
LONG SHORT TERM MEMORY NEURAL NETWORK
FOR KEYBOARD GESTURE DECODING

Ouais Alsharif, Tom Ouyang, Françoise Beaufays, Shumin Zhai, Thomas Breuel, Johan Schalkwyk

Google

ABSTRACT

Gesture typing is an efficient input method for phones and
tablets using continuous traces created by a pointed object
(e.g., finger or stylus). Translating such continuous gestures
into textual input is a challenging task as gesture inputs ex-
hibit many features found in speech and handwriting such as
high variability, co-articulation and elision. In this work, we
address these challenges with a hybrid approach, combining
a variant of recurrent networks, namely Long Short Term
Memories [1] with conventional Finite State Transducer de-
coding [2]. Results using our approach show considerable
improvement relative to a baseline shape-matching-based
system, amounting to 4% and 22% absolute improvement
respectively for small and large lexicon decoding on real
datasets and 2% on a synthetic large scale dataset.

Index Terms— Long-short term memory, LSTM, gesture
typing, keyboard

1. INTRODUCTION

The Word-Gesture Keyboard (WGK) [3], first published in
early 2000s [4, 5] has become a popular text input method on
touchscreen mobile devices. In the last few years this new
keyboard input paradigm has appeared in many products in-
cluding Google’s Android keyboard. With a WGK, rather
than tapping letter by letter, the user slides a finger through
letter keys on a touchscreen keyboard to enter text at a word
level. For example, to write the word the the user may, ap-
proximately, land a finger on the T key, slide to the H key,
continue to the E key, and then lift up. The single-stroke
gesture makes a spatial representation of the word the to be
recognized by the keyboard decoder. Figure 1 depicts such
interaction.

Word gestures produced with gesture typing are inher-
ently ambiguous. As to reach a particular letter on the key-
board, a gesture stroke inevitably runs across other letters
that are not part of the intended word. Also, on the other
end, a gesture may not touch letters that are part of the in-
tended word. In addition to ambiguity, gesture typing presents
coarticulation-like effects, as the way a character is touched
depends on its surrounding characters. Aside from these diffi-
culties, gesture typing presents several challenges in terms of

Fig. 1. An example keyboard with the word Today gestured.

decoder efficiency, accuracy and robustness. Efficiency is im-
portant because such solutions tend to run on mobile devices
which permit a smaller footprint in terms of computation and
memory. Accuracy and robustness are also crucial, as users
are not expected to gesture type words with high accuracy.
Since most users would be using a mobile device for input,
it is highly likely that gestures would be offset, noisy or even
mixed with conventional typing.

Conventional methods for gesture typing such as shape
matching [4] tend to be highly accurate on clean data, how-
ever they suffer heavily when the input gestures are noisy,
or when they are segmented into multiple gestures. On the
other hand, machine learning models, particularly recurrent
neural nets, have shown large gains in recognizing noisy, ill-
segmented inputs, such as hand written text [6] and speech
[7].

Recurrent Neural Networks [8] are set apart from con-
ventional feed-forward neural networks by allowing cycles in
the computational graph represented by the network. These
cycles allow the network to have dynamic contextual win-
dows, as opposed to fixed size windows, used by standard
feed forward models when addressing sequential problems.
This dynamic window contributes to improved accuracy of
such models on challenging tasks, such as large vocabulary
speech recognition [7].



Despite their potential for incorporating long-term con-
texts, vanilla RNNs trained with conventional Back Propa-
gation Through Time (BPTT) perform poorly on sequence
modelling tasks. This is primarily due to the gradient vanish-
ing and explosion problems [9]. Long Short Term Memories
(LSTMs) [1] on the other hand address these issues through
a memory block containing a memory cell which has a self
connection storing the temporal state of the network, allow-
ing a steady gradient during training. Figure 2 depicts the
architecture of an LSTM memory block.

In this paper, we exploit the conceptual similarity between
keyboard gesture decoding and speech recognition, by con-
cretely showing how a variant of LSTMs [7] can be used to
tackle the gesture typing problem. We find that relatively sim-
ple, shallow networks present superior performance relative
to an improved variant of a state of the art Google Android
keyboard commercial product. In addition to their superior
performance, on clean data, we show how LSTMs are able to
robustly recognize “noisy” data that the baseline recognizer is
unable to capture.

2. PROBLEM DEFINITION

Here, we formally define the gesture typing problem. A key-
board gesture decoder seeks to learn a function f : Rd×T →
W1 where T is the length of the gesture, d is the number of
features in the each input frame andW is the set of permitted
words. Typically, the d features associated with an input x
contain signals like: the keys the finger touches, current time
from last gesture and type of gesture (a down press or an up
lift of a finger).

3. RELATED WORK

Variants of recurrent neural networks have been applied to
various sequence prediction and labelling problems such as
speech recognition [7], handwriting recognition [6], gram-
matical inference [10], among others. Arguably, the most sig-
nificant success recurrent neural nets (LSTMs in particular)
had so far was for automatic speech recognition [11], where
they surpass conventional feed-forward neural networks for
acoustic modelling tasks. It is notable that, while LSTMs do
outperform conventional neural networks, vanilla RNNs do
not [7], with bidirectional models [6], (models which oper-
ate on the input signal and its reverse simultaneously) outper-
forming unidirectional models.

While effective for sequence classification tasks, in or-
der to use LSTMs to map input sequences to shorter out-
put sequences (e.g., mapping acoustic frames to phoneme or
grapheme sequences), one needs an alternative loss function
to conventional frame-wise cross-entropy loss. Concretely,

1Note that T is different for different inputs.

Fig. 2. The architecture of a single memory block of an
LSTM.

the Connectionist Temporal Classification (CTC) loss func-
tion [12] can be used for this purpose. This function attempts
to increase the probability of all frame wise transcriptions that
result in the target output sequence after removing blanks and
repetitions. Results using CTC for speech recognition have
been mixed. While the state of the art result on TIMIT [11]
is achieved with a CTC type-loss, recent attempts for end-to-
end training on the wall-street journal with a similar approach
resulted in comparable Word Error Rates (WER) to a conven-
tional feed forward neural net baseline [13].

In a different strand of research, methods for keyboard
gesture recognition, and more generally, gesture recognition
have been largely reliant on geometric distance techniques
[4, 5], HMMs [14] or Dynamic Time Warping [15], among
others. For a comprehensive survey on gesture recognition,
consult [16].

4. METHODOLOGY

In this section, we describe our particular approach in more
detail.

4.1. Long Short Term Memory

To address the gesture typing problem, we use an LSTM
trained with a CTC loss function. Unlike the work in [7] we
do not use recurrent layers or projection layers in our partic-
ular architecture. For an input sample x ∈ Rd×T , an LSTM
computes the following function2:

st = hs(Ws(yt−1 + xt)) (1)
it = gi(Wi(yt−1 + xt + ct−1)) (2)
ft = gf (Wf (yt−1 + xt + ct−1)) (3)
ct = it � st + ct−1 � ft (4)
ot = go(Wo(xt + yt−1 + ct)) (5)
yt = ot � ho(ct) (6)

2We omit biases for clarity of presentation.



where xt ∈ Rd is the t-th column of the input matrix x. Ws,
Wi, Wf , Wo are the cell’s parameters. it, ft, ot are respec-
tively the input, forget and output gates’ outputs. gi, gf and go
are the input, forget and output gates activation functions. hs
and ho are the input and output activations and � is the ele-
ment wise product. After passing the entire sequence through
this function, the LSTM produces an output y ∈ R|C|×T
where C is the set of permitted characters.

4.2. Connectionist Temporal Classification Loss

The CTC loss function can be used to train recurrent networks
on unaligned targets. This is accomplished through maximiz-
ing the sum of probabilities of all frame-wise sequences that
correspond to the target sequence. Concretely, this loss is
given as follows:

L(x, z) = − log(p(z|x)) (7)

p(z|x) =
∑

π∈A(z)

p(π|x) (8)

p(π|x) =
T∏
t=1

ytπt
(9)

where x is the input sequence, z is the target transcription,
A(z) is the set of all CTC transcriptions of a target transcript
(e.g., for the word data, the transcriptions may include daata,
datta, dddata, etc). y is the output of the LSTM or more
generally, a recurrent network.

To compute the above loss, we make use of the forward-
backward algorithm [17], where we find:

p(z|x) =
|ẑ|∑
s=1

αT (s)βT (s)

yTẑs
(10)

where α and β are respectively the forward and backward
variables, defined as in [12] and can be computed via dynamic
programming. ẑ is the same as sequence z with blanks in-
serted in the beginning, end and between symbols. zs is the
sequence containing the first s frames of z.

Using the CTC loss function during training allows us to
train the network to output characters directly, without the
need for HMM states.

4.3. Finite State Transducers

After training, an LSTM network produces a matrix y ∈
R|C|×T . In order to constrain the decoded result to a set of
limited wordsW , we construct a trie-shaped lexicon FST L,
similar to the one in Figure 3. We compose this FST with
another c FST that maps CTC blanks into FST epsilons. We
decode the resulting matrix using the composed c ◦ L FST
with a standard beam search [18], where arc transitions costs
are the context-independent log probabilities from the matrix
y. Note that while we do not use a language model in this

g
o go

f

o r t h

forth

_
_

_
_ _ _ _

<space>
<space>

Fig. 3. An example lexicon FST for the words go and forth.
The symbol stands for emitting nothing, ε is the FST ep-
silon.

particular work, adding one is straightforward, through a sim-
ple composition with aG FST containing the language model
information.

5. EXPERIMENTS
We evaluate our methodology on three different datasets. Two
of which were collected from real users, and one synthetic.
We compare our method to a strong baseline, namely an ad-
vanced version of the technology currently in use for Android
KitKat Keyboard gesture recognition.

5.1. Data

We evaluate the performance of our method on three datasets.
The first (called Salt) is a relatively small dataset, containing
14,500 words in total, with 120 unique words, collected from
40 opt-in individuals in a wizard of oz fashion, modelled af-
ter the Pepper study [19]. The second dataset (called ALK)
contains 50,000 words with 5,450 unique words. The words
in this dataset were anonymized real gestures collected from
opt-in Google employees. Due to heavy preprocessing, this
dataset contained roughly 70% words that had a single down
and up taps and 30% which had multiples. This is particu-
larly of interest, as we find the baseline system to be unable
to capture the multi-tap gestures. The third dataset was syn-
thetically generated from the Enron dataset [20]. We prepro-
cessed the data by narrowing down to 89 users that had a rea-
sonable amount of sent mail, heuristically removing replied-
to and forwarded text, removing URLs and then discarding
messages that had more than 1000 words. Then, from the re-
sulting data, we generated synthetic gestures, by connecting
the characters within a word using an algorithm that mini-
mizes jerk, which closely fits human motor control. We also
allowed for variability in the length of the sequences. After
this preprocessing, the final dataset contains ∼138,000 words
with 8,256 unique words. For all datasets, we lower-cased all
words and removed words with characters other than a-z.

We split all three datasets into training/testing sets. With
the Salt dataset split into 13,000 training points for training
and 1500 for testing. For the ALK dataset, we split into 45,000
for training and 5,000 for testing. As for the Enron dataset, we
split into 124,000 points for training and 14,000 for testing.
These statistics are summarized in Table 1.



Dataset Salt Alk Enron
Data Type Real Real Synthetic

Unique Words 120 5,450 8,256
Training set size 13,000 45,000 124,000
Testing set size 1,500 5,000 14,000

Table 1. Dataset Statistics

The input to our gesture keyboard app contains an x, y
position, time since last gesture and gesture type (move, up,
down). We augment these inputs with a 30 dimensional
boolean vector in which index i = 1 for key i if the x, y
position fell within key boundaries. The 30 buttons include
26 characters for the English alphabet in addition to com-
mas, apostrophes, dots and space. These 34 features form the
frame-wise inputs to our LSTMs.

We preprocess all datasets using frame-wise global con-
trast normalization (i.e., removing the mean and dividing by
standard deviation of the frame vectors).

5.2. Model
We experimented with various LSTM architectures, with
varying depth, width and directionality. In all experiments,
we let the set C be equal to be the set of small case English
characters in addition to the apostrophe, comma and dot char-
acters, except for the Salt experiment, where we set C = W
directly. We initialize all weights in our networks to be Gaus-
sian distributed with a mean of 0 and a standard deviation
of 0.01. The LSTMs used a hyperbolic tangent activation
unit for cell inputs and outputs and logistic units for all the
gates. As is conventional with LSTMs, we use gradient clip-
ping to avoid the gradient explosion problem. All networks
were trained with asynchronous SGD on a parallel computing
cluster [21]. We train the neural network with a learning rate
set to 0.01. For our L FST, we use a lexicon created from
100,000 words selected from an independent lexicon. We use
this FST for the ALK and Enron experiments. As for the Salt
experiments, we constrain the lexicon to the 120 words in the
dataset.

5.3. Results
For each of the datasets, we report word recognition accu-
racy. For all LSTM experiments, we report model sizes, as
these tend to be important factors for applications on embed-
ded devices. We found deeper models, with two LSTM lay-
ers to perform quite comparably to shallow ones, so we omit
them from results. Moreover, we find Bidirectional LSTMs
(BLSTMs) to consistently outperform Unidirectional LSTMs
(ULSTMs). We also found we were unable to train ULSTMs
on the Salt dataset. We believe this is due to the small num-
ber of unique words in that particular dataset, as the LSTM
does not have sufficient data to generalize. The ALK and En-
ron experiments showcase that point, as ULSTMs perform in-
creasingly better with larger amounts of training data. We also
consistently find learning rate decay to be useful. Particularly,
for our most accurate BLSTM model, learning rate decay led

Fig. 4. An example real gesture of the word when which our
LSTM recognizes correctly while the baseline system fails
to. Notice the co-articulation-like effect after the character n
which confuses the baseline system.

Model Salt Alk Enron size
ULSTM-34-400* - 76.0% 92.5% 1.5m
ULSTM-34-400 - 76.3% 90.2% 1.5m
ULSTM-34-200 - 77.8% 90.0% 451k
ULSTM-34-100 - 76.6% 89.6% 148k
ULSTM-34-50 - 70.7% 85.9% 55k
BLSTM-34-400* 92% 89.2% 93.5% 1.5m
BLSTM-34-400 89% 84.2% 92.3% 1.5m
BLSTM-34-200 88% 83.6% 91.7% 451k
BLSTM-34-100 86% 82.8% 91.1% 148k
BLSTM-34-50 85% 75.7% 88.2% 55k
Baseline 88% 67% 91.2% N/A

Table 2. Recognition Accuracy and model sizes for different
LSTM models on the Salt, Alk and Enron datasets. * indicates
results after learning rate decay.

to nearly 5% absolute improvement in WER on ALK. Table 2
presents the results of these experiments.

Arguably the most interesting aspect of our results, is that
we find the baseline system to perform well on clean data
(∼ 92%) on ALK, but quite poorly (∼ 0%) on noisy data (in
which the user multi-tapped , mixed gestures or didn’t raise
their finger at the right time). Where LSTM models perform
comparably on both noisy and clean data. Figure 4 depicts an
example noisy gesture which our LSTM recognizes while the
baseline system fails to.

6. CONCLUSIONS
To the best of our knowledge, we presented in this paper the
first successful application of a recurrent network based ar-
chitecture to address the keyboard gesture decoding problem.
We have shown the possibility of training these networks on
unsegmented data, where we utilized a CTC type loss func-
tion during training. Furthermore, we showed that in combi-
nation with Finite State Transducers, these methods can scale
to lexicons with tens of thousands of words.



7. REFERENCES

[1] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[2] Mehryar Mohri, “Finite-state transducers in language
and speech processing,” Computational linguistics, vol.
23, no. 2, pp. 269–311, 1997.

[3] Shumin Zhai and Per Ola Kristensson, “The word-
gesture keyboard: reimagining keyboard interaction,”
Communications of the ACM, vol. 55, no. 9, pp. 91–101,
2012.

[4] Shumin Zhai and Per-Ola Kristensson, “Shorthand writ-
ing on stylus keyboard,” in SIGCHI. ACM, 2003, pp.
97–104.

[5] Per-Ola Kristensson and Shumin Zhai, “Shark 2: a
large vocabulary shorthand writing system for pen-
based computers,” in Proceedings of the 17th annual
ACM symposium on User interface software and tech-
nology. ACM, 2004, pp. 43–52.

[6] Marcus Liwicki, Alex Graves, Horst Bunke, and Jürgen
Schmidhuber, “A novel approach to on-line handwrit-
ing recognition based on bidirectional long short-term
memory networks,” in ICDAR, 2007.

[7] Haşim Sak, Andrew Senior, and Françoise Beaufays,
“Long short-term memory based recurrent neural net-
work architectures for large vocabulary speech recogni-
tion,” arXiv preprint arXiv:1402.1128, 2014.

[8] Ronald J Williams and David Zipser, “A learning algo-
rithm for continually running fully recurrent neural net-
works,” Neural computation, vol. 1, no. 2, pp. 270–280,
1989.

[9] Yoshua Bengio, Patrice Simard, and Paolo Frasconi,
“Learning long-term dependencies with gradient de-
scent is difficult,” IEEE Transactions on Neural Net-
works, vol. 5, no. 2, pp. 157–166, 1994.

[10] Steve Lawrence, C Lee Giles, and Sandiway Fong,
“Natural language grammatical inference with recurrent
neural networks,” IEEE Transactions on Knowledge and
Data Engineering, vol. 12, no. 1, pp. 126–140, 2000.

[11] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton, “Speech recognition with deep recurrent neu-
ral networks,” in ICASSP. IEEE, 2013, pp. 6645–6649.

[12] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber, “Connectionist temporal classi-
fication: labelling unsegmented sequence data with re-
current neural networks,” in ICML. ACM, 2006, pp.
369–376.

[13] Alex Graves and Navdeep Jaitly, “Towards end-to-end
speech recognition with recurrent neural networks,” in
ICML, 2014, pp. 1764–1772.

[14] Andrew D Wilson and Aaron F Bobick, “Hidden
markov models for modeling and recognizing gesture
under variation,” PAMI, vol. 15, no. 01, pp. 123–160,
2001.

[15] Miguel Angel Bautista, Antonio Hernández-Vela, Victor
Ponce, Xavier Perez-Sala, Xavier Baró, Oriol Pujol, Ce-
cilio Angulo, and Sergio Escalera, “Probability-based
dynamic time warping for gesture recognition on rgb-d
data,” in Advances in Depth Image Analysis and Appli-
cations, pp. 126–135. Springer, 2013.

[16] Sushmita Mitra and Tinku Acharya, “Gesture recog-
nition: A survey,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, vol.
37, no. 3, pp. 311–324, 2007.

[17] Lawrence Rabiner, “A tutorial on hidden markov models
and selected applications in speech recognition,” Pro-
ceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[18] Stuart Russell and Peter Norvig, “A modern approach,”
1995.

[19] Shiri Azenkot and Shumin Zhai, “Touch behavior with
different postures on soft smartphone keyboards,” in
Proceedings of the 14th international conference on
Human-computer interaction with mobile devices and
services. ACM, 2012, pp. 251–260.

[20] Bryan Klimt and Yiming Yang, “Introducing the enron
corpus,” .

[21] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al., “Large scale dis-
tributed deep networks,” in NIPS, 2012, pp. 1223–1231.


