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ABSTRACT

This paper proposes an algorithm to design a tied-state inventory
for a context dependent, neural network-based acoustic model for
speech recognition. Rather than relying on a GMM/HMM system
that operates on a different feature space and is of a different model
family, the proposed algorithm optimizes state tying on the activa-
tion vectors of the neural network directly. Experiments show the
viability of the proposed algorithm reducing the WER from 36.3%
for a context independent system to 16.0% for a 15000 tied-state
system.

Index Terms— State Tying, Context Modeling, Deep Neural
Networks, Acoustic Modeling.

1. INTRODUCTION
In recent years, use of neural networks as the acoustic model of a
speech recognition system has gone from novel to the most common
approach [1]. Two types of use of such models appears in the com-
munity. In the hybrid approach, the neural network replaces the pre-
viously common Gaussian Mixture Model (GMM) emission proba-
bilities of the Hidden Markov Models (HMM) (eg. [2, 3, 4, 5]). In
the other approach, the neural network is used to compute features
and the rest of the recognition system is unchanged, ie. the HMMs
still use GMMs in that case, but they operate on the features com-
puted by the neural network (eg. [6, 7, 8]).

Given the large improvements of recognition accuracy using
neural networks, either in the hybrid approach or as a feature extrac-
tor, there is a clear determination in the field to keep using neural
network-based systems. However, given that the nature of these
models is in stark contrast with the GMM/HMM-based systems, a
lot of the commonly used algorithms like speaker adaptation do not
directly apply unless the neural network is used as a feature extrac-
tor alone. Hence there is an interest in removing the dependency
on GMMs (for hybrid systems), while retaining the algorithmic
knowledge that has been developed in light of such models.

A hybrid neural network system relies on a GMM/HMM to al-
low training of the network. If training uses a cross entropy (CE) ob-
jective, the acoustic observations of the training set need to be associ-
ated with state identites of the HMMs. To derive such labels, a fully
trained GMM/HMM system is used to force align the training mate-
rial. More recent work alleviates that requirement by the introduc-
tion of sequence training [9, 10, 11] which replaces the frame-based
CE objective with one that optimizes the discriminative sequence-
based metrics commonly used in GMM/HMM systems (MMI, MPE,
sMBR or similar). This effectively “ports” some of the algorithmic
knowledge developed in light of the GMM/HMM model to the new
neural network framework. Alignment statistics computed with the
neural network itself are in that case used to guide the network opti-
mization (although generally sites would still start with a CE trained
network and it is not clear if the optimization would converge to a

well performing system without that). However, even with sequence
training, a dependency on the GMM/HMM system remains as the
neural network is trained to predict probabilities of a tied-state in-
ventory that is constructed using the Gaussian-based system, typi-
cally through decision-tree clustering [12]. In other words, for a CE-
objective system the depency on a GMM/HMM is two-fold (align-
ment to label the neural network training data and the definition of
the state inventory), for a sequence trained system it is only based on
the state inventory definition.

Gaussian context-dependent state tying uses the acoustic obser-
vations that are used in a GMM/HMM system (eg. Perceptual Lin-
ear Predictive (PLP) features) which generally are not the same type
as the feature representation used in a neural network-based system
(most use log filterbank energies instead). Furthermore, decisions on
which phonetic contexts to tie in the tied-state inventory are based
on how well the grouped phonetic contexts are modeled jointly by
a Gaussian distribution. Hence the tied-state definition used in the
neural network replacement of the GMM model is constructed on a
mismatched feature set using a mistmatched model family.

In this work we propose an algorithm to design the tied-state in-
ventory using activations of an a priori trained context independent
neural network. As such, the algorithm is directly matched to the
features and modeling that is employed in the neural network and
does not rely on a mismatched GMM/HMM system and distinct fea-
ture representation. Furthermore, since the state inventory is defined
post hoc, the algorithm is more amenable to changes in the state in-
ventory. Like sequence training, the algorithm “ports” some of the
knowhow developed in light of context clustering for GMM/HMM
systems in the sense that is still uses decision tree-based clustering
to define the tied-state set. Retaining that aspect also allows the pro-
posed algorithm to integrate well with the recognition search in test-
ing. For the work presented here, we show the feasibility of such a
tied-state set construction algorithm using a network optimized with
a CE criterion. As such, it still represents a dependency on a base-
line GMM/HMM system but when used with sequence training, this
would alleviate the dependency entirely (assuming the CE network
initialization for sequence training can be omitted).

The rest of this paper is organized as follows. In section 2 we de-
scribed the tied-state inventory construction algorithm. In section 3
we show experimental results using the proposed algorithm and fi-
nally, in section 4 we present conclusions and future work directions.

2. ALGORITHM

The algorithm consists of three stages, the initialization stage de-
scribed in section 2.1, the state tying stage described in section 2.2
and the post-training stage described in section 2.3.



2.1. Initialization
We assume the neural network consists of an input layer where a
window of acoustic observation vectors are presented. That layer
is connected with trainable weights to a stack of hidden layers and
a final softmax layer. The hidden layers compute weighted sums of
the activations it receives from its connections and a bias and outputs
activations from a non-linear function applied to the sums. The final
softmax layer produces the network output for N classes with the
n-th class probability for the t-th acoustic input pattern x(t) defined
as

P(n | x(t)) =
exp(wT

na(t) + bn)∑N
i=1 exp(wT

i a(t) + bi)
, (1)

where wn denotes the weight vector associated with the output neu-
ron for the n-th class, bn denotes the bias of that neuron, a(t) de-
notes the activation output from the final hidden layer (the one con-
nected to the output softmax layer) for the t-th input pattern and T

denotes transposition.
For the initialization of the algorithm, the final network topology

is defined for the input and hidden layers and a first softmax layer is
defined for N Context Independent (CI) states. This network is then
trained on the training set. Note that for CE training (as is used in the
experiments here), the acoustic observations of the training set need
to be labeled with CI state labels. Let the label for the t-th frame be
denoted as l(t).

2.2. State Tying
The state tying stage first computes activation vectors for all training
set frames using the trained CI network from initialization. Specif-
ically, it computes a(t) from equation (1) for all t in the training
set.

Let c = c1, . . . , cL denote an L symbol context. For example,
for a triphone system, L would be 2 and c1 encodes the left and c2
encodes the right context. Furthermore, let c(t) denote the context
for the t-th observation and let cp(t) denote the p-th symbol in that
context. Now define Φ(n, p, s) = {a(t) : l(t) = n and cp(t) = s},
the set of all activation vectors for CI state n that have symbol s in
the p-th context position.

We then construct decision trees using the algorithm described
in [13]. Starting from a single node tree for each CI state n, we
greedily split leaf nodes that have the largest likelihood gain under
a Gaussian model. A potential new left and right child node are
defined by a Gaussian distribution so any leaf in the tree is charac-
terized by a Gaussian centroid model. The use of a Gaussian dis-
tribution assumption of the activation vectors is for efficiency as it
allows the use of sufficient statistics to implement the algorithm.

Potential splits are evaluated by partitioning the activation vec-
tors in a parent node into a left and right child set and computing the
likelihood gain from modeling the activation vectors in the left/right
child partitioning as opposed to jointly using the parent distribution.

Partitioning the activation frames in a node of the tree for phone
state n considers assigning the frames for a particular context symbol
s in a particular context position p to either the left or right child. In
other words, the activation vectors Φ(n, p, s) are assigned to either
the left or right child, they cannot be divided in the assignment. Like-
lihood of such hypothesized partitionings are computed to assess the
gain of a hypothesized split. The constraint that any Φ(n, p, s) is
assigned to a single child means that a resulting hypothesized split
can be expressed as a set symbol set question on a particular context
position p.

The gain and definition of a hypothesized context position split
is computed jointly by binary divisive, likelihood-based K-means

clustering. The set of activation vectors for a given context symbol
s in position p (ie. Φ(n, p, s)) is assigned to either the right or left
child based on the larger Gaussian likelihood of that data under the
left or right child distribution. Once the activation vector sets are
partitioned, the Gaussian centroid for the left and right child are re-
estimated in a maximum likelihood sense and this process is iterated
until converged. Treating the activation vector sets for a given con-
text symbol s as atomic, the K-means clustering process computes
the likelihood gain as well as the partitioning that produces that gain.

The algorithm considers the partitioning of any leaf in any tree
on any context position and greedily implements the split with the
largest gain. The newly formed children are then greedily evaluated
for their best split parameters and this process is iterated until no
further leaf splits can be found that lead to a likelihood gain.

Note that this process is very similar to the commonly used de-
cision tree-based tying of context dependent states [12]. The dif-
ference is that here the splits are evaluated on the activation vectors
that feed into the final softmax layer, not based on features that are
mismatched with the neural network. Another contrast with previ-
ous work is that no pre-defined context sets are used, but the Chou
clustering [13] algorithm is used instead to define the set questions.
Since the clustering is performed on the output of one or more lay-
ers of non-linearities, we want to have a data driven design of the set
questions. That said, experimental results show similar set questions
are learned from data as would be used in clustering with manually
designed classes.

Given the decision tree clustering, the trees can be pruned back
using a gain threshold to a desired state set size. To allow use of
this tied-state inventory in recognition experiments, we compile the
pruned trees into a context dependency transducer using the splitting
part of the algorithm described in [14] (the split optimization of that
work is not used). Note that for the leaves of the trees, we have
the Gaussian centroid providing an estimate of the mean activation
vectors of frames that are assigned to the context dependent (CD)
tied states.

2.3. Post Training
Given the tree clustering described in section 2.2, we initialize train-
ing of the final context dependent tied-state inventory network. Each
of the acoustic observations x(t) of the training set are mapped to the
new tied-state inventory. If an observation was previously labeled as
CI state n, the observation is mapped to the tied CD state by map-
ping it using the tree for n and looking up the leaf corresponding to
c(t).

The neural network itself is initialized by expanding the softmax
layer number of neurons to the new CD state inventory size. Since
the softmax is a maximum entropy model it is not clear what a good
initialization is. Given that we know the mean activation vector for a
particular node from the centroid of the leaf of the decision tree, we
set the weights going into the neuron to the mean activation.

The hidden layer parameters are retained from the initialization
stage. Subsequent post training can be limited to just the softmax
layer or all weights in the network. Since the tied-state inventory
is designed based on similarity of the activation vectors, they are
matched to the weight estimates of the hidden layers, though opti-
mized for the CI state inventory.

3. EXPERIMENTS
Experiments were conducted on a database of mobile speech record-
ings originating from a number of Android applications: voice



search, translation and the voice-based input method. These record-
ings are anonymized; we only retain the speech recording but
remove all information indicating which device recorded the data.
The training set consists of a sampling of about 3 million utterances
containing about 2000 hours of speech. We obtained manual tran-
scriptions for these utterances. Evaluation is performed on a test set
that contains data sampled uniformly from all applications empha-
sizing the use frequency of each application. This test set contains
about 23000 utterances or about 20 hours of speech.

We first trained a CI GMM/HMM system using a 42 phone in-
ventory. Each phone is modeled with a 3-state left-to-right HMM
giving the CI system a 126 state inventory. Training started out with
a flat start and followed with incremental mixture training. State dis-
tributions in the final system were modeled with Gaussian mixtures
of up to 64 components. The CI GMM/HMM system was then used
to force align the training set, labeling the acoustic observations in
the training set with CI state labels. One could use a CD system to
potentially get better CI state labels, but given that the study focuses
on removing dependency on a CD GMM/HMM system, we use only
the CI system here.

For the initial neural network, 40 dimensional log filterbank en-
ergy features were computed at a rate of 100 frames per second.
These frames were stacked with a context window of 20 frames to
the left and 5 frames to the right. The resulting training set rep-
resentation is about 680 million observations of 1040-dimensional
vectors with associated CI state labels. In addition, we computed the
triphone context for each observation, ie. for each training frame we
encode the left and right neighboring phone label. With respect to
the algorithm description in 2.2, we set L to 2 and define c to encode
the triphone context.

We then trained an initial neural network as described in 2.1.
This network consists of 7 fully connected hidden layers of 2560
neurons each. The softmax output layer has 126 outputs, one for
each CI state label. For the hidden layers we use ReLU non-
linearities [5]. We trained this network using our distributed deep
network training infrastructure [15], using asynchronous gradient
descent with a fixed 0.003 learning rate and training steps (mini-
batch updates) of 200 frames. The training minimizes a cross
entropy loss. We trained this network for about 22 million steps
(about 4.4B training frames or about 6.5 epochs). The averaged
entropy loss over the training process is depicted in figure 1.
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Fig. 1. Cross entropy loss of the CI state system as a function of the
gradient descent step index and word error rates on the test set using
the network estimates from sampled step indices.

For all experiments recorded here, in addition to tracking the
training CE loss, we periodically ran a word error rate (WER) eval-
uation on the test set on intermediate network estimates. The sys-
tem used in each of these evaluations uses a vocabulary of about 2.5

million words and a trigram language model with about 33 million
ngrams. The language model and lexicon (and in case of a context
dependent system, the context dependency definition) are combined
into a single decoding graph using the approach described in detail
in [16].

Besides the cross entropy loss, figure 1 shows the WER mea-
surements of the network at different stages in the training process.
The CI error rate of the converged network is 36.3%. Training the
network up to that point using 100, 4-way partitioned model replicas
to parallelize the training took about 95 hours.

We then computed 2560-dimensional activation vectors for the
680 million training frames from the 7-th hidden layer of the initial
network. Gaussian statistics of those activation vectors for any ob-
served CI state in unique context were derived. A total of 103518
unique statistics accumulators (CI state label in context) were found
(silence states were modeled context independently). These statis-
tics were then used to perform the likelihood based clustering de-
scribed in section 2.2. In figure 2 we show the log-likelihood gains
(on a double log scale) of successive greedy splits. The plot is not
monotonically decreasing as tree topology constraints are taken into
account (ie. a child can have a larger split gain than its parent, but
that gain can only be implemented if the parent is split first). Since
the activation vectors used in clustering are after application of var-
ious non-linearities, there is no guarantee that phones with phonet-
ically similar production properties have similar activation patterns.
However, observing some of the frequent context questions that were
inferred by the data driven clustering algorithm we see phone groups
like for example nasals en n nx.
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Fig. 2. Log log-likelihood gains from tree leaf splitting. Gains are
ordered as chosen by the growing algorithm, ie. greedy but under
the constraint of the topologies of the grown trees.

We then pruned the trees back to create state inventories of 400,
800, 2000, 4000, 8000, 12000 and 15000 tied states. Neural net-
works retaining the hidden layer weights from the initial network
but with mutated softmax layers were constructed for the state clus-
tering defined by the pruned trees as proposed in section 2.3. These
networks were then trained for 15 million (200 frame mini batch)
training steps. In the training we only optimize the weights and bi-
ases of the softmax layer, the hidden layer weights are kept fixed.
The CE loss evolution of these networks through the training pro-
cess and periodic WER evaluation are depicted in figure 3

Observe that the centroid mean initialization of the softmax
weights appears a poor choice as the initial CE loss of the work is
large. Training reduces the metric and WER measurements show
that the tied-state systems gain over the CI system when trained for
15 million steps. The smaller state inventory systems converge more
quickly. The best WER of 18.8% (a 48% WER reduction compared
to the CI system) is obtained using the 2000 state inventory system.
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Fig. 3. Cross entropy loss of systems of various tied-state inventory
sizes as function of the gradient descent step index and word error
rates on the test set using the network estimates from sampled step
indices.

It is unclear if the larger systems perform more poorly due to a lack
of convergence or if the activation vectors feeding into the softmax
layer are sub-optimal. Note that since the hidden layers are frozen
in this run, the softmax of any of these systems operates on the same
activations.

To investigate, we continued training the networks for the 4000
or larger state inventories, updating either the softmax layer weights
only or allowing weights in the network to be trained jointly. The
CE loss evolution and WER measurements of the softmax only up-
dates are depicted in figure 4, the training evolutions for the runs that
updated all network weights are depicted in figure 5.
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Fig. 4. Cross entropy loss of systems of various tied-state inventory
sizes as function of the gradient descent step index and word error
rates on the test set using the network estimates from sampled step
indices. Initialization is with the network from the first 15 million
step training phase and only softmax weights are updated.

The network training that allows the hidden layer weights to be
updated outperforms the network training that only allows softmax
layer updates. The additional gain is more pronounced for the larger
networks. The 15000 state network reaches a word error rate of
16.0%.
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Fig. 5. Cross entropy loss of systems of various tied-state inventory
sizes as function of the gradient descent step index and word error
rates on the test set using the network estimates from sampled step
indices. Initialization is with the network from the first 15 million
step training phase and all layer weights are updated.

4. CONCLUSIONS AND FUTURE WORK

This paper proposes a context dependent state tying algorithm that
directly optimizes the state set on the activations in the neural net-
work. The proposed algorithm allows the design and training of such
networks and use of them in recognition. Experiments show that
training of a network up to 15000 tied states improves the word er-
ror rate from 36.3% for a context independent system to 16.0% for
the tied-state context dependent system.

The state inventory tying definition is optimized on the activa-
tion vectors of the context independent trained system. For smaller
state inventory networks, this presents a reasonable feature space.
First, creating a larger state inventory results in WER reductions (eg.
25.5% for the 400 state system vs. 21.9% for the 800 state system).
Second, comparing the subsequent constrained, softmax only, opti-
mization vs. the joint optimization of all weights of the network, the
smaller networks show little performance difference (eg. the 4000
state system achieves 17.6% vs. 17.3%). For larger state invento-
ries, the CI activation vectors appear less well suited. We still see
WER reduction for increased inventory sizes but the constrained vs.
joint training shows larger WER differences (eg. 21.3% vs. 16.0%
for the 15000 state system).

The proposed algorithm for tied-state inventory design is better
matched to the neural network model as it directly optimizes the in-
ventory based on the features and model family. In that sense it effec-
tively reduces dependency on an external, mismatched GMM/HMM
system. However, it still relies on the labeling of input frames based
on a CI GMM/HMM system. Furthermore, the alignment of that
system is fixed in this work limiting the ability of the training to
optimize for string WER. For comparison, when training a 15000
state context dependent GMM/HMM system from the same CI sys-
tem starting point, force aligning the training data to label the frames
with the CD state labels and training a DNN with the same topology
as used here results in a 14.5% WER. Given that in that case the state
inventory has been optmized with a mismatched model one expects a
performance degradation, but given that the better CD GMM/HMM
system is used to segment and label the input, the resulting system is
more accurate. Future work will hence focus on adding an iterative
or adaptive aspect to the proposed algorithm and not rely on an early
fixed segmentation for system design and training.
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