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Abstract

We experiment with using different sources of distant supervision to guide unsupervised and
semi-supervised adaptation of part-of-speech (POS) and named entity taggers (NER) to Twitter.
We show that a particularly good source of not-so-distant supervision is linked websites. Specif-
ically, with this source of supervision we are able to improve over the state-of-the-art for Twitter
POS tagging (89.76% accuracy, 8% error reduction) and NER (F1=79.4%, 10% error reduction).

1 Introduction

Twitter contains a vast amount of information, including first stories and breaking news (Petrovic et al.,
2010), fingerprints of public opinions (Jiang et al., 2011) and recommendations of relevance to poten-
tially very small target groups (Benson et al., 2011). In order to automatically extract this information,
we need to be able to analyze tweets, e.g., determine the part-of-speech (POS) of words and recognize
named entities. Tweets, however, are notoriously hard to analyze (Foster et al., 2011; Eisenstein, 2013;
Baldwin et al., 2013). The challenges include dealing with variations in spelling, specific conventions
for commenting and retweeting, frequent use of abbreviations and emoticons, non-standard syntax, frag-
mented or mixed language, etc.

Gimpel et al. (2011) showed that we can induce POS tagging models with high accuracy on in-sample
Twitter data with relatively little annotation effort. Learning taggers for Twitter data from small amounts
of labeled data has also been explored by others (Ritter et al., 2011; Owoputi et al., 2013; Derczynski
et al., 2013). Hovy et al. (2014), on the other hand, showed that these models overfit their respective
samples and suffer severe drops when evaluated on out-of-sample Twitter data, sometimes performing
even worse than newswire models. This may be due to drift on Twitter (Eisenstein, 2013) or simply due
to the heterogeneous nature of Twitter, which makes small samples biased. So while existing systems
perform well on their own (in-sample) data sets, they over-fit the samples they were induced from, and
suffer on other (out-of-sample) Twitter data sets. This bias can, at least in theory, be corrected by learning
from additional unlabeled tweets. This is the hypothesis we explore in this paper.

We present a semi-supervised learning method that does not require additional labeled in-domain data
to correct sample bias, but rather leverages pools of unlabeled Twitter data. However, since taggers
trained on newswire perform poorly on Twitter data, we need additional guidance when utilizing the
unlabeled data. This paper proposes distant supervision to help our models learn from unlabeled data.
Distant supervision is a weakly supervised learning paradigm, where a knowledge resource is exploited
to gather (possible noisy) training instances (Mintz et al., 2009). Our basic idea is to can use linguistic
analysis of linked websites as a novel kind of distant supervision for learning how to analyze tweets. We
explore standard sources of distant supervision, such as Wiktionary for POS tagging, but we also propose
to use the linked websites of tweets with URLs as supervision. The intuition is that we can use websites
to provide a richer linguistic context for our tagging decisions. We exploit the fact that tweets with URLs
provide a one-to-one map between an unlabeled instance and the source of supervision, making this
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1: X = {〈xi, yi〉}Ni=1 labeled tweets
2: U = {〈xi, wi〉}Mi=1 unlabeled tweet-website pairs
3: I iterations
4: k = 1000 pool size
5: v=train(X) base model
6: for i ∈ I do
7: for 〈x, w〉 ∈ poolk(U) do
8: ŷ=predict(〈x, w〉;v)
9: X ← X ∪ {〈ŷ,x〉}

10: end for
11: v=train(X)
12: end for
13: return v

Figure 1: Semi-supervised learning with not-so-distant supervision, i.e. tweet-website pairs {〈xi, wi〉}.
SELF-TRAINING, WEB, DICT, DICT≺WEB and WEB≺DICT differ only in how predict() (line 8) is
implemented (cf. Section 2).

less distant supervision. Note that we use linked websites only for semi-supervised learning, but do not
require them at test time.

Our semi-supervised learning method enables us to learn POS tagging and NER models that perform
more robustly across different samples of tweets than existing approaches. We consider both the scenario
where a small sample of labeled Twitter data is available, and the scenario where only newswire data is
available. Training on a mixture of out-of-domain (WSJ) and in-domain (Twitter) data as well as unla-
beled data, we get the best reported results in the literature for both POS tagging and NER on Twitter. Our
tagging models are publicly available at https://bitbucket.org/lowlands/ttagger-nsd

2 Tagging with not-so-distant supervision

We assume that our labeled data is highly biased by domain differences (Jiang and Zhai, 2007), popula-
tion drift (Hand, 2006), or by our sample size simply being too small. To correct this bias, we want to use
unlabeled Twitter data. It is well-known that semi-supervised learning algorithms such as self-training
sometimes effectively correct model biases (McClosky et al., 2006; Huang et al., 2009). This paper
presents an augmented self-training algorithm that corrects model bias by exploiting unlabeled data and
not-so-distant supervision. More specifically, the idea is to use hyperlinks to condition tagging deci-
sions in tweets on a richer linguistic context than what is available in the tweets. This semi-supervised
approach gives state-of-the-art performance across available Twitter POS and NER data sets.

The overall semi-supervised learning algorithm is presented in Figure 1. The aim is to correct model
bias by predicting tag sequences on small pools of unlabeled tweets, and re-training the model across
several iterations to gradually correct model bias. Since information from hyperlinks will be important,
the unlabeled data U is a corpus of tweets containing URLs. We present a baseline and four system
proposals that only differ in their treatment of the predict() function.

In the SELF-TRAINING baseline, predict() corresponds to standard Viterbi inference on the unlabeled
Twitter data. This means, the current model v is applied to the tweets by disregarding the websites in
the tweet-website pairs, i.e., tagging x without considering w. Then the automatically tagged tweets are
added to the current pool of labeled data and the procedure is iterated (line 7-11 in Figure 1).

In the WEB method, we additionally use the information from the websites. The current model v
is used to predict tags for the pooled tweets and the website they linked to. For all the words that
occur both in a tweet and on the corresponding website, we then project the tag most frequently
assigned to those words on the website to their occurrences in the tweet. This enables us to basically
condition the tag decision for each such word on its accumulated context on the website. The assumption
of course being that the word in the tweet has the part-of-speech it most often has on the website linked to.



Example Here is an example of a tweet that contains a URL:

(1) #Localization #job: Supplier / Project Manager - Localisation Vendor - NY, NY, United States
http://bit.ly/16KigBg #nlppeople

The words in the tweet are all common words, but they occur without linguistic context that could
help a tagging model to infer whether these words are nouns, verbs, named entities, etc. However, on the
website that the tweet refers to, all of these words occur in context:

(2) The Supplier/Project Manager performs the selection and maintenance . . .

For illustration, the Urbana-Champaign POS tagger1 incorrectly tags Supplier in (1) as an adjective.
In (2), however, it gets the same word right and tags it as a noun. The tagging of (2) could potentially
help us infer that Supplier is also a noun in (1).

Obviously, the superimposition of tags in the WEB method may change the tag of a tweet word such
that it results in an unlikely tag sequence, as we will discuss later. Therefore we also implemented
type-constrained decoding (Täckström et al., 2013), i.e., prune the lattice such that the tweet words ob-
served on the website have one of the tags they were labeled with on the website (soft constraints), or,
alternatively, were forced during decoding to have the most frequent tags they were labeled with (hard
constraint decoding), thereby focusing on licensed sequences. However, none of these approaches per-
formed significantly better than the simple WEB approach on held-out data. This suggests that sequential
dependencies are less important for tagging Twitter data, which is of rather fragmented nature. Also, the
WEB approach allows us to override transitional probabilities that are biased by the observations we
made about the distribution of tags in our out-of-domain data.

Furthermore, we combine the not-so-distant supervision from linked websites (WEB) with supervision
from dictionaries (DICT). The idea here is to exploit the fact that many word types in a dictionary are
actually unambiguous, i.e., contain only a single tag. In particular, 93% of the word types in Wiktionary2

are unambiguous. Wiktionary is a crowdsourced tag dictionary that has previously been used for mini-
mally supervised POS tagging (Li et al., 2012; Täckström et al., 2013). In the case of NER, we use a
gazetteer that combines information on PER, LOC and ORG from the KnownLists of the Illinois tagger.3

For this gazetteer, 79% of the word types contained only a single named entity tag.
We experiment with a model that uses the dictionary only (DICT) and two ways to combine the two

sources. In the former setup, the current model is first applied to tag the tweets, then any token that
appears in the dictionary and is unambiguous is projected back to the tweet. The next two methods are
combinations of WEB and DICT: either first project the predicted tags from the website and then, in case
of conflicts, overrule predictions by the dictionary (WEB≺DICT), or the other way around (DICT≺WEB).

The intuition behind the idea of using linked websites as not-so-distant supervision is that while tweets
are hard to analyze (even for humans) because of the limited context available in 140 character messages,
tweets relate to real-world events, and Twitter users often use hyperlinks to websites to indicate what
real-world events their comments address. In fact, we observed that about 20% of tweets contain URLs.
The websites they link to are often newswire sites that provide more context and are written in a more
canonical language, and are therefore easier to process. Our analysis of the websites can then potentially
inform our analysis of the tweets. The tweets with the improved analyses can then be used to bootstrap
our tagging models using a self-training mechanism. Note that our method does not require tweets to
contain URLs at test time, but rather uses unlabeled tweets with URLs during training to build better
tagging models for tweets in general. At test time, these models can be applied to any tweet.

1http://cogcomp.cs.illinois.edu/demo/pos/
2http://en.wiktionary.org/ - We used the Wiktionary version derived by Li et al. (2012).
3http://cogcomp.cs.illinois.edu/page/software_view/NETagger



3 Experiments

3.1 Model

In our experiments we use a publicly available implementation of conditional random fields (CRF) (Laf-
ferty et al., 2001).4 We use the features proposed by Gimpel et al. (2011), in particular features for word
tokens, a set of features that check for the presence of hyphens, digits, single quotes, upper/lowercase,
3 character prefix and suffix information. Moreover, we add Brown word cluster features that use 2i for
i ∈ 1, ..., 4 bitstring prefixes estimated from a large Twitter corpus (Owoputi et al., 2013), which is pub-
licly available.5 We use a pool size of 1000 tweets. We experimented with other pool sizes {500,2000}
showing similar performance. The number of iterations i is set on the development data.

For NER on websites, we use the Stanford NER system (Finkel et al., 2005)6 with POS tags from the
LAPOS tagger (Tsuruoka et al., 2011).7 For POS we found it to be superior to use the current POS model
for re-tagging websites; for NER it was slightly better to use the Stanford NER tagger and thus off-line
NER tagging rather than retagging the websites in every iteration.

3.2 Data

In our experiments, we consider two scenarios, sometimes referred to as unsupervised and semi-
supervised domain adaptation (DA), respectively (Daumé et al., 2010; Plank, 2011). In unsupervised
DA, we assume only (labeled) newswire data, in semi-supervised DA, we assume labeled data from both
domains, besides unlabeled target data, but the amount of labeled target data is much smaller than the
labeled source data. Most annotated corpora for English are newswire corpora. Some annotated Twitter
data sets have been made available recently, described next.

POS NER

train
WSJ (700k) REUTER-CONLL (Tjong Kim Sang and De Meulder, 2003) (200k)
GIMPEL-TRAIN (Owoputi et al., 2013) (14k) FININ-TRAIN (Finin et al., 2010) (170k)

dev
FOSTER-DEV (Foster et al., 2011) (3k) n/a
RITTER-DEV (Ritter et al., 2011) (2k) n/a

test
FOSTER-TEST (Foster et al., 2011) (2.8k) RITTER-TEST (Ritter et al., 2011) (46k)
GIMPEL-TEST (Gimpel et al., 2011) (7k) FININ-TEST (Finin et al., 2010) (51k)
HOVY-TEST (Hovy et al., 2014) FROMREIDE-TEST (Fromreide et al., 2014) (20k)

Table 1: Overview of data sets. Number in parenthesis: size in number of tokens.

Training data. An overview of the different data sets is given in Table 3.2. In our experiments, we
use the SANCL shared task8 splits of the OntoNotes 4.0 distribution of the WSJ newswire annotations
as newswire training data for POS tagging.9 For NER, we use the CoNLL 2003 data sets of annotated
newswire from the Reuters corpus.10 The in-domain training POS data comes from Gimpel et al. (2011),
and the in-domain NER data comes from Finin et al. (2010) (FININ-TRAIN). These data sets are added
to the newswire sets when doing semi-supervised DA. Note that for NER, we thus do not rely on expert-
annotated Twitter data, but rely on crowdsourced annotations. We use MACE11 (Hovy et al., 2013) to
resolve inter-annotator conflicts between turkers (50 iterations, 10 restarts, no confidence threshold). We
believe relying on crowdsourced annotations makes our set-up more robust across different samples of
Twitter data.

Development and test data. We use several evaluation sets for both tasks to prevent overfitting to a
specific sample. We use the (out-of-sample) development data sets from Ritter et al. (2011) and Foster

4http://www.chokkan.org/software/crfsuite/
5http://www.ark.cs.cmu.edu/TweetNLP/
6http://http://nlp.stanford.edu/software/CRF-NER.shtml
7http://www.logos.ic.i.u-tokyo.ac.jp/˜tsuruoka/lapos/
8https://sites.google.com/site/sancl2012/home/shared-task
9LDC2011T03.

10http://www.clips.ua.ac.be/conll2003/ner/
11http://www.isi.edu/publications/licensed-sw/mace/



et al. (2011). For NER, we simply use the parameters from our POS tagging experiments and thus do
not assume to have access to further development data. For both POS tagging and NER, we have three
test sets. For POS tagging, the ones used in Foster et al. (2011) (FOSTER-TEST) and Ritter et al. (2011)
(RITTER-TEST),12 as well as the one presented in Hovy et al. (2014) (HOVY-TEST). For NER, we use
the data set from Ritter et al. (2011) and the two data sets from Fromreide et al. (2014) as test sets.
One is a manual correction of a held-out portion of FININ-TRAIN, named FININ-TEST; the other one
is referred to as FROMREIDE-TEST. Since the different POS corpora use different tag sets, we map all
of them corpora onto the universal POS tag set by Petrov et al. (2012). The data sets also differ in a
few annotation conventions, e.g., some annotate URLs as NOUN, some as X. Moreover, our newswire
tagger baselines tend to get Twitter-specific symbols such as URLs, hashtags and user accounts wrong.
Instead of making annotations more consistent across data sets, we follow Ritter et al. (2011) in using a
few post-processing rules to deterministically assign Twitter-specific symbols to their correct tags. The
major difference between the NER data sets is whether Twitter user accounts are annotated as PER. We
follow Finin et al. (2010) in doing so.

Unlabeled data We downloaded 200k tweet-website pairs from the Twitter search API over a period
of one week in August 2013 by searching for tweets that contain the string http and downloading the
content of the websites they linked to. We filter out duplicate tweets and restrict ourselves to websites
that contain more than one sentence (after removing boilerplate text, scripts, HTML, etc).13 We also
require website and tweet to have at least one matching word that is not a stopword (as defined by the
NLTK stopword list).14 Finally we restrict ourselves to pairs where the website is a subsite, because
website head pages tend to contain mixed content that is constantly updated. The resulting files are all
tokenized using the Twokenize tool.15 Tweets were treated as one sentence, similar to the approaches in
Gimpel et al. (2011) and Owoputi et al. (2013); websites were processed by applying the Moses sentence
splitter.16

The out-of-vocabulary (OOV) rates in Figure 2 show that in-domain training data reduces the number
of unseen words considerably, especially in the NER data sets. They also suggest that some evaluation
data sets share more vocabulary with our training data than others. In particular, we would expect better
performance on FOSTER-TEST than on RITTER-TEST and HOVY-TEST in POS tagging, as well as better
performance on FININ-TEST than on the other two NER test sets. In POS tagging, we actually do see
better results with FOSTER-TEST across the board, but in NER, FININ-TEST actually turns out to be the
hardest data set.

4 Results

4.1 POS results

Baselines We use three supervised CRF models as baselines (cf. the first part of Table 2). The first
supervised model is trained only on WSJ. This model does very well on FOSTER-DEV and FOSTER-
TEST, presumably because of the low OOV rates (Figure 2). The second supervised model is trained
only on GIMPEL-TRAIN; the third on the concatenation of WSJ and GIMPEL-TRAIN. While the second
baseline performs well on held-out data from its own sample (90.3% on GIMPEL-DEV), it performs
poorly across our out-of-sample test and development sets. Thus, it seems to overfit the sample of
tweets described in Gimpel et al. (2011). The third model trained on the concatenation of WSJ and
GIMPEL-TRAIN achieves the overall best baseline performance (88.4% macro-average accuracy). We
note that this is around one percentage point better than the best available off-the-shelf system for Twitter
(Owoputi et al., 2013) with an average accuracy of 87.5%.

12Actually (Ritter et al., 2011) do cross-validation over this data, but we use the splits of Derczynski et al. (2013) for POS.
13Using https://github.com/miso-belica/jusText
14ftp://ftp.cs.cornell.edu/pub/smart/english.stop
15https://github.com/brendano/ark-tweet-nlp
16https://github.com/moses-smt/mosesdecoder/blob/master/scripts/ems/support/

split-sentences.perl



Figure 2: Test set (type-level) OOV rates for POS (left) and NER (right).
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Figure 3: Learning curves on DEV-avg for systems trained on WSJ (left) and WSJ+GIMPEL (right) used
to set the hyperparameter i.

Learning with URLs The results of our approaches are presented in Table 2. The hyperparameter i
was set on the development data (cf. Figure 3). Note, again, that they do not require the test data to
contain URLs. First of all, naive self-training does not work: accuracy declines or is just around baseline
performance (Table 2 and Figure 3). In contrast, our augmented self-training methods with WEB or
DICT reach large improvements. In case we assume no target training data (train on WSJ only, i.e.
unsupervised DA), we obtain improvements of up to 9.1% error reduction. Overall the system improves
from 88.42% to 89.07%. This also holds for the second scenario, i.e. training on WSJ+GIMPEL-TRAIN

(semi-supervised DA, i.e., the case where we have some labeled target data, besides the pool of unlabeled
tweets) where we reach error reductions of up to 10%. Our technique, in other words, improves the
robustness of taggers, leading to much better performance on new samples of tweets.

4.2 NER results
For our NER results, cf. Table 3, we used the same feature models and parameter settings as those used for
POS tagging, except conditioning also on POS information. It is conceivable that other parameter settings
would have led to better results, but we did not want to assume the existence of in-domain development
data for this task. Our baselines are again supervised systems, as well as off-the-shelf systems. Our in-



DEV-avg TEST TEST-avg
FOSTER HOVY RITTER

Baselines trained on
WSJ 88.82 91.87 87.01 86.38 88.42
GIMPEL-TRAIN 83.32 84.86 86.03 81.67 84.19
WSJ+GIMPEL-TRAIN 89.07 91.59 87.50 87.39 88.83
Systems trained on WSJ
SELF-TRAINING i = 25 85.52 91.80 86.72 85.90 88.14
DICT i = 25 85.61 92.08 87.63 85.68 88.46
WEB i = 25 85.27 92.47 87.30 86.60 88.79
DICT≺WEB i = 25 86.11 92.61 87.70 86.69 89.00
WEB≺DICT i = 25 86.15 92.57 88.12 86.51 89.07
max err.red 4.7% 9.1% 8.6% 2.3% 4.2%
Systems trained on WSJ+GIMPEL-TRAIN

SELF-TRAINING i = 27 89.12 91.83 86.88 87.43 88.71
DICT i = 27 89.43 92.22 88.38 87.69 89.43
WEB i = 27 89.82 92.43 87.43 88.21 89.36
DICT≺WEB i = 27 90.04 92.43 88.38 88.48 89.76
WEB≺DICT i = 27 90.04 92.40 87.99 88.39 89.59
max err.red 8.9% 10% 7.1% 8.6% 8.4%

Table 2: POS results.

house supervised baselines perform better than the available off-the-shelf systems, including the system
provided by Ritter et al. (2011) (TEST-avg of 54.2%). We report micro-average F1-scores over entity
types, computed using the publicly available evaluation script.17 Our approaches again lead to substantial
error reductions of 8–13% across our NER evaluation data sets.

TEST TEST-avg
RITTER FROMREIDE FININ

Baseline trained on
CONLL+FININ-TRAIN 77.44 82.13 74.02 77.86
Systems trained on CONLL+FININ-TRAIN

SELF-TRAINING i = 27 78.63 82.88 74.89 78.80
DICT i = 27 65.24 69.1 65.45 66.60
WEB i = 27 78.29 83.82 74.99 79.03
DICT≺WEB i = 27 78.53 83.91 75.83 79.42
WEB≺DICT i = 27 65.97 69.92 65.86 67.25
err.red 9.1% 13.3% 8.0% 9.8%

Table 3: NER results.

5 Error analysis

The majority of cases where our taggers improve on the ARK tagger (Owoputi et al., 2013) seem to
relate to richer linguistic context. The ARK tagger incorrectly tags the sequence Man Utd as PRT-
NOUN, whereas our taggers correctly predict NOUN-NOUN. In a similar vein, our taggers correctly
predict the tag sequence NOUN-NOUN for Radio Edit, while the ARK tagger predicts NOUN-VERB.

However, some differences seem arbitrary. For example, the ARK tagger tags the sequence Nokia
17http://www.cnts.ua.ac.be/conll2000/chunking/



D5000 in FOSTER-TEST as NOUN-NUM. Our systems correctly predict NOUN-NOUN, but it is not
clear which analysis is better in linguistic terms. Our systems predict a sequence such as Love his version
to be VERB-PRON-NOUN, whereas the ARK tagger predicts VERB-DET-NOUN. Both choices seem
linguistically motivated.

Finally, some errors are made by all systems. For example, the word please in please, do that, for
example, is tagged as VERB by all systems. In FOSTER-TEST, this is annotated as X (which in the PTB
style was tagged as interjection UH). Obviously, please often acts as a verb, and while its part-of-speech
in this case may be debatable, we see please annotated as a verb in similar contexts in the PTB, e.g.:

(3) Please/VERB make/VERB me/PRON . . .

It is interesting to look at the tags that are projected from the websites to the tweets. Several of the
observed projections support the intuition that coupling tweets and the websites they link to enables us
to condition our tagging decisions on a richer linguistic context. Consider, for example Salmon-Safe,
initially predicted to be a NOUN, but after projection correctly analyzed as an ADJ:

Word Context Initial tag Projected tag
Salmon-Safe . . . parks NOUN ADJ
Snohomish . . . Bakery ADJ NOUN
toxic ppl r . . . NOUN ADJ

One of the most frequent projections is analyzing you’re, correctly, as a VERB rather than an ADV (if
the string is not split by tokenization).

One obvious limitation of the WEB-based models is that the projections apply to all occurrences of a
word. In rare cases, some words occur with different parts of speech in a single tweet, e.g., wish in:

(4) If I gave you one wish that will become true . What’s your wish ?... ? i wish i’ll get <num> wishes
from you :p <url>

In this case, our models enforce all occurrences of wish to, incorrectly, be verbs.

6 Related work

Previous work on tagging tweets has assumed labeled training data (Ritter et al., 2011; Gimpel et al.,
2011; Owoputi et al., 2013; Derczynski et al., 2013). Strictly supervised approaches to analyzing Twitter
has the weakness that labeled data quickly becomes unrepresentative of what people write on Twitter.
This paper presents results using no in-domain labeled data that are significantly better than several off-
the-shelf systems, as well as results leveraging a mixture of out-of-domain and in-domain labeled data
to reach new highs across several data sets.

Type-constrained POS tagging using tag dictionaries has been explored in weakly supervised settings
(Li et al., 2012), as well as for cross-language learning (Das and Petrov, 2011; Täckström et al., 2013).
Our type constraints in POS tagging come from tag dictionaries, but also from linked websites. The idea
of using linked websites as distant supervision is similar in spirit to the idea presented in Ganchev et
al. (2012) for search query tagging.

Ganchev et al. (2012), considering the problem of POS tagging search queries, tag search queries and
the associated snippets provided by the search engine, projecting tags from the snippets to the queries,
guided by click-through data. They do not incorporate tag dictionaries, but consider a slightly more
advanced matching of snippets and search queries, giving priority to n-gram matches with larger n.
Search queries contain limited contexts, like tweets, but are generally much shorter and exhibit less
spelling variation than tweets.

In NER, it is common to use gazetteers, but also dictionaries as distant supervision (Kazama and
Torisawa, 2007; Cucerzan, 2007). Rüd et al. (2011) consider using search engines for distant supervision
of NER of search queries. Their set-up is very similar to Ganchev et al. (2012), except they do not use
click-through data. They use the search engine snippets to generate feature representations rather than
projections. Want et al. (2013) also use distant supervision for NER, i.e., Wikipedia page view counts,



applying their model to Twitter data, but their results are considerably below the state of the art. Also,
their source of supervision is not linked to the individual tweets in the way mentioned websites are.

In sum, our method is the first successful application of distant supervision to POS tagging and NER
for Twitter. Moreover, it is, to the best of our knowledge, the first paper that addresses both problems
using the same technique. Finally, our results are significantly better than state-of-the-art results in both
POS tagging and NER.

7 Conclusion

We presented a semi-supervised approach to POS tagging and NER for Twitter data that uses dictionaries
and linked websites as a source of not-so-distant (or linked) supervision to guide the bootstrapping. Our
approach outperforms off-the-shelf taggers when evaluated across various data sets, achieving average
error reductions across data sets of 5% on POS tagging and 10% on NER over state-of-the-art baselines.
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