
SQLGraph: An Efficient Relational-Based Property Graph
Store

Wen Sun†, Achille Fokoue‡, Kavitha Srinivas‡, Anastasios Kementsietsidis§,
Gang Hu†, Guotong Xie†

†IBM Research - China ‡IBM Watson Research Center §Google Inc.
{sunwenbj, hugang, xieguot}@cn.ibm.com {achille, ksrinivs}@us.ibm.com akement@google.com

ABSTRACT
We show that existing mature, relational optimizers can be
exploited with a novel schema to give better performance
for property graph storage and retrieval than popular noSQL
graph stores. The schema combines relational storage for ad-
jacency information with JSON storage for vertex and edge
attributes. We demonstrate that this particular schema de-
sign has benefits compared to a purely relational or purely
JSON solution. The query translation mechanism translates
Gremlin queries with no side effects into SQL queries so that
one can leverage relational query optimizers. We also con-
duct an empirical evaluation of our schema design and query
translation mechanism with two existing popular property
graph stores. We show that our system is 2-8 times better
on query performance, and 10-30 times better in throughput
on 4.3 billion edge graphs compared to existing stores.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Property graphs; Gremlin

Keywords
Property graphs; Relational Storage; Gremlin

1. INTRODUCTION
There is increased interest in graph data management re-

cently, fueled in part by the growth of RDF data on the web,
as well as diverse applications of graphs in areas such as so-
cial network analytics, machine learning, and data mining.
The dominant focus in the academic literature has been on
RDF data management (e.g., [39, 18, 27, 24, 6, 25, 16]).
Much of this work targets support of the graph data model
over native stores or over distributed key-value stores. Few
target relational systems because of concerns about the ef-
ficiency of storing sparse graph adjacency data in relational

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
ACM 978-1-4503-2758-9/15/05.
http://dx.doi.org/10.1145/2723372.2723732.

storage (e.g., Jena SDB [38], C-store [1]). Yet relational
systems offer significant advantages over noSQL or native
systems because they are fully ACID compliant, and they
have industrial strength support for concurrency, locking,
security and query optimization. For graph workloads that
require these attributes, relational databases may be a very
attractive mechanism for graph data management. In fact,
in a recent paper, Bornea et al. [5] show that it is possi-
ble to shred RDF into relational storage in a very efficient
manner with significant gains in performance compared to
native graph stores.

Significant progress has been made as well on query op-
timization techniques for querying RDF graph data. The
standard graph query language for RDF is called SPARQL,
which is a declarative query language for specifying sub-
graphs of interest to the user. Many techniques have been
proposed for optimizing SPARQL queries (e.g., [33, 34]),
with some specifically targeting the problem of translating
SPARQL to SQL (e.g., [7, 9, 13]). As a result, it has been
possible to use relational databases for RDF data.

However, RDF is just one model for graph data manage-
ment. Another model which is rapidly gaining popularity for
graph storage and retrieval is the so-called property graph
data model, which differs from RDF in two important ways:
(a) it has an object model for representing graphs, (b) it
has an accompanying query language called Gremlin which
varies significantly from SPARQL.

The data model for property graphs is a directed labeled
graph like RDF, but with attributes that can be associated
with each vertex or edge (see Figure 2a for an example of a
property graph). The attributes of a vertex such as name
and lang are encapsulated in an object as key-value pairs.
In RDF, they would be modeled as extra edges from the
vertex to literals with the labels of name and lang, respec-
tively. Similarly, the attributes of an edge are associated
with an object, with attributes such as weight and its value
represented as key-value pairs. One mechanism to model
edge attributes in RDF is using reification, where four new
edges are added to the graph to refer to the pre-existing
edge. Thus, to model the edge between vertex 4 and 3,
there would be a new vertex 5 added to the graph. This
vertex would have an edge labeled subject to 4, an edge
labeled object to 3, and an edge label labeled predicate to
created. The fourth edge would link 5 ’s type to a Statement,
to indicate that this vertex reflects metadata about another
RDF statement (or edge). While this method of modeling
edge attributes is very general, it is verbose and inefficient
in terms of storage and retrieval. Other techniques in RDF

include adding a fourth element to each edge (such that each
edge is now described with four elements), and this fourth
element (5 in our example) can now be used as a vertex
in the graph, so that edge attributes such as weight can be
added as edges from it. Property graphs provide a simpli-
fied version of this latter form of reification, by adding an
object for every edge, and encapsulating edge attributes as
key values. That is, the notion of one level of reification is
built in to the notion of a property graph. How to deal with
reification in RDF is however, not standard (see [14]), and
hence, most of the literature directed at the study of RDF
data management has ignored the issue of how to efficiently
store RDF edge attributes.

Another important difference between property graphs
and RDF is in the query language. While SPARQL, the
query language for RDF, is declarative, Gremlin is a pro-
cedural graph traversal language, allowing the programmer
to express queries as a set of steps or ‘pipes’. For example,
a typical query might start at all vertices filtered by some
vertex attribute p, traverse outward from that vertex along
edges with labels a, and so on. Each step produces an itera-
tor over some elements (e.g., edges or vertices in the graph).
In Gremlin, it is possible to have arbitrary code in some
programming language such as Java or Groovy act as a pipe
to produce side effects. This poses a significant challenge
to query optimization, because much of the prior work on
SPARQL cannot be re-applied for Gremlin.

Because the data model and query language for property
graphs reflect an object-oriented view of graphs, they seem
to be gaining popularity with Web programmers, as seen in
the growing number of stores aimed at this model. Exam-
ples include Apache Titan1, Neo4j2, DEX [21], OrientDB3,
InfiniteGraph4 to name a few. To our knowledge, all of
them are built using either native support or other noSQL
stores. For instance, Apache Titan supports BerkeleyDB
(a key-value store), Cassandra, and HBase (distributed col-
umn stores). OrientDB is a document database like Mon-
goDB, but doubles as a graph store. Neo4j and DEX sup-
port graphs natively. The question we ask in this paper,
is whether one can provide efficient support for property
graphs over relational stores. Specifically, we examine al-
ternative schema designs to efficiently store property graphs
in relational databases, while allowing the Web program-
mer access to a query language such as Gremlin. Note that
because Gremlin is a procedural language, it may include
side effects that make it impossible to translate into SQL.
In this paper, we focus on Gremlin queries with no side-
effects or complex Java code embedded in the query, to
examine if such an approach is even feasible. We outline
a generic mechanism to convert Gremlin queries into SQL
and demonstrate that this approach does in fact produce
efficient queries over relational storage.

There are two key ideas in Bornea et al. [5] that we exam-
ine in detail with respect to their applicability to property
graphs: (a) the adjacency list of a vertex in a graph is ac-
commodated on the same row as much as possible, (b) to
deal with sparsity of graphs and uneven distribution of edge
labels in the graph, each edge label is ‘hashed’ to a small

1http://thinkaurelius.github.io/titan/
2http://www.neo4j.org
3http://www.orientechnologies.com/orientdb/
4http://www.objectivity.com/infinitegraph

set of columns and each column is overloaded to contain
multiple edge labels. The hashes are optimized to mini-
mize conflicts, by analysis of the dataset’s characteristics.
Bornea et al. [5] demonstrate the efficacy of these ideas to
store the adjacency information in a graph, but the prop-
erty graph model presents additional challenges in terms of
storage of edge and vertex information. One option is to
store edge or vertex information in another set of tables
analogous to those described in [5]. Another option is to
examine whether these additional attributes of a property
graph model can be stored more efficiently in non-relational
storage such as JSON storage since most commercial and
open source database engines now support JSON. We ex-
amined both options to make informed decisions about the
schema design for property graphs, and empirically evalu-
ated their benefits. The outcome is a novel schema that
combines relational with non-relational storage for property
graphs, because as we show in a series of experiments, non-
relational storage provides advantages over relational stor-
age for lookup of edge and vertex attributes.

Our contributions in this paper are fourfold: (a) We pro-
pose a novel schema which exploits both relational and non-
relational storage for property graphs, (b) We define a generic
technique to efficiently translate a useful subset of Gremlin
queries into SQL, (c) We modify two very different graph
benchmarks (i.e., the DBpedia SPARQL benchmark and the
LinkBench) to measure property graph performance because
there are no accepted benchmarks yet for this query lan-
guage5. Our benchmarks include graphs in the 300M-4.3
billion edge graphs. We are not aware of any comparison of
property graph stores for graphs of this size. (d) We show
that our ideas for property graph data management on rela-
tional databases yield performance that is 2-8X better than
existing stores such as Titan, Neo4j and OrientDB on read
only, single requester workloads. On concurrent workloads,
that advantage grows to about 30X over existing stores.

2. RELATED WORK
Graph data management is a broad area and falls into

three categories: (a) graph stores targeting the RDF data
model, (b) graph stores targeting the property graph data
model, (c) graph processing frameworks. The first two tar-
get subgraph queries over graph data, or selective graph
traversal, whereas the third targets global graph manipula-
tions where each step performs some complex logic at each
vertex or edge. Our focus is on the graph data management
in the first two cases in this paper.

Numerous schemes have been proposed for storage of graph
data over relational and non-relational storage (see [31], [26]
for surveys) in both centralized and distributed settings.
These schemes include storage of edges in (a) vertical ta-
bles with extensive use of specialized indexes for perfor-
mance [25], (b) predicate-oriented column stores to deal with
sparsity [1], or to enable scale out [28], (c) different tables
for each RDF type [38], (d) a relational hash table to store
adjacency lists for each vertex [5]. To our knowledge, ours
is the first work to explore combining relational with non-
relational storage to address the problem of storing a graph
along with metadata about each edge or vertex.

5Standardization efforts are underway, but the benchmarks
are still in draft form as of today [2]

http://thinkaurelius.github.io/titan/
http://www.neo4j.org
http://www.orientechnologies.com/orientdb/
http://www.objectivity.com/infinitegraph

1 2

uri=‘birthplace’
oldid=‘49417695’
section=‘External_link’
relative-line=40

uri=‘Stagira’
uri=‘Aristotle’
description=‘philosopher’Aristotle

philosopherStagira

descriptionbirthplace

RDF Property Graph

101

Figure 1: Conversion of RDF to Property graphs

As we stated earlier, compilation of declarative query lan-
guages such as SPARQL into SQL is a well-studied prob-
lem [7, 9, 13], both in terms of mapping SPARQL’s seman-
tics to SQL, and in terms of providing SPARQL views over
legacy relational schemas [10, 29, 30]. There does not ap-
pear to be any work targeting the translation of Gremlin to
SQL, perhaps due to the fact that it is a procedural lan-
guage. Yet, for many graph applications, Gremlin is used to
traverse graphs in a manner that can be expressed declara-
tively. In fact, one recent attempt contrasts performance on
Gremlin with performance on other SPARQL-like declara-
tive query languages on Neo4j [15].

There are numerous benchmarking efforts in the RDF
space targeting query workloads for graphs. Examples in-
clude SP2Bench [32], LUBM [12], UOBM [19], BSBM [4]
and DBpedia [22], but none of them can be easily modeled
as property graphs because they do not have edge attributes,
except for DBpedia. Other graph benchmarks such as HPC
Scalable Graph Analysis Benchmark [11] and Graph500
[23] largely target graph processing frameworks, and once
again have no edge attributes, or even edge labels. Ciglan
et al. [8] proposed a general graph benchmark that evalu-
ates the performance of 2-hop and 3-hop BFS kernals over
a property graph, but the benchmark is not publicly acces-
sible. PIG [20] is a benchmark for tuning or comparison of
different property graph specific operations, but it targets
a Blueprints API which performs atomic graph operations.
A complex graph traversal can use these atomic graph op-
erations in sequence, but the performance overhead is very
serious in normal client-server workloads. An ongoing prop-
erty graph benchmark project is the Linked Data Bench-
mark Council [2], where a Social Network Benchmark is
under development targeting interactive graph workloads,
but the current queries are still vendor-specific, and do not
support Gremlin. LinkBench [3] is a benchmark for evalu-
ating the performance of different databases on supporting
social graph query workloads. It was initially designed for
MySQL and HBase, and it generates synthetic datasets and
queries based on traces of Facebook’s production databases.
Since none of the current benchmarks support Gremlin na-
tively, we chose to adapt DBpedia and LinkBench as our
target benchmarks for two different type of workloads. DB-
pedia’s queries are more complex, but target a read only
benchmark. LinkBench focuses on atomic graph operations
like PIG, but has very good support for measuring concur-
rent read write workloads.

3. SCHEMA DESIGN
Bornea et al. [5] outlined a novel schema layout for storage

of RDF data in relational databases, and demonstrated its

efficacy against other native RDF systems. In this paper,
we evaluate the generality of this design for the property
graph data model. Recall that in property graphs, each ver-
tex or edge can have multiple key-value pairs that serve as
attributes on the vertex or edge. An important point to
note is that access to these key-value pairs associated with
an edge or vertex is usually through the vertex or edge iden-
tifier, unless specialized indexes have been created by a user
on specific keys or values for the vertex or edge. In other
words, access in property graph models tends to be like very
much like a key-value lookup. To help make informed deci-
sions on schema design for this specific model and its access
patterns, we created a micro benchmark (a) to empirically
examine whether adjacency information is best stored in a
schema layout outlined for RDF as in [5] or whether a back-
end store supporting key-value lookups was more appropri-
ate, and (b) to evaluate whether it is better to store ver-
tex and edge attributes in key-value type stores or shredded
within a relational model as in [5].

3.1 Micro Benchmark Design
For this micro-benchmark, we needed (a) fairly complex

graph traversal queries to contrast differing approaches to
storing adjacency and (b) simple vertex or edge attribute
lookups to contrast different approaches for storing edge or
vertex metadata. As stated earlier, there is a dearth of
realistic graph datasets for property graphs. Some of the
synthetic datasets that exist such as LinkBench are clearly
not designed to study graph traversal performance, although
they do provide a nice benchmark for edge attribute lookups.
As a result, we turned to real graphs in the RDF space to
adapt them for use as a micro-benchmark. This allows us to
re-use the exact same graph for both studies, by just varying
the queries.

To adapt the DBpedia 3.8 RDF data model into a prop-
erty graph data model, we translated each triple in the RDF
dataset into a property graph using the following rules: (a)
any subject or object node in RDF became a vertex with a
unique integer ID in the property graph, (b) object proper-
ties in RDF were specified as adjacency edges in the property
graph, where the source and the target of the edge were
vertex IDs, and the edge was identified by an integer ID,
(c) datatype properties in RDF were specified as vertex at-
tributes in the property graph, (d) provenance or context
information, encoded in the DBpedia 3.8 dataset as n-quads
were converted into edge attributes. Figure 1 shows the con-
version of DBpedia from an RDF data model to property
graphs. Note that URIs are abbreviated for succinctness.
This conversion helped us study characteristics of query per-
formance such as k hop traversal or vertex attribute lookup
on the same real graph data, without having to revert to
the creation of new synthetic datasets for each aspect of our
study. We define the set of queries we used for each study
on this same graph in the sections below.

3.2 Storing Adjacency
An interesting aspect of popular stores for storing prop-

erty graphs is that they are based on noSQL key-value stores
or document stores such as Berkeley DB, Cassandra, HBase
or OrientDB. In storing sparse RDF graph data, earlier work
has shown that [5] shredding vertex adjacency lists into a re-
lational schema provides a significant advantage over other
mechanisms such as property tables or vertical stores which

© 2013 IBM Corporation20 IBM Confidential

VID ATTR0 TYPE0 VAL0 ATTR1 TYPE1 VAL1

1 name STRING marko age INTEGER 29

2 name STRING vadas age INTEGER 27

3 name STRING lop lang STRING java

4 name STRING josh age INTEGER 32

VID EDGES (JSON)

1

{

“knows” : [{“eid”:7, “val”:2},

{“eid”:8, “val”: 4}],

“created”: [{“eid”:9, “val”:3}]

}

4

{

“likes” : [{“eid”:10, “val”:2}],

“created”: [{“eid”:11, “val”:3}]

}

(d) Hash-based vertex attribute tables

(c) JSON-based table for outgoing adjacency

KEY COL

name 0

age 1

lang 1

agename

lang

LABEL COL

knows 0

created 1

likes 0

created

knows

VID LBL0 EID0 VAL0 LBL1 EID1 VAL1

1 knows null lid:1 created 9 3

4 likes 10 2 created 11 3

(b) Hash-based tables for outgoing adjacency

likes

created

weight=0.8

weight=0.2

10

11

LID EID VAL

lid:1 7 2

lid:1 8 4

Outgoing adjacency coloring and color table

Outgoing adjacency hash table

Multi-value table

VID ATTR (JSON)

1
{ “name” : “marko”,

“age”: 29 }

2
{ “name” : “vadas”,

“age”: 27 }

3
{ “name” : “lop”,

“lang”: “java” }

4
{ “name” : “josh”,

“lang”: 32 }

(e) JSON-based vertex attribute table

(a) A sample property graph

Vertex attribute coloring and color table Vertex attribute hash table

2

name = “vadas”

age = 27

1

name = “marko”

age = 29

3

name = “lop”

lang = “java”

9

created

weight=0.4

8

knows

weight=1.07

knows

weight=0.5

4 name = “josh”

age = 32

likes

Figure 2: Hash-based and JSON-based schema for graph adjacency and attributes.

store all edge information in a single table. However, given
the somewhat stylized access patterns in property graphs, it
is unclear whether storing adjacency lists in non-relational
key-value stores would provide more efficient storage. A rel-
evant research question then is whether such stores provide
more efficient access for property graphs.

Most modern relational databases such as DB2, Oracle or
Postgresql have features to support both relational and non-
relational storage within the same database engine, making
it possible to perform an empirical comparison of the util-
ity of relational versus non-relational storage structures for
property graphs. Our first study was to compare relational
versus non-relational methods for the storage of adjacency
lists of a vertex.

For the relational schema, we re-used the approach spec-
ified in [5]; i.e., the adjacency list of an edge was stored in
a relational table by hashing each edge label to a specific
column pair, where one column in the pair stored the edge
label, and the other column in the pair stored the value
as shown in Figure 2b. In this schema, a given column is
overloaded in terms of the number of different edge labels
it can store to minimize the use of space. Figure 2 shows
this column overloading, such that likes and knows edges
are stored in the same column 0, both having hashed to col-
umn 0. RDF graphs can have thousands of edge labels, so
overloading columns reduces sparsity in the relational table
structure. However, this mechanism can also result in con-
flicts if one uses a hashing function that does not capitalize
on the characteristics of the data. Bornea et al. [5] intro-
duced a hashing function based on an analysis of the dataset
characteristics. Specifically, the technique involves building
a graph of edge label co-occurrences where two edge labels
share an edge if they occur together in an adjacency list
(e.g., knows and created in 2b). A graph coloring algorithm
is then applied to this graph of edge label co-occurences,
to ensure that two predicates that co-occur together in an
adjacency list never get assigned to the same color. Be-
cause the color represents a specific column in the store, this
hashing function minimizes conflicts by assigning predicates
that co-occur together in a dataset to different columns. In
the example, this means that knows and created would be
assigned to different columns. With this type of hashing,

Bornea et al. [5] showed that across multiple benchmarks,
one can accomodate most adjacency lists on a single row,
and moreover, this schema layout has significant advantages
for query performance on many different RDF benchmarks6.

We contrasted this relational schema to an approach where
the entire adjacency list was stored as a JSON object. Our
choice of JSON was driven by the fact that most modern
relational engines support JSON stores in an efficient way,
and this support co-exists with relational storage in the same
database engine. A comparison can therefore be made be-
tween the two approaches in a more controlled setting. In
a later section, we perform an experimental evaluation of
our approach against other popular property graph stores,
which rely on different key-value stores to rule out the pos-
sibility that any of the differences we see in are purely due
to implementation specific differences within the engine for
relational versus non relational data.

Our queries shown in Table 1 to study adjacency storage
were focused around graph traversal, because these sorts of
queries can highlight inefficiencies in adjacency storage. We
created a set of queries on the DBpedia 3.8 property graph
to vary (a) the number of hops that had to be traversed in
the query, (b) the size of the starting set of vertices for the
traversal, (c) the result size which reflects query selectivity
as shown in Table 1. All the queries shown in Table 1 in-
volved traversal over isPartOf relations between places, or
team relationships between soccer players and their teams7

In this and all other experiments, we always discarded the
first run, so we could measure system performance with a
warm cache. We ran each query 10 times, discarded the first
run, and report the mean query time in our results.

The results shown in Figure 3 were unequivocal. Storing
adjacency lists by shredding them in a relational table has
significant advantages over storing them in a non-relational
store such as JSON. Query times were significantly faster
for the relational shredded approach (mean: 3.2 s, standard
deviation: 2.2 s) compared to the non-relational JSON ap-

6Source code for ideas described in Bornea et al. is available
at https://github.com/Quetzal-RDF/quetzal
7In the case of team relations, we traversed these relations
ignoring the directionality of the edge.

https://github.com/Quetzal-RDF/quetzal

Query Query ID Num. Hops Input Size Result Size

isPartOf

1 3 16000 257K
2 6 16000 257K
3 9 16000 257K
4 5 100 4K
5 5 1000 30K
6 5 10000 196K

team

7 4 1 61K
8 6 1 234K
9 8 1 267K
10 6 10 255K
11 6 100 266K

Table 1: Adjacency queries

© 2013 IBM Corporation35 IBM Confidential

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1 2 3 4 5 6 7 8 9 10 11

Hash Adjacency Table

JSON Adjacency Table

Figure 3: Results of the adjacency micro-benchmark.

proach (mean: 18.0 s, standard deviation: 11.9). These
results suggest that there is value in re-using the relational
shredded approach to store the adjacency information in a
property graph model. Our next question was how to extend
the shredded relational schema approach to store edge and
vertex attributes in the property graph data model, which
we address in the next section.

3.3 Storing Vertex and Edge Attributes

Query ID Attribute Filter Result
Type Size

String

1 national not null 239
2 national like %en 218
3 genre not null 28K
4 genre like %en 27K
5 title not null 231K
6 title like %en 222K
7 label not null 10M
8 label like %en 10M

Numeric

9 regionAffiliation not null 223
10 regionAffiliation 1958 3
11 populationDensitySqMi not null 28K
12 populationDensitySqMi 100 32
13 longm not null 205K
14 longm 1 3K
15 wikiPageID not null 11M
16 wikiPageID 29899664 1

Table 2: Queries of the vertex attribute lookup micro-
benchmark.

As we noted earlier, the key-value attributes on the ver-
tices and edges is the only difference between property graphs
and RDF graphs in structure. We started by examining
whether we could extend the existing relational schema by
adding two more tables for the storage of vertex and edge key
value properties respectively. To store edge and key value at-
tributes in these tables, we could use the same technique we

© 2013 IBM Corporation35 IBM Confidential

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

JSON Attr. Table

Hash Attr. Table

Figure 4: Results of the vertex attribute lookup micro-
benchmark.

outlined in [5], by hashing attributes to columns in a stan-
dard relational table. However, note that access to these at-
tributes tends to be very much like a simple key value lookup
(because it does not involve joins). Shredding the key values
into a relational table may be unnecessary. Hence, we com-
pared the choice of a relational or non-relational approaches
for storage of these attributes, just as we did in the prior
sub-section. Once again, as shown in Figure 2 d, we shred-
ded vertex or edge attributes using a coloring based hash
function, and contrasted it with an approach that stored all
the vertex or edge information in a single JSON column (see
Figure 2 e).

Vertex Outgoing Incoming
Attribute Adjacency Adjacency
Hash Table Hash Table Hash Table

No. of Hashed Labels 53K 13K 13K
Hashed Bucket Size 106 125 19
Spill Rows Percentage 3.2% 0 0.6%
Long String Table Rows 586K 0 0
Multi-Value Table Rows 49M 244M 243M

Table 3: Comparison of using hash tables for vertex at-
tributes and adjacency.

To evaluate the efficacy of these different storage mecha-
nisms, we used the same DBpedia benchmark but changed
the queries so that they were lookups on a vertex’s attributes8.
In property graphs, a user would typically add specialized
indexes for attributes that they wanted to lookup a vertex or
an edge by. We therefore added indexes for queried keys and
attributes both for the shredded relational table and when
the vertex’s attributes were stored in JSON. Table 2 shows
the queries we constructed for this portion of our study.
Across queries, we varied (a) whether the queried attribute
values were strings or required casts to numeric, (b) whether
the query was a simple lookup to check if the key of the at-
tribute existed (the not null queries), or whether it required
the value as well (these in addition could be equality compar-
isons such as the lookup to see if longm had the value 1, or
string functions to evaluate if the query matched some sub-
string), (c) whether the query was selective or not selective.
The results are shown in Figure 4. Vertex attribute lookups
on the JSON attribute table (mean: 92 ms, standard de-
viation: 108 ms) were better than the relational shredded
table lookups (mean: 265 ms, standard deviation: 537 ms).

8We did not test lookup of an edge’s attributes because the
mechanism is the same.

© 2013 IBM Corporation14 IBM Confidential

DB2Graph – Current Schema, with a Sample

VID* ATTR (JSON object)

1 { “name”=“marko”, “age”=29 }

2 { “name”=“vadas”, “age”=27 }

3 { “name”=“lop”, “lang”=“java” }

4 { “name”=“josh”, “age”=32 }

EID* INV OUTV LBL ATTR (JSON object)

7 1 2 knows { “weight”=0.5 }

8 1 4 knows { “weight”=1.0 }

9 1 3 created { “weight”=0.4 }

VID+ SPILL 99 EIDj LBLj VALj 99 EIDK LBLK VALK

1 0 null knows 101 9 created 3

4 0 10 like 2 11 created 3

(a) Outgoing Primary Adjacency (OPA)

VID+ SPILL 99 EIDp LBLp VALp 99 EIDq LBLq VALq

2 0 7 knows 1 10 like 4

3 0 null null null null created 102

4 0 8 knows 1 null null null

VALID+ EID VAL

101 7 2

101 8 4

VALID+ EID VAL

102 9 1

102 11 4

(c) Incoming Primary Adjacency (IPA)

(b) Outgoing Secondary Adjacency (OSA)

(d) Incoming Secondary Adjacency (ISA)

(e) Vertex Attributes (VA)
(f) Edge Attributes (EA)

Figure 5: Schema of the proposed property graph store. “*” denotes the primary key, and “+” denotes the indexed column.

Another interesting aspect of using JSON in this dataset is
shown in the characteristics of the shredded relational hash
tables for vertex attributes for DBpedia, as shown in Table 3.
Clearly, the relational hash table approach is efficient only to
the degree that the entire adjacency list of a vertex is stored
in a single row. For outgoing edges (and incoming edges)
in DBpedia, if one considers just the adjacency data, this
is mostly true with no spill rows in the outgoing adjacency
hash table and 0.6% spills in the incoming adjacency hash
table. The vertex attribute hash table however has more
spills, and has a number of long strings in the attributes
which cannot be put into a single row. Storing this data in
a shredded relational table thus means more joins in looking
up vertex attributes, either because rows have spilled due
to conflicts, because long strings are involved, or because
a vertex has multiple values for a given key. In JSON, we
eliminate joins due to spills, long strings, or multi-valued
attributes. Moreover, because the shredded relational table
needs a uniform set of columns to store many different data
types, it needs casts, which are eliminated in JSON. Thus, as
long as these values do not participate in a join again, we see
substantial gains in using JSON to store these attribute val-
ues. Note that JSON lookups for simple attribute lookups
(the not null) queries were not different from the shredded
relational table, suggesting that when joins are not involved,
both storage systems do equally well.

3.4 The Proposed Schema
Given the results of the micro-benchmarks, we designed a

novel schema that combined relational storage for adjacency
information along with JSON storage for vertex and edge
attributes. Figure 5 illustrates the proposed schema with
the sample property graph in Figure 2a.

The primary tables for storing outgoing and incoming ad-
jacency (OPA, and IPA) directly apply the coloring and
hashing ideas in the RDF store [5] to store edge labels,
their values and additionally an edge ID as a key for edge
attributes, provided the edge has only a single value. An
example in Figure 2 is the like edge between 4 and 2. Ide-
ally, all the outgoing (or incoming) edges of a vertex, will be
stored in the same row, where the EIDi, LBLi, and VALi

columns are used to store the connected edge id, edge label,
and outgoing (or incoming) vertex id respectively, assuming
that the hashing function hashes the edge label to the ith
column triad (in our example for like this would be the jth

triad. If there are collisions of hashing, the SPILL column
will be set for the vertex to indicate multiple rows are re-
quired to represent the outgoing adjacency information of
the vertex. In addition, if the vertex has multiple outgoing
edges with the same label, the outgoing edge ids and outgo-
ing vertices are stored in the OSA (or correspondingly ISA)
tables, as shown in the figure for the edge between 1 and
its edges to 2 and 4. Obviously, the effectiveness of this
approach to storing adjacency is dependent on minimizing
hashing conflicts. Bornea et al. [5] show that hashing based
on dataset characteristics is relatively robust if its based on
a reprentative small sample of the data. However, if updates
change substantially the basic characteristics of the dataset
on which the hashing functions were derived, reorganization
is required for efficient performance.

The vertex attribute (VA) table as in Figure 5 (e) directly
uses JSON column to store vertex attributes. The separate
table avoids redundant storage of the attributes, in case ver-
tices span multiple rows. The edge attribute (EA) table not
only stores the edge attributes in JSON column, but also
keeps a copy of the adjacency information of each edge. We
incorporated this feature because it provides significant ben-
efits on certain types of graph queries, as we discuss in the
next section. Furthermore, as we discuss in the evaluation
section, this redundancy does not actually result in greater
storage costs on disk compared to existing systems, because
most relational engines have very good compression schemes.

In addition, for VA and EA tables, the vertex and edge
ids are used as the primary keys. For the other tables, we
built indexes over the VID and VALID columns, to support
efficient table joins by using the ids. We also added the
equivalent of a combined index on INV and LBL, as well
as OUTV and LBL (these are effectively the equivalent of
SP and OP indexes in RDF triple stores). In addition, de-
pending on the workloads of the property graph stores, more
relational and JSON indexes can be built to accelerate spe-
cific query types or graph operations, which is similar to the
functionality provided by most property graph stores.

3.5 Uses for Redundancy in the Schema
One weakness in the proposed schema for the storage of

adjacency lists is that it always requires a join between the
OSA and OPA (or correspondingly IPA and ISA) tables to
find the immediate neighbors of a vertex. In cases where the
result set is large in either table, this can be an expensive

© 2013 IBM Corporation35 IBM Confidential

1.00E+02

1.00E+03

1.00E+04

1.00E+05

lq1 lq2 lq3 lq4 lq5 lq6 lq7 lq8 lq9 lq10 lq11

OPA+OSA EA

Figure 6: Results of the EA versus OPA-OSA path compu-
tation in ms.

operation compared to an index lookup in EA. We tested
this hypothesis with another micro-benchmark on DBpedia.
The query was to find all neighbors of a given vertex. We
varied the selectivity of that query by choosing vertices with
a small number of incoming edges, or a large number of
incoming edges, as shown in Table 4. As shown in the table,
a simple lookup of a vertex’s neighbors can degrade if the
query is not selective for the adjacency tables, compared to
a lookup in EA.

The next question to ask is whether we need the adjacency
tables at all? After all, the EA table contains adjacency in-
formation as well (it is basically a triple table) and can be
used to compute paths. We therefore ran our long path
queries using joins on the EA table alone, or using joins on
OPA+OSA. The results shown in Figure 6 were once again
unequivocal. On average, queries for paths were performed
in 8.8 s when OPA+OSA were used to the answer the query
compared to 17.8 s when EA was used. OPA+OSA was
also somewhat less variable overall (a standard deviation of
8.2 s compared to 9.8 s for EA). The reason for this find-
ing is due to the fact that shredding results in a much more
compact table than a typical vertical representation. Thus,
the cardinality of the tables involved in the joins is smaller,
and it yields better results for path queries. We note that
this complements [5]’s work which shows the advantages of
shredding for so-called star queries, which are also very com-
mon in graph query workloads.

Query ID ResultSize EA IPA+ISA
1 1 38 39
2 21 38 38
3 228 39 40
4 2282 39 40
5 21156 41 42
6 226720 58 77
7 2350906 74 440

Table 4: Comparison of getting vertex neighbors query per-
formance in ms.

4. QUERY TRANSLATION
Gremlin, the de facto standard property graph query traver-

sal language [37], is procedural, and this makes it difficult
to compile it into a declarative query language like SQL.
Nevertheless, Gremlin is frequently used to express graph
traversal or graph update operations alone, and these can
be mapped to declarative languages. In this paper, we fo-

cus on graph traversal queries and graph update operations
with no side effects.

4.1 Gremlin Query Language in a Nutshell
A Gremlin query consists of a sequence of steps, called

pipes. The evaluation of a pipe takes as input an iterator
over some objects and yields a new iterator. Table 5 shows
the different categories of Gremlin operations (or pipes).

Gremlin Description
Operation Types
Transform Take an object and emit a transformation of

it. Examples: both(), inE(), outV(), path()
Filter Decide whether to allow an object to pass.

Examples: has(), except(), simplePath()
Side Effect Pass the object, but with some kind of side

effect while passing it. Examples: aggregate(),
groupBy(), as()

Branch Decide which step to take.
Examples: split/merge, ifThenElse, loop

Table 5: Operations supported by Gremlin query language.

The interested reader is referred to [36] for an exhaustive
presentation of all Gremlin pipes. Here, we illustrate, on a
simple example, the standard evaluation of a Gremlin query.
The following Gremlin query counts the number of distinct
vertices with an edge to or from at least one vertex that has
‘w’ as the value of its ‘tag’ attribute:

g.V.filter{it.tag==‘w’}.both.dedup().count()
The first pipe of the query V returns an iterator it1 over

all the vertices in the graph g. The next pipe filter{it.tag
== ‘w’} takes as input the iterator it1 over all vertices in
the graph, and yields a new iterator it2 that retains only
vertices with ‘w’ as the value of their ‘tag’ attribute. The
both pipe then takes as input the iterator it2 and returns an
iterator it3 containing, for each vertex v in it2, all vertices u
such that the edge (v, u) or (u, v) is in the graph g (note that
it3 may contain duplicated values). The dedup() produces
an iterator it4 over unique values appearing in the iterator
it3. Finally, the last pipe count() returns a iterator with a
single value corresponding to the number of elements in the
previous iterator it4.

4.2 Query Processing Framework
Since Gremlin operates over any graph database that sup-

ports the basic set of primitive CRUD (Create Read Update
Delete) graph operations defined by the Blueprints APIs [35],
a straightforward way to support Gremlin queries is to im-
plement the Blueprints APIs over the proposed schema, as
most of the existing property graph stores do. However, this
approach results in a huge number of generated SQL queries
for a single Gremlin query, and multiple trips between the
client code and the graph database server, which leads to
significant performance issues when they are not running in
the same process on the same machine. For instance, for
the example query in the previous section, for each vertex
v returned by the pipe filter{it.tag == ‘w’}, the Blueprints’
method getV ertices(Direction.BOTH) will be invoked on
v to get all its adjacent vertices in both directions, which
will result in the evaluation, on the graph database server,
of a SQL query retrieving all the vertices that have an edge
to or from v.

Compared to random file system access or key-value lookups,
SQL query engines are more optimized for set operations

rather than for multiple key lookups. Hence, the basic idea
of our query processing method is to convert a Gremlin
query into a single SQL query. By doing so, we not only
eliminate the chatty protocol between the client and the
database server, but we also leverage multiple decades of
query optimization research and development work that have
gone into mature relational database management systems.
In other words, by specifying the intent of the graph traver-
sal in one shot as a declarative query, we can leverage the
database engine’s query optimizer to perform the query in
an efficient manner.

The proposed query framework follows the following steps.
The input Gremlin query is first parsed into an execution
pipeline that is composed of a set of ordered Gremlin op-
erations (i.e., pipes). The pipes are then sent to the query
builder, where a set of pre-defined templates, which are of
different types including SQL functions, user defined func-
tions (UDFs), common table expression (CTE) fragments
and stored procedures (SPs), are used to translate the pipes
into SQL queries. Based on the order of the input pipes, the
matched templates are composed together and optimized by
the query optimizer. Finally, input Gremlin queries are con-
verted into a single SQL query or stored procedure call to
send to the relational engine for execution.

4.3 Gremlin Query Translation
In the standard implementation of Gremlin, the input or

output of a pipe is an iterator over some elements. In our
SQL based implementation, the input or output of a pipe
is a table (a materialized table or a named Common Table
Expression (CTE)) with a mandatory column named val
that contains the input or output objects, and an optional
column named path that represents the traversal path for
each element in the val column (this path information is
required by some pipes such as simplePath or path).

Definition 1. We define the translation of a gremlin pipe
e, denoted [e], as a function that maps the input table tin of
the pipe to a tuple of (sp, spi, cte, tout), where

• tout (also denoted [e].out) is the result table of the pipe.

• sp (also denoted [e].sp) is the list of stored procedure
definitions used in the translation of e.

• spi (also denoted [e].spi) is the list of stored procedure
invocations for a subset of stored procedures in sp.

• cte (also denoted [e].cte) is the list of pairs (cteName,
cteDef) consisting of the name and the definition of
Common Table Expressions (CTEs) used in the trans-
lation of e.

If the translation is done through CTEs, then tout is the
name of one of the CTEs in cte; otherwise, it is the name of
a temporary table created and populated by the invocation
of the last element of spi.

Table 5 lists the Gremlin operations in different cate-
gories. Basically, for the different types of Gremlin opera-
tions (pipes), we designed different types of query templates
to handle each Gremlin pipe based on operations that are
standard in relational databases.

Transform Pipes. The transform pipes control the traver-
sal between the the vertices in a graph. Based on results
discussed in section 3.5 on how to best exploit the redun-
dancy in the schema design section, for a transform from

a set of vertices to their adjacent vertices, if the transform
appears as the only graph traversal step in the query (i.e.,
for a simple look-up query), the most efficient translation, in
general, uses the edge table (EA); otherwise, the translated
CTE template joins with the hash adjacency tables. For
example, the out pipe, which outputs the set of adjacent
vertices of each input vertex, is translated by the following
template parametrized by the input table tin if the pipe is
part of a multi-step traversal query:

[out](tin)=(∅, ∅, cte, t1)
cte = {
(t0,SELECT t.val FROM tin v,OPA p,

TABLES(VALUES(p.val0), ... ,(p.valn))AS t(val)
WHERE v.val=p.entry AND t.val is not null),

(t1,SELECT COALESCE(s.val, p.val) AS val
FROM t0 p LEFT OUTER JOIN OSA s on p.val=s.id)}

Otherwise, if the out pipe is the only graph traversal step
in the query, the preferred translation uses the edge table
(EA) as follows:

[out](tin)=(∅, ∅, cte, t0)
cte = {(t0,SELECT p.outv AS val FROM tin v, EA p

WHERE v.val=p.inv)}

A more complex transform pipe is the path pipe, which
returns the traversal path of each input object (i.e., the
path of each object through the pipeline up to this point).
For illustration, let us consider the following labeled graph
g = (V = {1, 2, 3, 4}, E = {(1, p, 2), (2, q, 3), (2, r, 4)}), the
gremlin query q1 = g.V (1).out.out returns the vertices two
hops aways from 1, namely 3 and 4. If we add the path
pipe at the end of the previous query, the resulting query
q2 = g.V (1).out.out.path evaluates to the actual traversal
path of each result of query q1 (i.e., a sequence of steps from
1 to a result of query q1). The result of the evaluation of q2
consists of the two sequences [1, 2, 3] and [1, 2, 4]. Thus,
path pipe requires the system to record the paths of the
traversal. Hence, if a path pipe p is present in a query, the
additional path column has to be added to the CTE tem-
plates used to translate all pipes appearing before p to track
the path of all output object. The translation of a pipe e that
keeps track of the path of each object is denoted [e]p. [e]p is

similar to [e] except that it assumes that the input table tin
has a column called path and it produces an output table
tout with a column named path for storing the updated path
information. For example, when path information tracking
is enabled, the out pipe is translated by the following tem-
plate parametrized by the input table tin (assuming the pipe
is part of a multiple step traversal query):

[out]p(tin)=(∅, ∅, cte, t1)
cte = {
(t0,SELECT t.val AS val, (v.path || v.val) AS path

FROM tin v, OPA p,
TABLES(VALUES(p.val0), ... ,(p.valn))AS t(val)
WHERE v.val=p.entry AND t.val is not null),

(t1,SELECT COALESCE(s.val, p.val) AS val, p.path
FROM t0 p LEFT OUTER JOIN OSA s on p.val=s.id)}

Filter Pipes. The filter pipes typically filter out un-
related vertices or edges by attribute lookup. Hence, the
corresponding CTE templates can simply apply equivalent
SQL conditions on JSON attribute table lookup. For the fil-
ter conditions not supported by default SQL functions, such
as the simplePath() pipe, we define UDFs to enable the filter
condition translation.

Side Effect Pipes. Side effect pipes do not change the
input graph elements, but generate additional information
based on the input. In our current implementation, side ef-
fects are ignored, so side effect pipes act as identity functions
(i.e., their output is identical to their input).

Branch Pipes. The branch pipes control the execution
flow of other pipes. For split/merge pipes and ifElseThen()

pipes, we can simply use CTEs to represent all the possible
branches, and use condition filters to get the desired branch.

For example, for a given input table tin and an ifThenElse
pipe e = ifThenElse{etest}{ethen}{eelse}, we first translate
the test expression etest as a transform expression that yields
a boolean value, and we also track provenance information in
the path column. Let test be the result of the translation:
test = [etest]p(tin). Using the output table of test (i.e.,

test.out), we then define the CTE thenctein (resp. elsectein)
corresponding to the input table for the evaluation of ethen
(resp. eelse):

thenctein=(thenin,SELECT path[0] AS val FROM test.out
WHERE val=true)

elsectein=(elsein,SELECT path[0] AS val FROM test.out
WHERE val=false)

The translation of the ifThenElse expresion e for the input
table tin can now be defined by collecting all the stored pro-
cedure definitions and invocations, and CTEs produced by
the translations of 1) the test condition (test = [etest]p(tin)),

2) the then part (then = [ethen](thenin)), and 3) the else
part (else = [eelse](elsein)):

[e](tin) = (sp, spi, cte, tout)

sp = test.sp ∪ then.sp ∪ else.sp

spi = test.spi ∪ then.spi ∪ else.spi

cte = test.cte ∪ {thenctein, elsectein}
∪ then.cte ∪ else.cte ∪ {(tout,
SELECT * FROM then.out

UNION ALL SELECT * FROM else.out)}

The result table tout is simply defined as the union of results
from the then part and else part.

For loop pipes, we evaluate the depth of the loop. For
fixed-depth loops, we will directly expand the loop and trans-
late it into CTEs. Otherwise, we translate the loop pipe into
a recursive SQL or a stored procedure call, depending on the
engine’s efficiency in handling recursive SQL.

Figure 7 gives an example of using CTEs to translate our
sample Gremlin query.

4.4 Limitations
Our focus in this paper is on graph traversal queries and

graph update operations with no side effects. Specifically,
side effect pipes are ignored (i.e. they are currently im-
plemented as identity functions: their output is identical to
their input). Likewise, pipes with complex Groovy/Java clo-
sures or expressions are also ignored because we currently do
not perform a static analysis of closures and expressions to
allow us to understand, for example, whether a Java method
call in a closure or an expression has side effects (e.g., such
an expression can appear as the stopping condition in a loop
pipe or as the test condition in an IfThenElse pipe). As a
result, we currently conservatively ignore pipes containing
any expression other than simple arithmetic or comparison
operators.

Modulo the limitations outlined in the previous paragraph,
our translation process is fairly generic and produces CTEs
as the result of the translation of most pipes (see Table 8 in
the Appendix for the translation in detail). Stored proce-
dures are only used as fallback option in the translation of
recursive pipes when the depth of the loop cannot be stati-
cally determined.

© 2013 IBM Corporation34 IBM Confidential

g.V.filter{it.tag==‘w‘}.both.dedup().count()

Start

+

AttributeFilter

Duplicate

Filter

BothPipe

count()

WITH

TEMP_1 AS (----JSON attribute lookup

SELECT VID AS VAL

FROM VA

WHERE JSON_VAL(ATTR, ‘tag’) = ‘w’),

TEMP_2_0 AS (----Outgoing adjacent vertexes in OPA

SELECT T.VAL

FROM TEMP_1 V, OPA P,

TABLE(VALUES(P.VAL0), (P.VAL1), …, (P.VALN)) AS T(VAL)

WHERE V.VAL = P.VID AND T.VAL IS NOT NULL),

TEMP_2_1 AS (----Outgoing adjacent vertexes in OSA

SELECT COALESCE(S.VAL, P.VAL) AS VAL

FROM TEMP_2_0 P

LEFT OUTER JOIN OSA S

ON P.VAL = S.VALID),

TEMP_2_2 AS (----Incoming adjacent vertexes in IPA

SELECT T.VAL

FROM TEMP_1 V, IPA P,

TABLE(VALUES(P.VAL0), (P.VAL1), …, (P.VAL59)) AS T(VAL)

WHERE V.VAL = P.VID AND T.VAL IS NOT NULL),

TEMP_2_3 AS (----Incoming adjacent vertexes in ISA

SELECT COALESCE(S.VAL, P.VAL) AS VAL

FROM TEMP_2_2 P

LEFT OUTER JOIN ISA S

ON P.VAL = S.VALID),

TEMP_2_4 AS (----Bi-directional adjacent vertexes

SELECT VAL

FROM TEMP_2_1

UNION ALL

SELECT VAL

FROM TEMP_2_3),

TEMP_3 AS (----De-duplicate

SELECT DISTINCT VAL AS VAL

FROM TEMP_2_4 AS T)

SELECT COUNT(*)

FROM TEMP_3

Figure 7: An example of Gremlin query translation.

4.5 Optimization
In this section, we describe optimizations applied to the

query translation and evaluation steps as well as optimiza-
tions needed for efficient update operations.

4.5.1 Query Translation and Evaluation Optimiza-
tion

A standard Gremlin query rewrite optimization technique
in most property graph stores consists of replacing a se-
quence of the non selective pipe g.V (retrieve all vertices in
g) or g.E (retrieve all edges in g) followed by a sequence of
attribute based filter pipes (i.e., filter pipes that select only
vertices or edges having specific edge labels, attribute names,
or attribute name/value pairs) by a single GraphQuery pipe
that combines the non selective pipe g.V or g.E with the po-
tentially more selective filter pipes. A similar rewrite is done
to replace a sequence of the potentially non selective pipe
out, outE, in, or inE followed by a sequence of attribute
based filter pipes by a single VertexQuery pipe. This Ver-
texQuery rewrite is particularly efficient for the processing
of supernodes (i.e., vertices with large number connections
to other vertices). GraphQuery and VertexQuery rewrites
allow for a more efficient retrieval of only relevant data by
the underlying graph database (e.g., by leveraging indexes
on particular attributes). We exploit such merging in our
translation as shown in Figure 7, where the non selective
first pipe g.V is explicitly merged with the more selective
filter filter{it.tag == ‘w′} in the translation. To some ex-
tent, our translation of the whole Gremlin query into a single
SQL generalizes the basic idea embodied in GraphQuery and
VertexQuery pipes: providing more information about the
query to the underlying graph database to enable a more

efficient evaluation. However, as opposed to our approach
that compiles the whole Gremlin query into a single SQL
query, GraphQuery and VertexQuery do not go far enough:
they are limited to efficient filtering of a single traversal step
(in our example query, the rewrite optimization will yield
g.queryGraph(filter{it.tag==‘w’}, V).both.dedup().count()).

In the current implementation of our approach, we rely
on the underlying relational database management system
to provide the best evaluation strategy for the generated
SQL query.

4.5.2 Graph Update Optimization
Basic graph update operations, including addition, up-

date, and deletion of vertices and edges are implemented
by a set of stored procedures. For our schema, this is espe-
cially important because graph data are stored into multiple
tables, and some of these operations involve updates to mul-
tiple tables. Furthermore, some update operations, such as
the deletion of a single supernode of the graph, can result
in changes involving multiple rows in multiple tables, which
can significantly degrade performance.

To address this issue, we optimized vertex deletions by
setting the ID of the vertices and edges to be deleted to a
negative value corresponding to its current ID. To delete a
vertex with ID = i, we set its V ID to −i − 1 in the ver-
tex attribute and hash adjacency tables, so the relations of
deleted rows are maintained across tables. Corresponding
rows in the edge attribute tables are deleted. As a result
of this update optimization, we add to each query the ad-
ditional condition V ID ≥ 0 to ensure that vertices marked
for deletion are never returned as answers to a query. An
off-line cleanup process can perform the actual removal of
the marked vertices, but this is not currently implemented
in the system yet.

5. EVALUATION
Our goal in this section was to compare the performance of

SQLGraph against two popular open source property graph
systems, Titan and Neo4j. To keep systems comparable in
terms of features, we focused on a comparison of property
graph systems with full ACID support, targeting a single
node in terms of scalability. Titan uses existing noSQL
stores such as BerkeleyDB, Cassandra and HBase to sup-
port graph storage and retrieval, but the latter two back-
ends focus on distributed storage, and do not provide ACID
support. We therefore examined Titan with the BerkeleyDB
configuration which targets single server, ACID compliant
workloads9. Neo4j provides native storage for graphs, is
fully ACID compliant, and is not based on any existing
noSQL stores. We compared the efficacy of our schema and
query translation for property graphs by comparing them
with these two popular systems for property graphs. The
fact that Titan and Neo4j are focused on rather different
architectures was an important factor in our choice of these
systems for the evaluation. In addition, we also tried to
include the document-based graph store OrientDB in our
comparisons, but encountered problems in data loading and
concurrency support. We include a discussion of the perfor-
mance of OrientDB where we could.

9Titan-BerkeleyDB is also known to have better perfor-
mance than Titan with distributed store back-ends [17]

There are no explicit benchmarks targeted for Gremlin
over property graphs yet. We therefore converted two dif-
ferent graph benchmarks into their property graph equiv-
alents, as described below. We tried to vary the type of
workload significantly in our choices for the two benchmarks.
As in the micro benchmarks, our first choice was DBpe-
dia, a benchmark which reflects structured knowledge from
Wikipedia, as well as extractions from it. The structured
knowledge is modeled as RDF, with additional metadata
about where the knowledge was extracted from being rep-
resented as attributes of quads in RDF. Our second choice
was LinkBench, a synthetic benchmark developed to simu-
late the social graph at Facebook [3].

To evaluate the performance of the different property graph
stores on existing commodity single-node servers, we con-
ducted our experiments on 4 identical virtual machines (one
per system), each with 6-core 2.86GHz CPU, 24GB memory
and 1TB storage running 64-bit Linux. All three property
graph stores were running in server mode and responding to
the requests from clients at localhost. We used a commercial
relational engine to implement SQLGraph, and compared it
to Neo4j 1.9.4 with its native http server as well as Titan
0.4.0 and OrientDB 1.7.8 with the Rexster http server 2.4.0.
During testing, we assigned the same amount of memory
(10G except in experiments that manipulated it explicitly)
for the graph stores, and used their recommended configu-
rations for best performance (if no recommended parame-
ters found, we used the default ones). In addition, in our
LinkBench testing, the largest dataset of billion-node graphs
was beyond the storage capacity of the above servers. We
conducted that experiment on a virtual machine instance
equivalent to an Amazon EC2 hs1.8xlarge machine with 16-
core CPU, 117GB memory, and 48TB storage to test it over
the three graph stores. We report those experiments sepa-
rately since they were conducted on different hardware.

5.1 DBPedia
For the DBPedia benchmark, we converted DBPedia 3.8

dataset to a property graph as described in Section 3.1. Two
query sets were used to evaluate query performance of our
graph store compared with Neo4j and Titan-BerkeleyDB.
For the first query set, we converted the SPARQL query set
used in [22] into Gremlin queries as described in Appendix B,
and compared performance for the three graph stores10. The
results are shown in Figure 8a, and these are separated from
the results for the path queries in figure 8b. As shown in
the figure 8a, Titan timed out on query 15 of the DBpedia
SPARQL benchmark. We therefore provide two means for
each system, one overall mean for the 20 benchmark queries
(which for Titan excluded query 15), and an adjusted mean,
excluding the times from query 15 for all three systems in
figure 8d to allow a more fair comparison.

For the second query set, we used the 11 long-path queries
described in Section 3.1 to examine graph traversal over
the same dataset. This is a fairly common requirement in
graph workloads, but it is not part of the current DBpe-
dia SPARQL benchmark. The results are shown in Fig-
ure 8b. As can be seen from figure 8d, SQLGraph achieves
the best performance for both path queries and benchmark

10All the queries in this benchmark and in LinkBench
and their corresponding translations to Gremlin are avail-
able at http://researcher.ibm.com/researcher/files/
us-ksrinivs/supp-queries.pdf

http://researcher.ibm.com/researcher/files/us-ksrinivs/supp-queries.pdf
http://researcher.ibm.com/researcher/files/us-ksrinivs/supp-queries.pdf

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6
SQLGraph

Titan

Neo4j

(a) Benchmark queries

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

lq1 lq2 lq3 lq4 lq5 lq6 lq7 lq8 lq9 lq10 lq11

SQLGraph

Titan

Neo4j

(b) Path queries

1.E+3

1.E+4

1.E+5

1.E+6

2G 4G 6G 8G 10G

SQLGraph

Titan

Neo4j

(c) Varying memory usage ef-
fects

8188
4439

8914
10089 10089

16662

68116

31433

77996

0.E+0

1.E+4

2.E+4

3.E+4

4.E+4

5.E+4

6.E+4

7.E+4

8.E+4

9.E+4

Benchmark Adjusted Path

SQLGraph

Titan

Neo4j

(d) DBpedia performance sum-
mary

Figure 8: DBpedia benchmark performance in ms.

queries. Specifically, SQLGraph is approximately 2X faster
than Titan-BerkeleyDB, and about 8X faster than Neo4j.
SQLGraph was also less variable in terms of its query perfor-
mance; the standard deviation for SQLGraph for the bench-
mark queries excluding query 15 was 8.3 s, but Titan had a
standard deviation of 17.5 s, and Neo4j had a standard de-
viation of 54.6 s. Path queries showed a similar trend, SQL-
Graph had a standard deviation of 9.4 s for path queries,
Titan had 17.0 s, and Neo4j had 56.7 s.

In addition, we evaluated the performance of the different
graph stores while varying the amount of memory available
to the system. Our key objective here was to just ensure that
the systems we were comparing against were not limited by
available resources in the system. Figure 8c shows the com-
parison results for the 2,4,6,8, and 10 GB memory settings.
In plotting the results, we computed the average times for
each system across all queries in DBpedia (both the bench-
mark queries and the path queries), and we omitted query
15 from all systems so they could be compared. As shown in
the figure, neither Titan nor Neo4j were showing any percep-
tible performance benefits when memory increased beyond
8G. We would like to note however, that Titan in particu-
lar has some rather aggressive caching strategies, compared
to other systems. For instance, on the 10G memory usage
case, Titan’s mean (excluding query 15) for all the DBpedia
queries was 380.1 s on the first run (cold cache), compared
to 12.9 s on run 10. SQL graph’s corresponding numbers for
the first run was 24.1 s compared to 6.2 s on the tenth run,
and Neo4j’s average was 129.0 s on the first run compared
to 55 s on the tenth.

One additional point to make is about the sizes of the
database on disk. We pointed out earlier that our schema is
redundant, in the sense that we store adjacency information
in relational storage and store a copy of it in EA for edge

© 2013 IBM Corporation35 IBM Confidential

659

311

891

91 230
100
200
300
400
500
600
700
800
900

10K 100K 1M 10M 100M

1 requester
10 requester
100 requesters

(a) SQLGraph

© 2013 IBM Corporation35 IBM Confidential

24

39 36

2

40

0

10

20

30

40

50

10K 100K 1M 10M 100M

1 requester
10 requester
100 requesters

(b) Titan

© 2013 IBM Corporation35 IBM Confidential

3

32
28

7
8

0
5

10
15
20
25
30
35
40
45

10K 100K 1M 10M 100M

1 requester
10 requester
100 requesters

(c) Neo4j

© 2013 IBM Corporation35 IBM Confidential

311

944
1003

15 29 31
0

200
400
600
800

1000
1200

1
requester

10
requesters

100
requesters

SQLGraph

Neo4j

(d) 1 Billion node graph

Figure 9: LinkBench workload performance in op/sec.

specific queries. We also measured the sizes of the DBpedia
dataset on disk for the 3 engines. DBpedia’s size on disk
for SQLGraph was 66GB, 98GB for Neo4j and 301GB for
Titan. For OrientDB, we failed to load the DBPedia dataset
after trying various configurations. The loading speed of
OrientDB for such large graphs is extremely slow and it
seems OrientDB cannot well support URIs as edge labels
and property keys.

5.2 LinkBench
LinkBench [3] is a benchmark that simulates a typical so-

cial graph workload involving frequent graph updates. While
its data model was not specified as a property graph, it can
be directly transformed to a property graph by mapping
“objects” into graph vertices with vertex attributes type, ver-
sion, update time, and data, and mapping “associations” into
graph edges with edge attributes association type, visibility,
timestamp, and data.

To evaluate the performance of primitive graph CRUD
operations, we adapted LinkBench to support the property
graph CRUD operations in Gremlin language. The approxi-
mate distribution of CRUD operations reflects the distribu-
tion described in [3], as shown in Table 6.

We first generated 5 datasets with different scales, with
the number of vertices ranging from 10 thousand to 100 mil-
lion. Figure 9 shows the results of SQLGraph, Neo4j and Ti-
tan under different concurrency settings with LinkBench. In
the figure, data values are only added for the 100 requesters
case for clarity. As can be seen from the figure, SQLGraph’s
concurrency is much better than the other two graph stores,
and it seems to be much less variable than the other two
stores. For OrientDB, the throughput ranges from 2 to 9
op/sec for the 1-requester case, which is comparable to Neo4j
and Titan. However, for the 10-requester and 100-requester
settings, OrientDB reported concurrent update errors due
to the lack of built-in locks. We also tested the scalability

of these systems against a much larger graph dataset (1 bil-
lion nodes, 4.3 billion edges), but that evaluation could not
be performed on the same VM configuration because of the
scale of the graph. Furthermore, we could not test Titan on
the 1 billion node graph because the queries timed out even
on a superior VM, and we could not determine the reasons
for its failure. We therefore show the results for the 1 bil-
lion node graph in a separate panel (d) of the figure. Still,
compared with Neo4j, on the billion node graph, SQLGraph
showed about 30 times better throughput.

Table 6 shows the distribution of LinkBench operations,
and the average performance (as well as the maximum val-
ues) for each operation in seconds for the three systems.
Note that we do not show the 100 requester case because we
tried to find the point where each system was at its maxi-
mal performance. This was 10 requesters for all three sys-
tems on the 100 million node dataset. As can be seen from
the table, SQLGraph is slower than the other two systems
on the delete node, add link and update link operations
on average, but its maximum time is still well within the
maximum time of other systems. These operations consti-
tute about 5% of the overall LinkBench workload. Thus, on
write-heavy workloads, SQLGraph may have inferior update
performance than Titan and Neo4j on average, because the
update affects multiple underlying tables rather than a sin-
gle operation. However when the dataset gets substantially
bigger, one does not observe this behavior. Table 7 shows
the same operations on the 1 billion node benchmark for
the SQLGraph and Neo4j systems, now with 100 requesters
since this was where Neo4j showed maximal performance.
As can be seen in the table, SQLGraph now outperforms
Neo4j on all operations on LinkBench.

Operation Query SQL- Titan Neo4j
Disbn Graph

add node 2.6% 0.04(0.47) 0.30(3.34) 0.96(6.13)
update node 7.4% 0.12(1.75) 0.56(10.25) 1.12(6.87)
delete node 1.0% 2.24(5.81) 0.98(7.45) 0.73(4.06)
get node 12.9% 0.06(1.75) 0.51(9.18) 0.17(4.47)
add link 9.0% 1.68(4.83) 0.72(6.40) 1.02(6.30)
delete link 3.0% 0.12(1.54) 0.63(5.95) 0.28(4.50)
update link 8.0% 1.38(4.70) 0.72(9.29) 1.02(6.33)
count link 4.9% 0.03(0.53) 0.52(7.54) 0.22(5.31)
multiget link 0.5% 0.04(0.15) 0.44(1.27) 0.19(0.48)
get link list 50.7% 0.03(18.80) 0.58(369.30) 0.28(255.19)

Table 6: LinkBench operation distribution, and average per-
formance in seconds for the 100M node graph, 10 requesters
case. Maximum times are provided in parentheses.

As in the case of DBpedia, we measured the size of the
largest 1B dataset for LinkBench, and found that SQLGraph
took 850GB on disk, Neo4j took 1.1TB, and Titan took
1.7TB on disk. Similar to the DBPedia case, we failed to
load largest LinkBench dataset to OrientDB. For the smaller
datasets, OrientDB’s footprint is between Neo4j and Titan.

6. FUTURE WORK AND CONCLUSIONS
We have shown that by leveraging both relational and

non-relational storage in a relational database, along with
very basic optimization techniques it is possible for relational
systems to outperform graph stores built on key value stores
or specialized data structures in the file system. More opti-
mization opportunities exist, especially for Gremlin queries

Operation SQLGraph Neo4j
add node 0.002(0.160) 1.643(6.586)
update node 0.003(0.241) 2.429(490.562)
delete node 0.422(0.586) 4.527(2059.552)
get node 0.002(0.093) 1.453(7.259)
add link 0.405(0.723) 2.435(786.816)
delete link 0.003(0.152) 2.297(1273.229)
update link 0.307(0.704) 2.677(1132.209)
count link 0.002(0.266) 1.505(7.128)
multiget link 0.004(0.013) 2.387(1165.061)
get link list 0.002(1.297) 1.651(684.347)

Table 7: LinkBench operation distribution, and average per-
formance in seconds for the 1B node graph, 100 requesters
case. Maximum times are provided in parentheses.

without any side effects, if one builds a better compiler for
the query language. This will be a focus for our future work.

7. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Scalable semantic web data
management using vertical partitioning. In Proceedings
of the 33rd international conference on very large data
bases, pages 411–422. VLDB Endowment, 2007.

[2] R. Angles, P. Boncz, J. Larriba-Pey, I. Fundulaki,
T. Neumann, O. Erling, P. Neubauer,
N. Martinez-Bazan, V. Kotsev, and I. Toma. The
linked data benchmark council: A graph and RDF
industry benchmarking effort. SIGMOD Rec.,
43(1):27–31, May 2014.

[3] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan. LinkBench: A database benchmark
based on the Facebook social graph. In Proceedings of
the 2013 ACM SIGMOD International Conference on
Management of Data, pages 1185–1196, New York,
NY, USA, 2013. ACM.

[4] C. Bizer and A. Schultz. The Berlin SPARQL
benchmark. International Journal On Semantic Web
and Information Systems, 2009.

[5] M. A. Bornea, J. Dolby, A. Kementsietsidis,
K. Srinivas, P. Dantressangle, O. Udrea, and
B. Bhattacharjee. Building an efficient RDF store over
a relational database. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, pages 121–132. ACM, 2013.

[6] F. Bugiotti, F. Goasdoué, Z. Kaoudi, and
I. Manolescu. RDF data management in the Amazon
cloud. In Proceedings of the 2012 Joint EDBT/ICDT
Workshops, EDBT-ICDT ’12, pages 61–72, New York,
NY, USA, 2012. ACM.

[7] A. Chebotko, S. Lu, and F. Fotouhi. Semantics
preserving SPARQL-to-SQL translation. Data and
Knowledge Engineering, 68(10):973 – 1000, 2009.

[8] M. Ciglan, A. Averbuch, and L. Hluchy. Benchmarking
traversal operations over graph databases. In 28th
International Conference on Data Engineering
Workshops (ICDEW), pages 186–189. IEEE, 2012.

[9] R. Cyganiak. A relational algebra for SPARQL.
Digital Media Systems Laboratory HP Laboratories
Bristol. HPL-2005-170, page 35, 2005.

[10] F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancini,
A. Poggi, R. Rosati, M. Ruzzi, and D. F. Savo.

Optimizing query rewriting in ontology-based data
access. In Proceedings of the 16th International
Conference on Extending Database Technology, EDBT
’13, pages 561–572, New York, NY, USA, 2013. ACM.

[11] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó,
S. Gómez-Villamor, N. Mart́ınez-Bazán, and J.-L.
Larriba-Pey. Survey of graph database performance on
the HPC scalable graph analysis benchmark. In
Web-Age Information Management, pages 37–48.
Springer, 2010.

[12] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web
Semantics, 3(2–3):158–182, 2005.

[13] S. Harris and N. Shadbolt. SPARQL query processing
with conventional relational database systems. In Web
Information Systems Engineering–WISE 2005
Workshops, pages 235–244. Springer, 2005.

[14] O. Hartig and B. Thompson. Foundations of an
alternative approach to reification in RDF. CoRR,
abs/1406.3399, 2014.

[15] F. Holzschuher and R. Peinl. Performance of graph
query languages: Comparison of Cypher, Gremlin and
native access in Neo4J. In Proceedings of the Joint
EDBT/ICDT 2013 Workshops, pages 195–204, New
York, NY, USA, 2013. ACM.

[16] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB,
4(11):1123–1134, 2011.

[17] S. Jouili and V. Vansteenberghe. An empirical
comparison of graph databases. In SocialCom, pages
708–715. IEEE, 2013.

[18] Z. Kaoudi and I. Manolescu. Cloud-based RDF data
management. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, pages 725–729, New York, NY, USA, 2014.
ACM.

[19] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu.
Towards a complete OWL ontology benchmark. In
Proceedings of the 3rd European Conference on The
Semantic Web, ESWC’06, pages 125–139, Berlin,
Heidelberg, 2006. Springer-Verlag.

[20] P. Macko, D. Margo, and M. Seltzer. Performance
introspection of graph databases. In Proceedings of the
6th International Systems and Storage Conference,
page 18. ACM, 2013.

[21] N. Mart́ınez-Bazan, V. Muntés-Mulero,
S. Gómez-Villamor, J. Nin, M.-A. Sánchez-Mart́ınez,
and J.-L. Larriba-Pey. DEX: High-performance
exploration on large graphs for information retrieval.
In Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge
Management, CIKM ’07, pages 573–582, New York,
NY, USA, 2007. ACM.

[22] M. Morsey, J. Lehmann, S. Auer, and A.-C. N.
Ngomo. DBpedia SPARQL benchmark–performance
assessment with real queries on real data. In The
Semantic Web–ISWC 2011, pages 454–469. Springer,
2011.

[23] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and
J. A. Ang. Introducing the graph 500. Cray Users
Group (CUG), 2010.

[24] T. Neumann and G. Weikum. RDF-3X: A RISC-style
engine for RDF. Proc. VLDB Endow., 1(1):647–659,
Aug. 2008.

[25] T. Neumann and G. Weikum. x-RDF-3X: Fast
querying, high update rates, and consistency for RDF
databases. Proc. VLDB Endow., 3(1-2):256–263, Sept.
2010.

[26] K. Nitta and I. Savnik. Survey of RDF storage
managers. In DBKDA 2014, The Sixth International
Conference on Advances in Databases, Knowledge,
and Data Applications, pages 148–153, 2014.

[27] N. Papailiou, I. Konstantinou, D. Tsoumakos, and
N. Koziris. H2RDF: Adaptive query processing on
RDF data in the cloud. In Proceedings of the 21st
International Conference Companion on World Wide
Web, WWW ’12 Companion, pages 397–400, New
York, NY, USA, 2012. ACM.

[28] N. Papailiou, D. Tsoumakos, I. Konstantinou,
P. Karras, and N. Koziris. H2RDF+: an efficient data
management system for big RDF graphs. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2014,
Snowbird, Utah, USA on June 22-27, 2014. ACM,
2014.

[29] M. Rodŕıguez-Muro, R. Kontchakov, and
M. Zakharyaschev. Ontology-based data access:
Ontop of databases. In International Semantic Web
Conference, ISWC 2013, pages 558–573. Springer,
2013.

[30] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen,
S. Auer, J. Sequeda, and A. Ezzat. A survey of current
approaches for mapping of relational databases to
RDF. W3C RDB2RDF XG Incubator Report, 2009.

[31] S. Sakr and G. Al-Naymat. Relational processing of
RDF queries: a survey. ACM SIGMOD Record,
38(4):23–28, 2010.

[32] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP2Bench: a SPARQL performance benchmark. In
Data Engineering, 2009. ICDE’09. IEEE 25th
International Conference on, pages 222–233. IEEE,
2009.

[33] M. Schmidt, M. Meier, and G. Lausen. Foundations of
SPARQL query optimization. In Proceedings of the
13th International Conference on Database Theory,
ICDT ’10, pages 4–33, New York, NY, USA, 2010.
ACM.

[34] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern
optimization using selectivity estimation. In
Proceedings of the 17th International Conference on
World Wide Web, WWW ’08, pages 595–604, New
York, NY, USA, 2008. ACM.

[35] Tinkerpop. Blueprints. Available:
https://github.com/tinkerpop/blueprints/wiki, 2014.

[36] Tinkerpop. Gremlin pipes. Available:
https://github.com/tinkerpop/pipes/wiki, 2014.

[37] Tinkerpop. Gremlin query language. Available:
https://github.com/tinkerpop/gremlin/wiki, 2014.

[38] K. Wilkinson, C. Sayers, H. A. Kuno, and
D. Reynolds. Efficient RDF Storage and Retrieval in
Jena2. In Semantic Web and Databases Workshop,
pages 131–150, 2003.

[39] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.
Triplebit: A fast and compact system for large scale
RDF data. Proc. VLDB Endow., 6(7):517–528, May
2013.

APPENDIX
A. GREMLIN TRANSLATION IN DETAIL

As described in section 4.3, Gremlin queries can be trans-
lated into SQL queries (CTEs) or stored procedure calls
(SPs) based on a set of pre-defined templates. Table 8 gives
a full list of Gremlin pipes that are currently supported by
our query translator and the corresponding CTE templates.
Here we only include the templates for the basic form of
the pipes. Possible variations and combinations of the pipe
translation have been discussed in section 4.

B. SPARQL TO GREMLIN QUERY CON-
VERSION

As described in section 5.1, our first DBPedia Gremlin
query set was converted from the SPARQL queries used
in [22]. Given the declarative nature of the SPARQL queries,
we tried to implement each of the SPARQL query using
graph traversals in Gremlin as efficient as possible. More
specifically, we first identify the most selective URI as the
Gremlin start pipe, and then use Gremlin transform pipes
to implement the SPARQL triple patterns. Note that the
traversal order of the transform pipes is also based on the se-
lectivity of the different triple patterns. SPARQL filters are
directly translated into Gremlin filter pipes, and SPARQL
UNION operations are translated into Gremlin branch pipes
if possible. In addition, the translated Gremlin queries will
only return the size of the result set of the correspond-
ing SPARQL queries, to minimize the result set composing
and consumption differences of the different property graph
stores.

Table 9 gives an example of SPARQL query to Gremlin
query translation (dq2 in section 5.1). It can be seen that
the URI ’http://dbpedia.org/ontology/Person’ is used in the
start pipe to lookup the start vertex. Then the property fil-
ter pipe applies on the most selective literal ”Montreal Cara-
bins”@en. The out pipe and back pipe are used to traverse
the graph. Two table pipes are used to store the results of
the main branch and the optional branch. Ideally, the outer
left join of the two tables generates the desired results of the
original SPARQL query. However, due to the lack of built-
in table operation support in Gremlin language, we directly
return the sizes of the both tables in the translated Gremlin
query.

Lan-
guage

Query

SPARQL PREFIX rdfs:
<http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbpedia-prop: <http://dbpedia.org/property/>
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?var4 ?var8 ?var10
WHERE {

?var5 dbpedia-owl:thumbnail ?var4 ;
rdf:type dbpedia-owl:Person ;
rdfs:label ”Montreal Carabins”@en ;
dbpedia-prop:pageurl ?var8 .
OPTIONAL { ?var5 foaf:homepage ?var10 . }

}
Gremlin t1=new Table();

t2=new Table();
var5=[];
g.V(” URI ”, ”http://dbpedia.org/ontology/
Person”).in(’http://www.w3.org/1999/02/
22-rdf-syntax-ns#type’).has(’http://www.w3.org/
2000/01/rdf-schema#label’,’”Montreal Carabins”
@en’).aggregate(var5).as(’var5’).out(’http://
dbpedia.org/ontology/thumbnail’).as(’var4’).back(1)
.out(’http://dbpedia.org/property/pageurl’).as(’var8’)
.table(t1).iterate();
var5. ().as(’var5’).out(’http://xmlns.com/foaf/0.1/
homepage’).as(’var10’).table(t2).iterate();
[t1.size(),t2.size()];

Table 9: An example of SPARQL to Gremlin query conver-
sion.

Opera-
tion

CTE Template for Query Translation

out pipe (t0, SELECT t.val FROM tin v,OPA p, TABLES(VALUES(p.val0), ... ,(p.valn))AS t(val) WHERE v.val=p.vid AND t.val is
not null), (t1,SELECT COALESCE(s.val, p.val) AS val FROM t0 p LEFT OUTER JOIN OSA s on p.val=s.valid)

in pipe (t0, SELECT t.val FROM tin v,IPA p, TABLES(VALUES(p.val0), ... ,(p.valm))AS t(val) WHERE v.val=p.vid AND t.val is
not null), (t1,SELECT COALESCE(s.val, p.val) AS val FROM t0 p LEFT OUTER JOIN ISA s on p.val=s.valid)

both pipe (t0, SELECT t.val FROM tin v,OPA p, TABLES(VALUES(p.val0), ... ,(p.valn))AS t(val) WHERE v.val=p.vid AND t.val is
not null), (t1, SELECT COALESCE(s.val, p.val) AS val FROM t0 p LEFT OUTER JOIN OSA s on p.val=s.valid), (t2,
SELECT t.val FROM tin v,IPA p, TABLES(VALUES(p.val0), ... ,(p.valm))AS t(val) WHERE v.val=p.vid AND t.val is not
null), (t3,SELECT COALESCE(s.val, p.val) AS val FROM t2 p LEFT OUTER JOIN ISA s on p.val=s.valid), (t4,SELECT *
FROM t1 UNION ALL SELECT * FROM t3)

out
vertex
pipe

(t0, SELECT p.outv AS val FROM tin v, EA p WHERE v.val=p.eid)

in vertex
pipe

(t0, SELECT p.inv AS val FROM tin v, EA p WHERE v.val=p.eid)

both
vertex
pipe

(t0, SELECT t.val FROM tin v, EA p, TABLES(VALUES(p.outv), (p.inv)) AS t(val) WHERE v.val=p.eid)

out edges
pipe

(t0, SELECT p.eid AS val FROM tin v, EA p WHERE v.val=p.outv)

in edges
pipe

(t0, SELECT p.eid AS val FROM tin v, EA p WHERE v.val=p.inv)

both
edges
pipe

(t0, SELECT p.eid AS val FROM tin v, EA p WHERE v.val=p.outv OR v.val=p.inv)

range
filter
pipe

(t0, SELECT * FROM tin v LIMIT ? OFFSET ?)

duplicate
filter
pipe

(t0, SELECT DISTINCT v.val FROM tin v)

id filter
pipe

(t0, SELECT * FROM tin v WHERE v.val == ?)

property
filter
pipe

(t0, SELECT v.* FROM tin v, VA p WHERE v.val=p.vid AND JSON VAL(p.data, ?) == ?)

interval
filter
pipe

(t0, SELECT v.* FROM tin v, VA p WHERE v.val=p.vid AND JSON VAL(p.data, ?) > ? AND JSON VAL(p.data, ?) < ?)

label
filter
pipe

(t0, SELECT v.* FROM tin v, EA p WHERE v.val=p.eid AND p.lbl == ?)

except
filter
pipe

(t0, SELECT * FROM tin v WHERE v.val NOT IN (SELECT p.val FROM tk p))

retain
filter
pipe

(t0, SELECT * FROM tin v WHERE v.val IN (SELECT p.val FROM tk p))

cyclic
path
filter
pipe

(t0, SELECT * FROM tin v WHERE isSimplePath(v.path) == 1)

back
filter
pipe

meta.cte ∪ (t0, SELECT * FROM tin v WHERE v.val IN (SELECT p.path[0] FROM meta.tout p))

and filter
pipe

meta1.cte ∪ meta2.cte ∪ (t0, SELECT * FROM tin v WHERE v.val IN (SELECT p.path[0] FROM meta1.tout p1
INTERSECT SELECT p.path[0] FROM meta2.tout p2))

or filter
pipe

meta1.cte ∪ meta2.cte ∪ (t0, SELECT * FROM tin v WHERE v.val IN (SELECT p.path[0] FROM meta1.tout p1 UNION
SELECT p.path[0] FROM meta2.tout p2))

if-then-
else
pipe

test.cte ∪ {thenctein, elsectein} ∪ then.cte ∪ else.cte ∪ (tout, SELECT * FROM then.out UNION ALL SELECT * FROM
else.out)

split-
merge
pipe

meta1.cte ∪ meta2.cte ∪ (t0, SELECT * FROM meta1.tout p1 UNION ALL SELECT * FROM meta2.tout p2)

loop pipe expand to fixed-length ctes or call stored procedure
as pipe ∅, record the mapping between the as pipe and the (tout) of the current translated ctes
aggregate
pipe

∅, record the mapping between the aggregate pipe and the (tout) of the current translated ctes

add
vertex

∅, call stored procedure

add edge ∅, call stored procedure
delete
vertex

∅, call stored procedure

delete
edge

∅, call stored procedure

Table 8: Currently supported Gremlin pipes and the translation method. “?” denotes the parameters of the pipes.

	Introduction
	Related Work
	Schema Design
	Micro Benchmark Design
	Storing Adjacency
	Storing Vertex and Edge Attributes
	The Proposed Schema
	Uses for Redundancy in the Schema

	Query Translation
	Gremlin Query Language in a Nutshell
	Query Processing Framework
	Gremlin Query Translation
	Limitations
	Optimization
	Query Translation and Evaluation Optimization
	Graph Update Optimization

	Evaluation
	DBPedia
	LinkBench

	Future Work and Conclusions
	References
	Gremlin Translation in Detail
	SPARQL to Gremlin Query Conversion

