

## Statistical Parametric Speech Synthesis

Heiga Zen Google June 9th, 2014

#### Outline

#### Background

HMM-based statistical parametric speech synthesis (SPSS) Flexibility Improvements

#### Statistical parametric speech synthesis with neural networks

Deep neural network (DNN)-based SPSS Deep mixture density network (DMDN)-based SPSS Recurrent neural network (RNN)-based SPSS

#### Summary

Summary



#### Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)
 Speech (continuous time series) → Text (discrete symbol sequence)



#### Text-to-speech as sequence-to-sequence mapping

- Automatic speech recognition (ASR)
   Speech (continuous time series) → Text (discrete symbol sequence)
- Machine translation (MT) Text (discrete symbol sequence)  $\rightarrow$  Text (discrete symbol sequence)

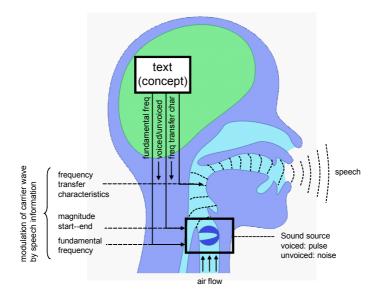


#### Text-to-speech as sequence-to-sequence mapping

- Automatic speech recognition (ASR)
   Speech (continuous time series) → Text (discrete symbol sequence)
- Machine translation (MT) Text (discrete symbol sequence)  $\rightarrow$  Text (discrete symbol sequence)
- Text-to-speech synthesis (TTS) Text (discrete symbol sequence) → Speech (continuous time series)

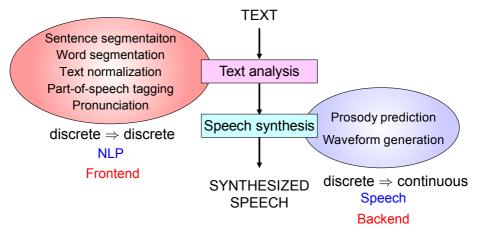


## Speech production process





## Typical flow of TTS system



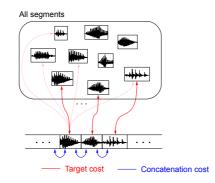
This talk focuses on backend



Heiga Zen

Statistical Parametric Speech Synthesis

## **Concatenative speech synthesis**



- Concatenate actual instances of speech from database
- Large data + automatic learning

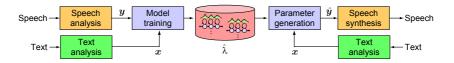
 $\rightarrow$  High-quality synthetic voices can be built automatically

- Single inventory per unit  $\rightarrow$  diphone synthesis [1]
- Multiple inventory per unit → unit selection synthesis [2]



Heiga Zen

## Statistical parametric speech synthesis (SPSS) [3]

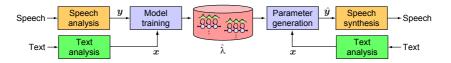


- Training
  - Extract linguistic features x & acoustic features y
  - Train acoustic model  $\lambda$  given  $({\boldsymbol{x}},{\boldsymbol{y}})$

$$\hat{\lambda} = \arg \max p(\boldsymbol{y} \mid \boldsymbol{x}, \lambda)$$



## Statistical parametric speech synthesis (SPSS) [3]



- Training
  - Extract linguistic features x & acoustic features y
  - Train acoustic model  $\lambda$  given  $({\boldsymbol{x}},{\boldsymbol{y}})$

$$\hat{\lambda} = \arg \max p(\boldsymbol{y} \mid \boldsymbol{x}, \lambda)$$

#### • Synthesis

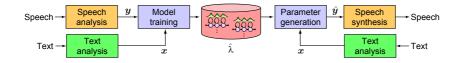
- Extract x from text to be synthesized
- Generate most probable  $m{y}$  from  $\hat{\lambda}$

$$\hat{\boldsymbol{y}} = \arg \max p(\boldsymbol{y} \mid \boldsymbol{x}, \hat{\lambda})$$

 $-\,$  Reconstruct speech from  $\hat{y}$ 



## Statistical parametric speech synthesis (SPSS) [3]



- Large data + automatic training
   → Automatic voice building
- Parametric representation of speech
  - $\rightarrow$  Flexible to change its voice characteristics

Hidden Markov model (HMM) as its acoustic model  $\rightarrow$  HMM-based speech synthesis system (HTS) [4]



#### Outline

#### Background

HMM-based statistical parametric speech synthesis (SPSS) Flexibility Improvements

#### Statistical parametric speech synthesis with neural networks

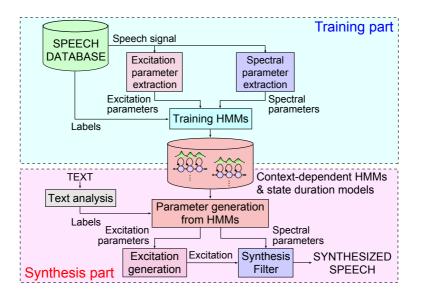
Deep neural network (DNN)-based SPSS Deep mixture density network (DMDN)-based SPSS Recurrent neural network (RNN)-based SPSS

#### Summary

Summary

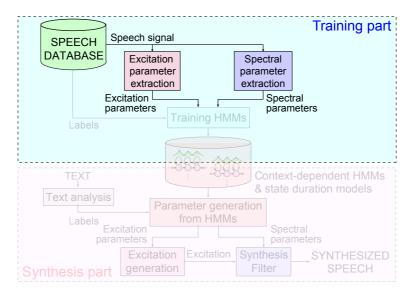


#### HMM-based speech synthesis [4]



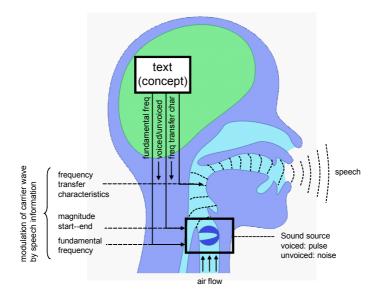


#### HMM-based speech synthesis [4]



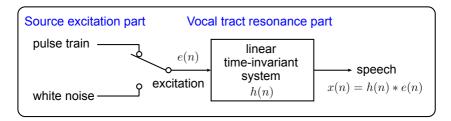


## Speech production process





#### Source-filter model



$$\begin{split} x(n) &= h(n) * e(n) \\ &\downarrow \text{Fourier transform} \\ X(e^{j\omega}) &= H(e^{j\omega}) E(e^{j\omega}) \end{split}$$

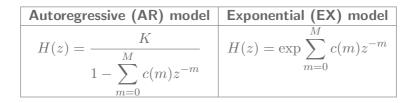
 $H\left(e^{j\omega}\right)$  should be defined by HMM state-output vectors e.g., mel-cepstrum, line spectral pairs



Heiga Zen

Statistical Parametric Speech Synthesis

#### Parametric models of speech signal



Estimate model parameters based on ML

$$\boldsymbol{c} = \arg \max_{\boldsymbol{c}} p(\boldsymbol{x} \mid \boldsymbol{c})$$

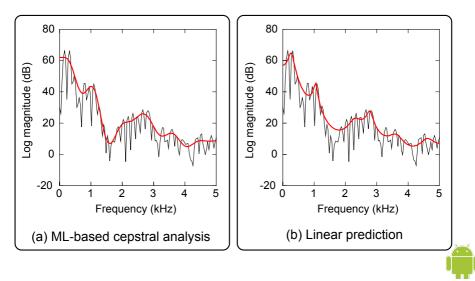
- $p(x \mid c)$ : AR model  $\rightarrow$  Linear predictive analysis [5]
- $p(\boldsymbol{x} \mid \boldsymbol{c})$ : EX model  $\rightarrow$  (ML-based) cepstral analysis [6]



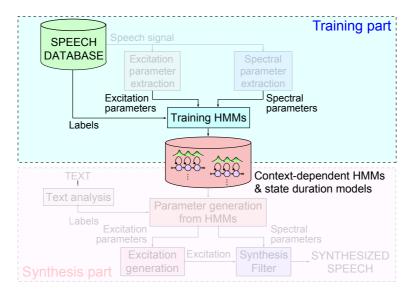
Heiga Zen

Statistical Parametric Speech Synthesis

#### **Examples of speech spectra**

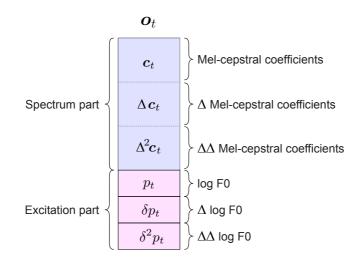


### HMM-based speech synthesis [4]



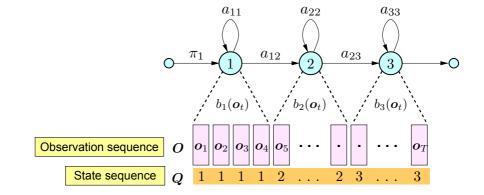


#### Structure of state-output (observation) vectors





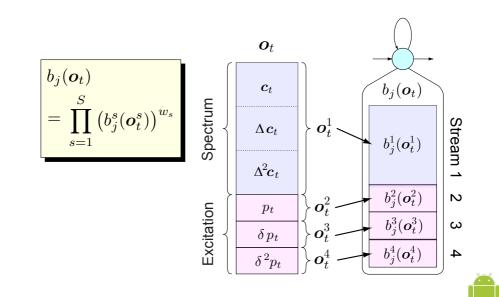
#### Hidden Markov model (HMM)





Statistical Parametric Speech Synthesis

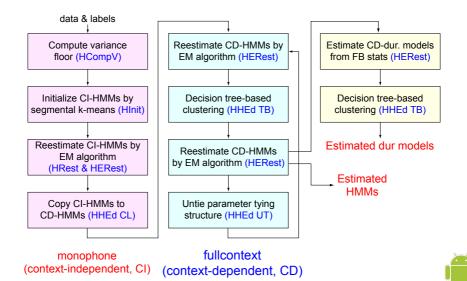
#### Multi-stream HMM structure





17 of 79

## **Training process**



Statistical Parametric Speech Synthesis

18 of 79

### **Context-dependent acoustic modeling**

- {preceding, succeeding} two phonemes
- Position of current phoneme in current syllable
- # of phonemes at {preceding, current, succeeding} syllable
- {accent, stress} of {preceding, current, succeeding} syllable
- Position of current syllable in current word
- # of {preceding, succeeding} {stressed, accented} syllables in phrase
- # of syllables {from previous, to next} {stressed, accented} syllable
- Guess at part of speech of  $\{preceding,\ current,\ succeeding\}\ word$
- # of syllables in {preceding, current, succeeding} word
- Position of current word in current phrase
- # of {preceding, succeeding} content words in current phrase
- # of words {from previous, to next} content word
- # of syllables in {preceding, current, succeeding} phrase

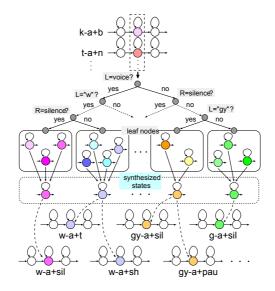
#### Impossible to have all possible models



. . .



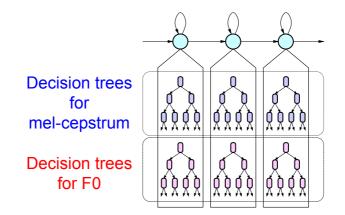
#### Decision tree-based state clustering [7]





Statistical Parametric Speech Synthesis

#### Stream-dependent tree-based clustering



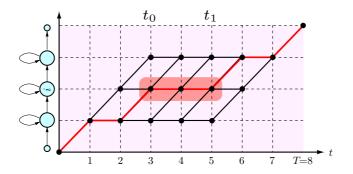
Spectrum & excitation can have different context dependency  $\rightarrow$  Build decision trees individually



Heiga Zen

Statistical Parametric Speech Synthesis

#### State duration models [8]



Probability to enter state i at  $t_0$  then leave at  $t_1 + 1$ 

$$\chi_{t_0,t_1}(i) \propto \sum_{j \neq i} \alpha_{t_0-1}(j) a_{ji} a_{ii}^{t_1-t_0} \prod_{t=t_0}^{t_1} b_i(\boldsymbol{o}_t) \sum_{k \neq i} a_{ik} b_k(\boldsymbol{o}_{t_1+1}) \beta_{t_1+1}(k)$$

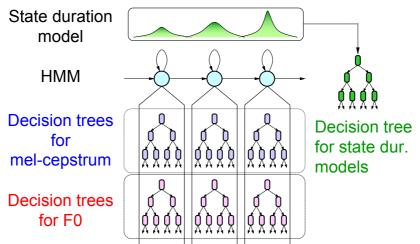
#### $\rightarrow$ estimate state duration models

Heiga Zen

Statistical Parametric Speech Synthesis

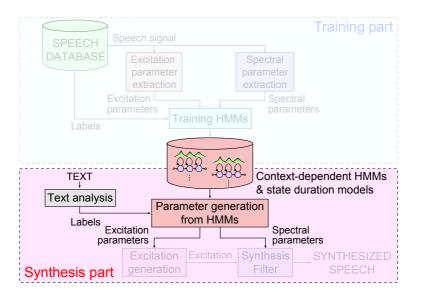


#### Stream-dependent tree-based clustering





## HMM-based speech synthesis [4]





#### Speech parameter generation algorithm [9]

Generate most probable state outputs given HMM and words

$$\hat{\boldsymbol{o}} = \arg \max_{\boldsymbol{o}} p(\boldsymbol{o} \mid \boldsymbol{w}, \hat{\lambda})$$

$$= \arg \max_{\boldsymbol{o}} \sum_{\forall \boldsymbol{q}} p(\boldsymbol{o}, \boldsymbol{q} \mid \boldsymbol{w}, \hat{\lambda})$$

$$\approx \arg \max_{\boldsymbol{o}} \max_{\boldsymbol{q}} p(\boldsymbol{o}, \boldsymbol{q} \mid \boldsymbol{w}, \hat{\lambda})$$

$$= \arg \max_{\boldsymbol{o}} \max_{\boldsymbol{q}} p(\boldsymbol{o} \mid \boldsymbol{q}, \hat{\lambda}) P(\boldsymbol{q} \mid \boldsymbol{w}, \hat{\lambda})$$



#### Speech parameter generation algorithm [9]

Generate most probable state outputs given HMM and words

$$\hat{\boldsymbol{o}} = \arg \max_{\boldsymbol{o}} p(\boldsymbol{o} \mid \boldsymbol{w}, \hat{\lambda})$$
  
=  $\arg \max_{\boldsymbol{o}} \sum_{\forall \boldsymbol{q}} p(\boldsymbol{o}, \boldsymbol{q} \mid \boldsymbol{w}, \hat{\lambda})$   
 $\approx \arg \max_{\boldsymbol{o}} \max_{\boldsymbol{q}} p(\boldsymbol{o}, \boldsymbol{q} \mid \boldsymbol{w}, \hat{\lambda})$   
=  $\arg \max_{\boldsymbol{o}} \max_{\boldsymbol{q}} p(\boldsymbol{o} \mid \boldsymbol{q}, \hat{\lambda}) P(\boldsymbol{q} \mid \boldsymbol{w}, \hat{\lambda})$ 

Determine the best state sequence and outputs sequentially

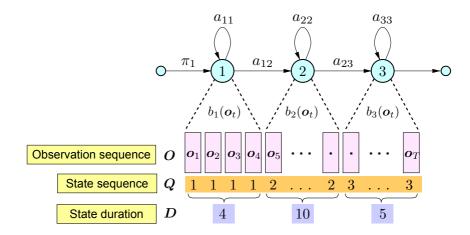
$$\hat{\boldsymbol{q}} = \arg \max_{\boldsymbol{q}} P(\boldsymbol{q} \mid \boldsymbol{w}, \hat{\lambda})$$
$$\hat{\boldsymbol{o}} = \arg \max_{\boldsymbol{o}} p(\boldsymbol{o} \mid \hat{\boldsymbol{q}}, \hat{\lambda})$$



Heiga Zen

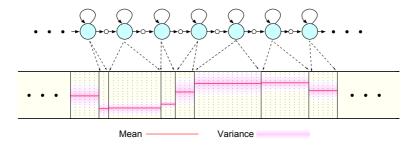
Statistical Parametric Speech Synthesis

#### Best state sequence





# Best state outputs w/o dynamic features



#### $\hat{o}$ becomes step-wise mean vector sequence

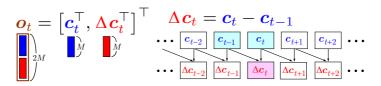


Heiga Zen

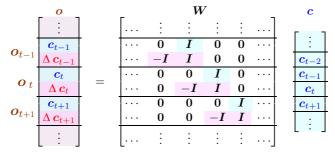
Statistical Parametric Speech Synthesis

## Using dynamic features

State output vectors include static & dynamic features



Relationship between static and dynamic features can be arranged as





28 of 79

## Speech parameter generation algorithm [9]

Introduce dynamic feature constraints

$$\hat{o} = rg \max_{o} p(o \mid \hat{q}, \hat{\lambda})$$
 subject to  $o = Wc$ 



## Speech parameter generation algorithm [9]

Introduce dynamic feature constraints

$$\hat{o} = \arg \max_{o} p(o \mid \hat{q}, \hat{\lambda})$$
 subject to  $o = Wc$ 

If state-output distribution is single Gaussian

$$p(\boldsymbol{o} \mid \hat{\boldsymbol{q}}, \hat{\boldsymbol{\lambda}}) = \mathcal{N}(\boldsymbol{o}; \hat{\boldsymbol{\mu}}_{\hat{\boldsymbol{q}}}, \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{q}}})$$



# Speech parameter generation algorithm [9]

Introduce dynamic feature constraints

$$\hat{o} = \arg \max_{o} p(o \mid \hat{q}, \hat{\lambda})$$
 subject to  $o = Wc$ 

If state-output distribution is single Gaussian

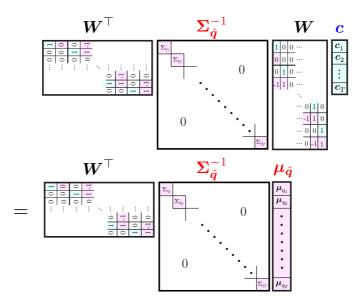
$$p(\boldsymbol{o} \mid \hat{\boldsymbol{q}}, \hat{\lambda}) = \mathcal{N}(\boldsymbol{o}; \hat{\boldsymbol{\mu}}_{\hat{\boldsymbol{q}}}, \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{q}}})$$

By setting  $\partial \log \mathcal{N}(Wc; \hat{\mu}_{\hat{q}}, \hat{\Sigma}_{\hat{q}}) / \partial c = 0$ 

$$m{W}^{ op}\hat{\pmb{\Sigma}}_{\hat{m{q}}}^{-1}m{W}m{c}=m{W}^{ op}\hat{\pmb{\Sigma}}_{\hat{m{q}}}^{-1}\hat{\pmb{\mu}}_{\hat{m{q}}}$$

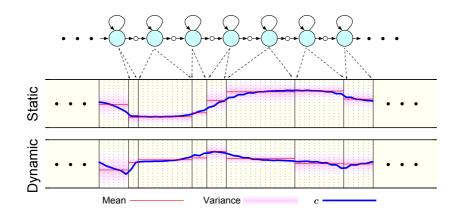


# Speech parameter generation algorithm [9]



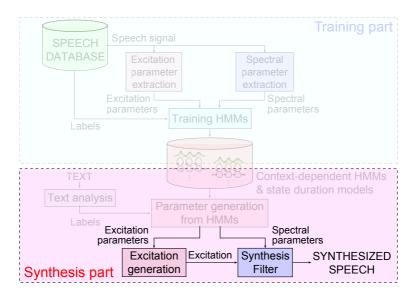


### Generated speech parameter trajectory



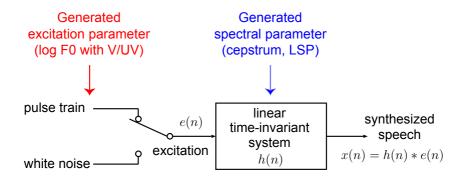


# HMM-based speech synthesis [4]





### Waveform reconstruction





### Synthesis filter

- Cepstrum  $\rightarrow$  LMA filter
- $\bullet~$  Generalized cepstrum  $\rightarrow$  GLSA filter
- Mel-cepstrum  $\rightarrow$  MLSA filter
- $\bullet \ \ \text{Mel-generalized cepstrum} \to \mathsf{MGLSA \ filter}$
- $\bullet \ \mathsf{LSP} \to \mathsf{LSP} \ \mathsf{filter}$
- $PARCOR \rightarrow all-pole \ lattice \ filter$
- LPC  $\rightarrow$  all-pole filter



### **Characteristics of SPSS**

### • Advantages

- Flexibility to change voice characteristics
  - Adaptation
  - $\circ$  Interpolation
- Small footprint [10, 11]
- Robustness [12]
- Drawback
  - Quality
- Major factors for quality degradation [3]
  - Vocoder (speech analysis & synthesis)
  - Acoustic model (HMM)
  - Oversmoothing (parameter generation)



### Outline

#### Background

HMM-based statistical parametric speech synthesis (SPSS) Flexibility

#### Statistical parametric speech synthesis with neural networks

Deep neural network (DNN)-based SPSS Deep mixture density network (DMDN)-based SPSS Recurrent neural network (RNN)-based SPSS

#### **Summary**

Summary



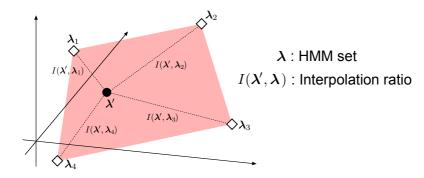
# Adaptation (mimicking voice) [13]



- Train average voice model (AVM) from training speakers using SAT
- Adapt AVM to target speakers
- Requires small data from target speaker/speaking style
  - $\rightarrow$  Small cost to create new voices



# Interpolation (mixing voice) [14, 15, 16, 17]



- Interpolate representive HMM sets
- Can obtain new voices w/o adaptation data
- Eigenvoice / CAT / multiple regression

 $\rightarrow$  estimate representative HMM sets from data



Heiga Zen

Statistical Parametric Speech Synthesis

### Outline

#### Background

HMM-based statistical parametric speech synthesis (SPSS) Flexibility Improvements

#### Statistical parametric speech synthesis with neural networks

Deep neural network (DNN)-based SPSS Deep mixture density network (DMDN)-based SPSS Recurrent neural network (RNN)-based SPSS

#### **Summary**

Summary

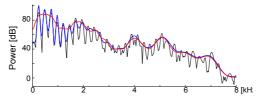


# **Vocoding issues**

• Simple pulse / noise excitation Difficult to model mix of V/UV sounds (e.g., voiced fricatives)



• Spectral envelope extraction Harmonic effect often cause problem



#### Phase

Important but usually ignored

Heiga Zen

Statistical Parametric Speech Synthesis

June 9th, 2014

### **Better vocoding**

- Mixed excitation linear prediction (MELP)
- STRAIGHT
- Multi-band excitation
- Harmonic + noise model (HNM)
- Harmonic / stochastic model
- LF model
- Glottal waveform
- Residual codebook
- ML excitation



### Limitations of HMMs for acoustic modeling

- Piece-wise constatnt statistics Statistics do not vary within an HMM state
- Conditional independence assumption State output probability depends only on the current state
- Weak duration modeling State duration probability decreases exponentially with time

#### None of them hold for real speech



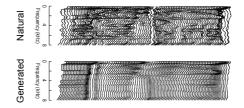
### Better acoustic modeling

- $\bullet \ \ \mathbf{Piece-wise \ constatut \ statistics} \rightarrow \mathbf{Dynamical \ model}$ 
  - Trended HMM
  - Polynomial segment model
  - Trajectory HMM
- $\bullet$  Conditional independence assumption  $\rightarrow$  Graphical model
  - Buried Markov model
  - Autoregressive HMM
  - Trajectory HMM
- $\bullet$  Weak duration modeling  $\rightarrow$  Explicit duration model
  - Hidden semi-Markov model



# Oversmoothing

- Speech parameter generation algorithm
  - Dynamic feature constraints make generated parameters smooth
  - Often too smooth  $\rightarrow$  sounds muffled



- Why?
  - $-\,$  Details of spectral (formant) structure disappear
  - $-\,$  Use of better AM relaxes the issue, but not enough



# **Oversmoothing compensation**

- Postfiltering
  - Mel-cepstrum
  - LSP
- Nonparametric approach
  - Conditional parameter generation
  - Discrete HMM-based speech synthesis
- Combine multiple-level statistics
  - Global variance (intra-utterance variance)
  - Modulation spectrum (intra-utterance frequency components)



### **Characteristics of SPSS**

### • Advantages

- Flexibility to change voice characteristics
  - $\circ$  Adaptation
  - $\circ~$  Interpolation / eigenvoice / CAT / multiple regression
- Small footprint
- Robustness
- Drawback
  - Quality
- Major factors for quality degradation [3]
  - Vocoder (speech analysis & synthesis)
  - Acoustic model (HMM)  $\rightarrow$  Neural networks
  - Oversmoothing (parameter generation)



### Outline

#### Background

HMM-based statistical parametric speech synthesis (SPSS) Flexibility

### Statistical parametric speech synthesis with neural networks

Deep neural network (DNN)-based SPSS

Deep mixture density network (DMDN)-based SPSS Recurrent neural network (RNN)-based SPSS

#### **Summary**

Summary



# $\textbf{Linguistic} \rightarrow \textbf{acoustic} \ \textbf{mapping}$

### • Training

Learn relationship between linguistc & acoustic features



# $\textbf{Linguistic} \rightarrow \textbf{acoustic mapping}$

### • Training

Learn relationship between linguistc & acoustic features

### • Synthesis

Map linguistic features to acoustic ones



# $\textbf{Linguistic} \rightarrow \textbf{acoustic mapping}$

### • Training

Learn relationship between linguistc & acoustic features

### • Synthesis

Map linguistic features to acoustic ones

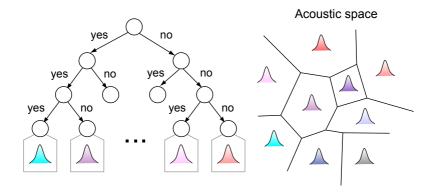
### • Linguistic features used in SPSS

- Phoneme, syllable, word, phrase, utterance-level features
- e.g., phone identity, POS, stress, # of words in a phrase
- Around 50 different types, much more than ASR (typically 3-5)

### Effective modeling is essential



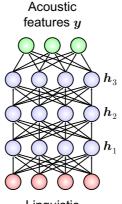
# HMM-based acoustic modeling for SPSS [4]



• Decision tree-clustered HMM with GMM state-output distributions



# **DNN-based acoustic modeling for SPSS [18]**



Linguistic features x

- DNN represents conditional distribution of  $\boldsymbol{y}$  given  $\boldsymbol{x}$
- DNN replaces decision trees and GMMs

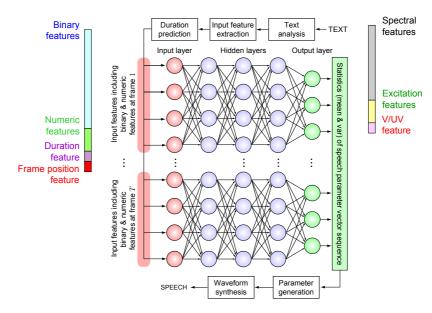
Heiga Zen

Statistical Parametric Speech Synthesis



June 9th, 2014

### Framework





Heiga Zen

Statistical Parametric Speech Synthesis

June 9th, 2014

### Advantages of NN-based acoustic modeling

### • Integrating feature extraction

- Can model high-dimensional, highly correlated features efficiently
- Layered architecture w/ non-linear operations
  - $\rightarrow$  Integrated feature extraction to acoustic modeling



### Advantages of NN-based acoustic modeling

### • Integrating feature extraction

- Can model high-dimensional, highly correlated features efficiently
- $-\,$  Layered architecture w/ non-linear operations
  - $\rightarrow$  Integrated feature extraction to acoustic modeling
- Distributed representation
  - Can be exponentially more efficient than fragmented representation
  - Better representation ability with fewer parameters



### Advantages of NN-based acoustic modeling

### • Integrating feature extraction

- Can model high-dimensional, highly correlated features efficiently
- $-\,$  Layered architecture w/ non-linear operations
  - $\rightarrow$  Integrated feature extraction to acoustic modeling
- Distributed representation
  - Can be exponentially more efficient than fragmented representation
  - Better representation ability with fewer parameters
- Layered hierarchical structure in speech production
  - concept  $\rightarrow$  linguistic  $\rightarrow$  articulatory  $\rightarrow$  waveform



### Framework

Is this new? ... no

- NN [19]
- RNN [20]



Is this new? ... no

- NN [19]
- RNN [20]

### What's the difference?

- More layers, data, computational resources
- Better learning algorithm
- Statistical parametric speech synthesis techniques



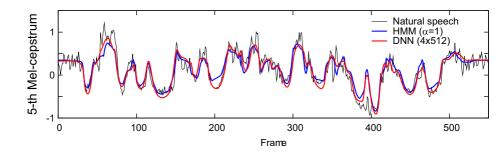
# **Experimental setup**

| Database             | US English female speaker                            |  |  |
|----------------------|------------------------------------------------------|--|--|
| Training / test data | 33000 & 173 sentences                                |  |  |
| Sampling rate        | 16 kHz                                               |  |  |
| Analysis window      | 25-ms width / 5-ms shift                             |  |  |
| Linguistic           | 11 categorical features                              |  |  |
| features             | 25 numeric features                                  |  |  |
| Acoustic             | 0–39 mel-cepstrum                                    |  |  |
| features             | $\log F_0$ , 5-band aperiodicity, $\Delta, \Delta^2$ |  |  |
| HMM                  | 5-state, left-to-right HSMM [21],                    |  |  |
| topology             | MSD F <sub>0</sub> [22], MDL [23]                    |  |  |
| DNN                  | 1-5 layers, 256/512/1024/2048 units/layer            |  |  |
| architecture         | sigmoid, continuous $F_0$ [24]                       |  |  |
| Postprocessing       | Postfiltering in cepstrum domain [25]                |  |  |



### Example of speech parameter trajectories

w/o grouping questions, numeric contexts, silence frames removed





### **Subjective evaluations**

# Compared HMM-based systems with DNN-based ones with similar # of parameters

- Paired comparison test
- 173 test sentences, 5 subjects per pair
- Up to 30 pairs per subject
- Crowd-sourced

| HMM        | DNN                    |         |             |         |
|------------|------------------------|---------|-------------|---------|
| $(\alpha)$ | (#layers × #units)     | Neutral | p value     | z value |
| 15.8 (16)  | <b>38.5</b> (4 × 256)  | 45.7    | $< 10^{-6}$ | -9.9    |
| 16.1 (4)   | <b>27.2</b> (4 × 512)  | 56.8    | $< 10^{-6}$ | -5.1    |
| 12.7 (1)   | <b>36.6</b> (4 × 1024) | 50.7    | $< 10^{-6}$ | -11.5   |



### Outline

#### Background

HMM-based statistical parametric speech synthesis (SPSS) Flexibility

#### Statistical parametric speech synthesis with neural networks

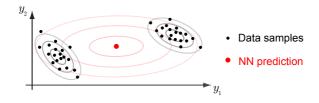
Deep neural network (DNN)-based SPSS Deep mixture density network (DMDN)-based SPSS Recurrent neural network (RNN)-based SPSS

#### Summary

Summary



### Limitations of DNN-based acoustic modeling

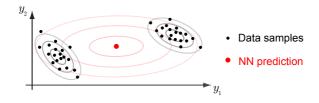


#### • Unimodality

- $-\,$  Human can speak in different ways  $\rightarrow$  one-to-many mapping
- NN trained by MSE loss  $\rightarrow$  approximates conditional mean



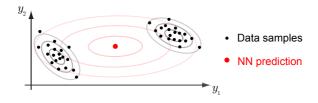
# Limitations of DNN-based acoustic modeling



- Unimodality
  - Human can speak in different ways  $\rightarrow$  one-to-many mapping
  - NN trained by MSE loss  $\rightarrow$  approximates conditional mean
- Lack of variance
  - DNN-based SPSS uses variances computed from all training data
  - Parameter generation algorithm utilizes variances



# Limitations of DNN-based acoustic modeling

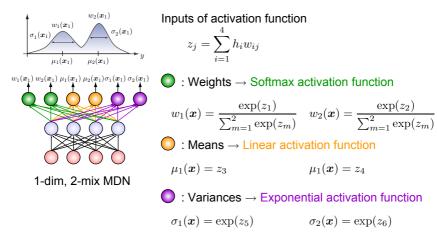


- Unimodality
  - Human can speak in different ways  $\rightarrow$  one-to-many mapping
  - NN trained by MSE loss  $\rightarrow$  approximates conditional mean
- Lack of variance
  - DNN-based SPSS uses variances computed from all training data
  - Parameter generation algorithm utilizes variances

#### Linear output layer $\rightarrow$ Mixture density output layer [26]



# Mixture density network [26]



NN + mixture model (GMM) $\rightarrow$  NN outputs GMM weights, means, & variances

Heiga Zen

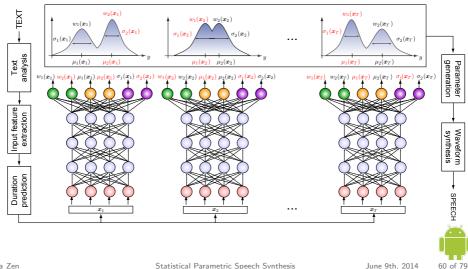
Statistical Parametric Speech Synthesis

 $\mu_1(x) = z_4$ 



June 9th, 2014

# DMDN-based SPSS [27]



Statistical Parametric Speech Synthesis

### **Experimental setup**

- Almost the same as the previous setup
- Differences:

| DNN          | 4–7 hidden layers, 1024 units/hidden layer    |  |  |  |  |
|--------------|-----------------------------------------------|--|--|--|--|
| architecture | ReLU (hidden) / Linear (output)               |  |  |  |  |
| DMDN         | 4 hidden layers, 1024 units/ hidden layer     |  |  |  |  |
| architecture | ReLU [28] (hidden) / Mixture density (output) |  |  |  |  |
|              | 1–16 mix                                      |  |  |  |  |
| Optimization | AdaDec [29] (variant of AdaGrad [30]) on GPU  |  |  |  |  |



## **Subjective evaluation**

- 5-scale mean opinion score (MOS) test (1: unnatural 5: natural)
- 173 test sentences, 5 subjects per pair
- Up to 30 pairs per subject
- Crowd-sourced

|          | 1 mix  | $\textbf{3.537} \pm \textbf{0.113}$ |
|----------|--------|-------------------------------------|
| HMM      | 2 mix  | $3.397 \pm 0.115$                   |
|          | 4×1024 | $3.635 \pm 0.127$                   |
| DNN      | 5×1024 | $\textbf{3.681} \pm \textbf{0.109}$ |
|          | 6×1024 | $3.652\pm0.108$                     |
|          | 7×1024 | $3.637 \pm 0.129$                   |
|          | 1 mix  | $3.654 \pm 0.117$                   |
| DMDN     | 2 mix  | $3.796 \pm 0.107$                   |
| (4×1024) | 4 mix  | $3.766 \pm 0.113$                   |
|          | 8 mix  | $\textbf{3.805} \pm \textbf{0.113}$ |
|          | 16 mix | $3.791 \pm 0.102$                   |



## Outline

#### Background

HMM-based statistical parametric speech synthesis (SPSS) Flexibility

#### Statistical parametric speech synthesis with neural networks

Deep neural network (DNN)-based SPSS Deep mixture density network (DMDN)-based SPSS Recurrent neural network (RNN)-based SPSS

Summary

Summary



# Limitations of DNN/DMDN-based acoustic modeling

### • Fixed time span for input features

- $-\,$  Fixed number of preceding / succeeding contexts
  - (e.g.,  $\pm 2$  phonemes/syllable stress) are used as inputs
- $-\,$  Difficult to incorporate long time span contextual effect
- Frame-by-frame mapping
  - Each frame is mapped independently
  - $-\,$  Smoothing using dynamic feature constraints is still essential



# Limitations of DNN/DMDN-based acoustic modeling

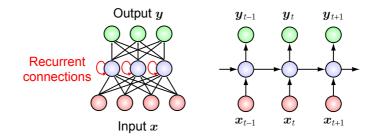
#### • Fixed time span for input features

- $-\,$  Fixed number of preceding / succeeding contexts
  - (e.g.,  $\pm 2$  phonemes/syllable stress) are used as inputs
- $-\,$  Difficult to incorporate long time span contextual effect
- Frame-by-frame mapping
  - Each frame is mapped independently
  - Smoothing using dynamic feature constraints is still essential

Recurrent connections  $\rightarrow$  Recurrent NN (RNN) [31]



## **Basic RNN**



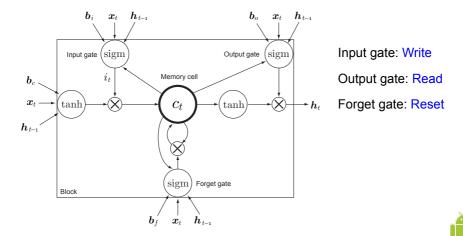
- Only able to use previous contexts → bidirectional RNN [31]
- Trouble accessing long-range contexts
  - Information in hidden layers loops through recurrent connections
    - $\rightarrow$  Quickly decay over time
  - Prone to being overwritten by new information arriving from inputs
  - $\rightarrow$  long short-term memory (LSTM) RNN [32]

Heiga Zen

65 of 79

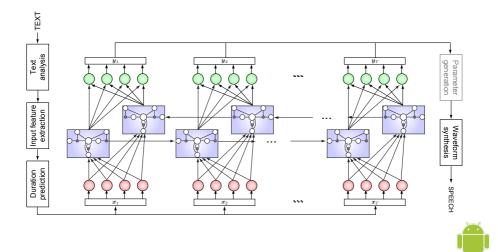
# Long short-term memory (LSTM) [32]

- RNN architecture designed to have better memory
- Uses linear memory cells surrounded by multiplicative gate units



66 of 79

# LSTM-based SPSS [33, 34]



Statistical Parametric Speech Synthesis

67 of 79

### **Experimental setup**

| Database             | US English female speaker                            |  |  |  |
|----------------------|------------------------------------------------------|--|--|--|
| Train / dev set data | 34632 & 100 sentences                                |  |  |  |
| Sampling rate        | 16 kHz                                               |  |  |  |
| Analysis window      | 25-ms width / 5-ms shift                             |  |  |  |
| Linguistic           | DNN: 449                                             |  |  |  |
| features             | LSTM: 289                                            |  |  |  |
| Acoustic             | 0–39 mel-cepstrum                                    |  |  |  |
| features             | $\log F_0$ , 5-band aperiodicity $(\Delta,\Delta^2)$ |  |  |  |
|                      | 4 hidden layers, 1024 units/hidden layer             |  |  |  |
| DNN                  | ReLU (hidden) / Linear (output)                      |  |  |  |
|                      | AdaDec [29] on GPU                                   |  |  |  |
|                      | 1 forward LSTM layer                                 |  |  |  |
| LSTM                 | 256 units, 128 projection                            |  |  |  |
|                      | Asynchronous SGD on CPUs [35]                        |  |  |  |
| Postprocessing       | Postfiltering in cepstrum domain [25]                |  |  |  |



## **Subjective evaluations**

- Paired comparison test
- 100 test sentences, 5 ratings per pair
- Up to 30 pairs per subject
- Crowd-sourced

| DNN         |              | LSTM        |              |         | Stats |              |
|-------------|--------------|-------------|--------------|---------|-------|--------------|
| w/ $\Delta$ | w/o $\Delta$ | w/ $\Delta$ | w/o $\Delta$ | Neutral | z     | p            |
| 50.0        | 14.2         | _           | _            | 35.8    | 12.0  | $< 10^{-10}$ |
| -           | _            | 30.2        | 15.6         | 54.2    | 5.1   | $< 10^{-6}$  |
| 15.8        | _            | 34.0        | _            | 50.2    | -6.2  | $< 10^{-9}$  |
| 28.4        | _            | _           | 33.6         | 38.0    | -1.5  | 0.138        |



## **Samples**

- DNN (w/o dynamic features)
- ◄) ◄) ◄)
   DNN (w/ dynamic features)
   ◄)
   ◄)
   ◄)

- LSTM (w/o dynamic features)

**د**ا))

**L**))

• LSTM (w/ dynamic features)



## Outline

#### Background

HMM-based statistical parametric speech synthesis (SPSS) Flexibility Improvements

#### Statistical parametric speech synthesis with neural networks

Deep neural network (DNN)-based SPSS Deep mixture density network (DMDN)-based SPSS Recurrent neural network (RNN)-based SPSS

#### Summary

Summary



## Summary

### Statistical parametric speech synthesis

- Vocoding + acoustic model
- HMM-based SPSS
  - Flexible (e.g., adaptation, interpolation)
  - Improvements
    - $\circ$  Vocoding
    - $\circ~$  Acoustic modeling
    - $\circ~$  Oversmoothing compensation

### • NN-based SPSS

- Learn mapping from linguistic features to acoustic ones
- Static network (DNN, DMDN)  $\rightarrow$  dynamic ones (LSTM)



### **References** I

[1] E. Moulines and F. Charpentier.

Pitch synchronous waveform processing techniques for text-to-speech synthesis using diphones. *Speech Commun.*, 9:453–467, 1990.

[2] A. Hunt and A. Black.

Unit selection in a concatenative speech synthesis system using a large speech database. In Proc. ICASSP, pages 373–376, 1996.

- [3] H. Zen, K. Tokuda, and A. Black. Statistical parametric speech synthesis. Speech Commun., 51(11):1039–1064, 2009.
- [4] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis. In Proc. Eurospeech, pages 2347-2350, 1999.
- [5] F. Itakura and S. Saito. A statistical method for estimation of speech spectral density and formant frequencies. *Trans. IEICE*, J53-A:35-42, 1970.
- [6] S. Imai. Cepstral analysis synthesis on the mel frequency scale. In Proc. ICASSP, pages 93–96, 1983.
- J. Odell. The use of context in large vocabulary speech recognition. PhD thesis, Cambridge University, 1995.
- [8] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Duration modeling for HMM-based speech synthesis. In *Proc. ICSLP*, pages 29–32, 1998.



June 9th, 2014

### **References II**

- [9] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura. Speech parameter generation algorithms for HMM-based speech synthesis. In *Proc. ICASSP*, pages 1315–1318, 2000.
- [10] Y. Morioka, S. Kataoka, H. Zen, Y. Nankaku, K. Tokuda, and T. Kitamura. Miniaturization of HMM-based speech synthesis. In *Proc. Autumn Meeting of ASJ*, pages 325–326, 2004. (in Japanese).
- [11] S.-J. Kim, J.-J. Kim, and M.-S. Hahn. HMM-based Korean speech synthesis system for hand-held devices. *IEEE Trans. Consum. Electron.*, 52(4):1384–1390, 2006.
- [12] J. Yamagishi, Z.H. Ling, and S. King. Robustness of HMM-based speech synthesis. In *Proc. Interspeech*, pages 581–584, 2008.
- J. Yamagishi. Average-Voice-Based Speech Synthesis. PhD thesis, Tokyo Institute of Technology, 2006.
- [14] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Speaker interpolation in HMM-based speech synthesis system. In Proc. Eurospeech, pages 2523–2526, 1997.
- [15] K. Shichiri, A. Sawabe, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Eigenvoices for HMM-based speech synthesis. In *Proc. ICSLP*, pages 1269–1272, 2002.
- [16] H. Zen, N. Braunschweiler, S. Buchholz, M. Gales, K. Knill, S. Krstulovic, and J. Latorre. Statistical parametric speech synthesis based on speaker and language factorization. *IEEE Trans. Acoust. Speech Lang. Process.*, 20(6):1713–1724, 2012.



Heiga Zen

Statistical Parametric Speech Synthesis

June 9th, 2014

## **References III**

[17] T. Nose, J. Yamagishi, T. Masuko, and T. Kobayashi. A style control technique for HMM-based expressive speech synthesis. *IEICE Trans. Inf. Syst.*, E90-D(9):1406–1413, 2007.

[18] H. Zen, A. Senior, and M. Schuster. Statistical parametric speech synthesis using deep neural networks. In Proc. ICASSP, pages 7962–7966, 2013.

- [19] O. Karaali, G. Corrigan, and I. Gerson. Speech synthesis with neural networks. In Proc. World Congress on Neural Networks, pages 45–50, 1996.
- [20] C. Tuerk and T. Robinson. Speech synthesis using artificial network trained on cepstral coefficients. In Proc. Eurospeech, pages 1713–1716, 1993.
- [21] H. Zen, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. A hidden semi-Markov model-based speech synthesis system. *IEICE Trans. Inf. Syst.*, E90-D(5):825–834, 2007.
- [22] K. Tokuda, T. Masuko, N. Miyazaki, and T. Kobayashi. Multi-space probability distribution HMM. *IEICE Trans. Inf. Syst.*, E85-D(3):455–464, 2002.
- [23] K. Shinoda and T. Watanabe. Acoustic modeling based on the MDL criterion for speech recognition. In Proc. Eurospeech, pages 99–102, 1997.
- [24] K. Yu and S. Young. Continuous F0 modelling for HMM based statistical parametric speech synthesis. IEEE Trans. Audio Speech Lang. Process., 19(5):1071–1079, 2011.



June 9th, 2014

Statistical Parametric Speech Synthesis

### **References IV**

- [25] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. Incorporation of mixed excitation model and postfilter into HMM-based text-to-speech synthesis. *IEICE Trans. Inf. Syst.*, J87-D-II(8):1563–1571, 2004.
- [26] C. Bishop. Mixture density networks. Technical Report NCRG/94/004, Neural Computing Research Group, Aston University, 1994.
- [27] H. Zen and A. Senior. Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis. In Proc. ICASSP, pages 3872–3876, 2014.
- [28] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q.-V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and G. Hinton.

On rectified linear units for speech processing. In *Proc. ICASSP*, pages 3517–3521, 2013.

- [29] A. Senior, G. Heigold, M. Ranzato, and K. Yang. An empirical study of learning rates in deep neural networks for speech recognition. In *Proc. ICASSP*, pages 6724–6728, 2013.
- [30] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. *The Journal of Machine Learning Research*, pages 2121–2159, 2011.
- [31] M. Schuster and K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans. Signal Process., 45(11):2673–2681, 1997.
- [32] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

78 of 79

June 9th, 2014

### **References V**

[33] Y. Fan, Y. Qian, F. Xie, and F. Soong.

TTS synthesis with bidirectional LSTM based recurrent neural networks. In *Proc. Interspeech*, 2014. (Submitted) http://research.microsoft.com/en-us/projects/dnntts/.

- [34] H. Zen, H. Sak, A. Graves, and A. Senior. Statistical parametric speech synthesis using recurrent neural networks. In UKSpeech Conference, 2014.
- [35] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng.

Large scale distributed deep networks. In Proc. NIPS, 2012.

