.” Lerner
et al. extend this system to ensure browser extensions ob-
serve “private mode” browsing conventions, such as that
“no private browsing history retained” [22]]. Dimoulas et
al. [[11] generalise the language and type checker based ap-
proach to enforce explicit policies, that describe which com-
ponents may access, or may influence the use of, particular
capabilities. Alternatively, Taly et al. [39] model JavaScript
APIs in Datalog, and then carry out a Datalog search for an
“attacker” from the set of all valid API calls. The problem
posed by the Escrow example is that it establishes a two-
way dependency between trusted and untrusted systems —
precisely the kind of dependencies these techniques prevent.
Concurrent Reasoning Deny-Guarantee [12] distinguishes
between assertions guaranteed by a thread, and actions de-
nied to all other threads. Deny properties correspond to our
requirements that certain properties be preserved by all code
linked to the current module. Compared with our work,
deny-guarantee assumes codperation: composition is legal
only if threads adhere to their deny properties. In our work,
a module has to be robust and ensure that these properties
cannot be affected by other code.

Relational models of trust. Artz and Gil [4] survey vari-
ous types of trust in computer science generally, although
trust has also been studied in specific settings, ranging from
peer-to-peer systems [2] and cloud computing [18] to mo-
bile ad-hoc networks [9], the internet of things [17], online
dating [33]], and as a component of a wider socio-technical
system [8} 41]]. Considering trust (and risk) in systems de-
sign, Cahill et al.’s overview of the SECURE project [6] gives
a good introduction to both theoretical and practical issues
of risk and trust, including a qualitative analysis of an e-
purse example. This project builds on Carbone’s trust model
[7] which offers a core semantic model of trust based on
intervals to capture both trust and uncertainty in that trust.
Earlier Abdul-Rahman proposed using separate relations for
trust and recommendation in distributed systems [1]], more
recently Huang and Nicol preset a first-order formalisation
that makes the same distinction [[19]. Solhaug and Stglen
[38]] consider how risk and trust are related to uncertain-
ties over actual outcomes versus knowledge of outcomes.
Compared with our work, these approaches produce models
of trust relationships between high-level system components
(typically treating risk as uncertainty in trust) but do not link
those relations to the system’s code.

Logical models of trust. A detailed study of how web-users
decide whether to trust appears in [[16]]. Starting with [21]],

various different logics have been used to measure trust in
different kinds of systems. Murray and Lowe [31]] model ob-
ject capability programs in CSP, and use a model checker to
ensure program executions do not leak authority. Carbone et
al. [37] use linear temporal logic to model specific trust re-
lationships in service oriented architectures. Ries et al. [36]
evaluate trust under uncertainty by evaluating Boolean ex-
pressions in terms of real values for average rating, cer-
tainty, and initial expectation. Aldini [3|] describes a tem-
poral logic for trust that supports model checking to verify
some trust properties. Primiero and Taddeo [35] have devel-
oped a modal type theory that treats trust as a second-order
relation over base relations between counterparties. Merro
and Sibilio [25] developed a trust model for a process cal-
culus based on labelled transition systems. Compared with
our proposal, these approaches use process calculi or other
abstract logical models of systems, rather than engaging di-
rectly with the system’s code.

Formal Verification of Object Capability Programs.
Drossopoulou and Noble [13} [32] have analysed Miller’s
Mint and Purse example [[26] by expressing it in Joe-E and in
Grace [32]], and discussed the six capability policies as pro-
posed in [26]]. In [[15], they proposed a complex specification
language, and used it to fully specify the six policies from
[26]; their formalisation showed that several possible inter-
pretations were possible. They also uncovered the need for
another four policies and formalised them as well. Most re-
cently, [14] they have shown how different implementations
of the underlying Mint and Purse systems coexist with differ-
ent policies. In contrast, this work proposes FOCa L, which
is untyped and modelled on JavaScript rather than Java; a
much simpler specification language; the obeys predicate to
model trust; clearer definitions of accessibility predicates to
model risk; a full specification of the Escrow; and sketches
the reasoning steps using the proposed predicates.

6. Conclusions and Further Work

In this paper we addressed the questions of specification
of risk, trust, and reasoning about such specifications. To
answer these questions, we proposed:
* Hypothetical predicates to describe who may access or
modify an object or a property,
* Obeys predicates to describe whether an object can be
trusted to satisfy some specification,
* Open Assertions whose validity must be guaranteed in
spite of the execution of any code,
* Open Policies whose validity holds in the presence of any
code linked to the current code.
* Conditional reasoning steps.
During this work, we considered encapsulation as a low-
level mechanism, which should be transparent to specifica-
tions. To our surprise we have observed multiple times that
unless encapsulation percolates to the specification level,
specifications end up being too weak and wordy.



In further work we will re-consider encapsulation, and we
will complete the formal model and prove soundness of the
rules for reasoning. We will also extend our approach to deal
with concurrency and distribution.
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