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Abstract

The modern service economy is substantively different from the agricultural and manufac-
turing economies that preceded it. In particular, the cost of experimenting is dominated by
opportunity cost rather than the cost of obtaining experimental units. The different economics
require a new class of experiments, in which stochastic models play an important role. This
article briefly summarizes mulit-armed bandit experiments, where the experimental design is
modified as the experiment progresses to make the experiment as inexpensive as possible.
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1 Introduction

Service is the dominant sector in the United States economy, accounting for roughly 80% of US

GDP (World Bank, 2013). It is similarly important in other developed nations. Much activity in

the service sector involves traditional retail and person-to-person services, but a growing fraction

comes from technology companies like Google, Amazon, Facebook, Salesforce, and Netflix. These

and similar companies provide internet services related to search, entertainment, retail, advertising,

and information processing under the “software as a service” paradigm.

As with other industries, service can be improved through experimentation. Yet service differs in

important ways from the manufacturing and agricultural processes that are the focus of traditional

industrial experiments. The cost structure of a typical service experiment, particularly online, is

dramatically different from that of a manufacturing or agricultural experiment. In the latter, costs

arise mainly from acquiring or processing experimental units, such as growing crops on plots of

land, destroying items taken from the production line, or paying subjects to participate in a focus

group. By contrast, service experiments involve changing the service being provided to existing

customers with whom the service provider would have engaged even if no experiment had taken

place. Assuming the service can be modified with minimal expense (which is true for online services)

then the cost of experimenting is dominated by the opportunity cost of providing sub-optimal service

to customers.

A second distinction is that service providers are able to continually monitor the quality of

the service they provide, for example by keeping track of the number of clicks generated by an
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advertisement, or the frequency with which a software feature is used. This blurs the line separating

the laboratory from the production line, as if the car could be improved after leaving the factory.

Online service companies can conduct experiments faster and easier than ever before. Service

providers can experiment continuously, perpetually improving different aspects of their offerings

(Varian, 2010). One impediment is that experiments are expensive. A dramatic increase in the

frequency and scope of experiments requires a corresponding reduction in cost. Multi-armed bandits

are a type of sequential experiment that is naturally aligned with the economics of the service

industry. This article is a brief introduction to multi-armed bandit experiments, the “Thompson

sampling” heuristic for managing them, and some of the practical considerations that can arise in

real world applications. Section 2 describes multi-armed bandit experiments and reviews some of

the techniques that have been developed to implement them. Section 3 discusses the particular

method of Thompson sampling. Section 4 discusses some of the practical aspects of running a

multi-armed bandit experiment in various contexts. Section 5 concludes.

2 Multi-armed bandit experiments

A multi-armed bandit is a sequential experiment where the goal is to produce the largest reward.

In the typical setup there are K actions or “arms.” Arm a is associated with an unknown quantity

va giving the “value” of that arm. The goal is to choose the arm providing the greatest value,

and to accumulate the greatest total reward in doing so. The name “multi-armed bandit” is an

allusion to a row of slot machines (colloquially known as “one armed bandits”) with different reward

probabilities. The job of the experimenter is to choose the slot machine with the highest probability

of a reward.

A more formal description assumes that rewards come from a probability distribution fa(y|θ),
where a indexes the action taken (or arm played), y is the observed reward, and θ is a set of

unknown parameters to be learned through experimentation. The value va(θ) is a known function

of the unknown θ, so if θ were observed the optimal arm would be known.

Consider a few examples for concreteness.

1. In the slot machine problem (the “binomial bandit”) we have θ = (θ1, . . . , θK), a vector of

success probabilities for K independent binomial models, with va(θ) = θa.

2. In a two-factor experiment for maximizing conversion rates on a web site, suppose the factors

are button color (red or blue) and button position (left or right). The experimental configu-

ration can be expressed in terms of two dummy variables Xc (for button color) and Xp (for

position). Then θ might be the set of logistic regression coefficients in the model

logit Pr(conversion) = θ0 + θ1Xc + θ2Xp + θ3XcXp. (1)
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The action a is isomorphic to the vector of design variables xa = (1, Xc, Xp, XcXp), with

va(θ) = logit−1(θTxa).

3. As a final example, one could model “restless bandits” (Whittle, 1988) by assuming that some

or all the coefficients in equation (1) were indexed by time in a Gaussian process, such as

θt+1 = N (θt,Σt) . (2)

There are many obvious generalizations, such as controlling for background variation (i.e. the

“blocking factors” in a traditional experiment) by including them as covariates in equations (1)

or (2), combining information from similar experiments using hierarchical models, or replacing

binary rewards with small counts, continuous quantities, or durations.

The multi-armed bandit problem is clearly driven by parameter uncertainty. If θ were known

then va(θ) would be known as well, and the optimal action would be clear. It is tempting to

find an “optimal” point estimate θ̂ and take the corresponding implied action â = arg maxa va(θ̂).

This is known as the “greedy strategy,” which has been well documented to underperform (Sutton

and Barto, 1998). The problem with the greedy strategy is that estimation error in θ̂ can lead

to an incorrect choice of â. Always acting according to â limits opportunities to learn that other

arms are superior. To beat the greedy strategy, one must sometimes take different actions than

those implied by θ̂. That is, one must experiment with some fraction of observations. The tension

between following the (apparently) optimal θ̂, and experimenting in case θ̂ is wrong is known as

the “explore/exploit trade off.” It is the defining characteristic of the multi-armed bandit problem.

Bandits have a long and colorful history. Whittle (1979) famously quipped that

... [the bandit problem] was formulated during the [second world] war, and efforts to

solve it so sapped the energies and minds of Allied analysts that the suggestion was made

that the problem be dropped over Germany, as the ultimate instrument of intellectual

sabotage.

Many authors attribute the problem to Robbins (1952), but it dates back at least to Thompson

(1933). For very simple reward distributions such as the binomial, Gittins (1979) developed an

“index policy” that produces an optimal solution under geometric discounting of future rewards.

The Gittins index remains the method of choice for some authors today (e.g. Hauser et al., 2009).

Obtaining optimal strategies for more complex reward distributions such as (1) and (2) is suffi-

ciently difficult that heuristics are typically used in practice. Sutton and Barto (1998) describe

several popular heuristics such as ε-greedy, ε-decreasing, and softmax methods. All of these require

arbitrary tuning parameters that can lead to inefficiencies. Auer et al. (2002) developed a popular

heuristic in which one selects the arm with the largest upper confidence bound (UCB) of va(θ).

For independent rewards with no shared parameters, the UCB algorithm was shown to satisfy the
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optimal rate of exploration discovered by Lai and Robbins (1985). Agarwal et al. (2009) used UCB

to optimize articles shown on the main Yahoo! web page. More recently, attention has been given to

a technique known as Thompson sampling. Chapelle and Li (2011) produced simulations showing

that Thompson sampling had superior regret performance relative to UCB. See Scott (2010) for

comparisons to older heuristics. Thompson sampling is the method used in the remainder of this

article.

3 Thompson sampling

Thompson sampling (Thompson, 1933) is a heuristic for managing the explore/exploit trade-off in

a multi-armed bandit problem. Let yt denote the set of data observed up to time t, and define

wat = Pr(a is optimal|yt)

=

∫
I(a = arg max va(θ))p(θ|yt) dθ.

(3)

The Thompson heuristic assigns the observation at time t+ 1 to arm a with probability wat. One

can easily compute wat from a Monte Carlo sample θ(1), . . . , θ(G) simulated from p(θ|yt) using

wat ≈
1

G

G∑
g=1

I(a = arg max va(θ
(g))). (4)

Notice that the algorithm where one first computes wat and then generates from the discrete

distribution w1t, . . . , wKt is equivalent to selecting a single θt ∼ p(θ|yt) and selecting the a that

maximizes va(θt). Thus Thompson sampling can be implemented using a single draw from p(θ|y),

although computing wat explicitly yields other useful statistics such as those described in Section 3.1.

The Thompson heuristic strikes an attractive balance between simplicity, generality, and per-

formance. Perhaps most importantly, it is easy to understand. If arm a has a 23% chance of being

the best arm then it has a 23% chance of attracting the next observation. This statement obscures

technical details about how the 23% is to be calculated, or why the two probabilities should match,

but it contains an element of “obviousness” that many people find easy to accept. If desired, tuning

parameters can be introduced into Thompson sampling. For example one could assign observations

with probability proportional to wγat. Setting γ < 1 makes the bandit less aggressive, increasing

exploration. Setting γ > 1 make the bandit more aggressive. Of course, exploration can also be

encouraged by introducing a more flexible reward distribution, for example replacing the binomial

with the beta-binomial. Section 4 discusses reward distributions that can be used for controlling

exploration, which can be more effective than tuning parameters. Modifying the reward distribu-

tion to slow convergence highlights a second feature of Thompson sampling, which is that it can

be applied generally. The only requirement is the ability to simulate θ from p(θ|yt), which can be
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done using standard Bayesian methods for a very wide class of reward distributions.

Thompson sampling handles exploration gracefully. Let a∗t = arg maxawat denote the arm with

the highest optimality probability given data to time t. The fraction of data devoted to exploration

at time t+1 is 1−wa∗t t, which gradually diminishes as the experiment evolves. Thompson sampling

not only manages the overall fraction of exploration, it manages exploration at the level of individual

arms. Clearly inferior arms are explored less frequently than arms which might be optimal, which

has two beneficial implications. First, it improves the economic performance of the experiment and

offers customers who would have been assigned to inferior arms a better experience. Second, it

produces greater sample sizes among arms near the top of the value scale, which helps distinguish

the best arms from the merely good ones. Thompson sampling tends to shorten experiments while

simultaneously making them less expensive to run for longer durations.

The randomization in Thompson sampling is an often overlooked advantage. In practice, online

experiments can involve many (hundreds or thousands) of visits to a web site before updating can

take place. It is generally preferable to update as soon as possible, but updates may be delayed

for technical reasons. For example, the system that logs the results of site visits might be different

from the system that determines which version of the site should be seen. It can take some time

(several minutes, hours, or perhaps a day) to collect logs from one system for processing in another,

and during that time a high-traffic site might attract many visitors. Thompson sampling randomly

spreads observations across arms in proportion to wat while waiting for updates. Non-randomized

algorithms pick a single arm, making the same “bet” for each experimental unit, which substantially

increases the variance of the rewards. (Rewards are great if you bet on the right arm, and terrible

if you bet on the wrong one.) Randomization also offers a source of pure variation that can help

ensure causal validity.

Although Thompson sampling does not explicitly optimize a specific criterion, there are mathe-

matical and empirical results showing that it tends to beat other heuristics. Chapelle and Li (2011)

produced a highly cited simulation study showing that Thompson sampling outperformed UCB in

the case of the binomial bandit. May et al. (2012) showed that Thompson sampling is a consistent

estimator of the optimal arm, and over the life of the experiment “almost all” (in a probabilistic

sense) of the time is spent on the optimal arm. Kaufmann et al. (2012) showed that Thompson

sampling for the binomial bandit satisfies the Lai and Robbins (1985) optimal bound. Bubeck and

Liu (2013a,b) have established regret bounds for Thompson sampling in the case of independent

arms with rewards in [0, 1].

3.1 Using regret to end experiments

The methods used to compute wat for Thompson sampling can also produce a reasonable method

of deciding when experiments should end. Let θ0 denote the true value of θ and let a∗ =

arg maxa va(θ0) denote the arm that is truly optimal. The regret from ending the experiment
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at time t is va∗(θ0)− va∗t (θ0), which is the value difference between the truly optimal arm and the

arm that is apparently optimal at time t. In practice regret is unobservable, but we can compute

its posterior distribution. Let v∗(θ
(g)) = maxa va(θ

(g)) where θ(g) is a draw from p(θ|yt). Then

r(g) = v∗(θ
(g))− va∗t (θ(g))

is a draw from posterior distribution of regret. Note the distinction: v∗(θ
(g)) is the maximum value

available within Monte Carlo draw g, while va∗t (θ(g)) is the value (again in draw g) for the arm

deemed best across all Monte Carlo draws. Their difference is often 0, but is sometimes positive.

For communication purposes, it is helpful that the units of regret are the units of value (e.g.

dollars, clicks, or conversions). The distribution of regret can be summarized by an upper quantile,

such as the 95th percentile, to give the “potential value remaining” (PVR) in the experiment.

PVR is the value per play that might be lost if the experiment ended at time t. Because businesses

experiment in the hope of finding an arm that provides greater value, a sensible criterion for ending

the experiment is when PVR falls below a threshold of practical significance.

In addition to dealing directly with the question at hand, the PVR statistic handles ties grace-

fully. If there are many arms in the experiment there can be several that give essentially equal

performance. This could easily happen in a multi-factor experiment where one factor was irrelevant.

Experiments ended by the PVR criterion naturally produce two sets of arms: one that is clearly

inferior, and a second containing arms that are nearly equivalent to one another. Any arm from

the set of potential winners can be chosen going forward. If desired, one may use wat as a guide

for choosing among the potential winners, but subjective preference (e.g. for an existing version)

may be used as well.

Note that regret can also be defined as a percentage change from the current apparently optimal

arm, so that draws from the posterior are given by

ρ(g) =
v∗(θ

(g))− va∗t (θ(g))

va∗t (θ(g))
, (5)

which is unit-free. If the experimenter is unwilling to specify a definition of “practical significance,”

then an experimental framework can use an arbitrary operating definition such as ρ < .01.

4 Practical applications of Thompson sampling

This Section discusses some of the practicalities associated with implementing Thompson sampling

in applied problems. It begins with a simulation study showing the gains from Thompson sampling

relative to traditional experiments, before turning to a set of useful generalizations.
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Figure 1: (a) Histogram of the number of observations required in 100 runs of the binomial bandit described
in Section 4.1. (b) The number of conversions lost during the experiment period. The vertical lines show
the number of lost conversions under the traditional experiment with 95% (solid), 50% (dashed), and 84%
(dotted) power.

4.1 A/B Testing

Among internet companies, the term “A/B testing” describes an experiment comparing a list of

alternatives along a single dimension, which statisticians would call the “one way layout”. An A/B

test often involves only two alternatives, but the term is sometimes sloppily applied to experiments

with multiple alternatives. A canonical example of A/B testing is website optimization, where

multiple versions of a web site are constructed, traffic is randomly assigned to the different versions,

and counts of conversions are monitored to determine which version of the site performs the best.

A “conversion” is an action designated by the site owner as defining a successful visit, such as

making a purchase, visiting a particular section of the site, or signing up for a newsletter.

Consider two versions of a web site that produce conversions according to independent binomial

distributions. Version A produces a conversion 0.1% of the time (p = .001) and version B produces

conversions 0.11% of the time (p = .0011). To detect this difference using a traditional experiment

with 95% power under a one-sided alternative we would need roughly 4.5 million observations

(2,270,268 in each arm). If we decreased the power to .5 we would need slightly more than 1.1 million

(567,568 in each arm). The regret for each observation assigned to version A is .0011−.001 = .0001,

so for every 10,000 observations assigned to version A we lose one conversion.

Figure 1 shows the results from simulating the multi-armed bandit process 100 times under
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the conditions described above. Each simulation assumes the site receives 100 visits per day. The

true success probabilities are held constant across all simulation runs. Observations are assigned

to arms according to the Thompson procedure with updates occurring once per day (so there are

100 observations per update). Each simulated experiment was ended when the potential value

remaining statistic in equation (5) fell below ρ = 1%. The simulation found the correct version

in 84 out of 100 runs. Figure 1(a) shows that the number of observations required to end the

experiment is highly variable, but substantially less than the numbers obtained from the power

calculations for the traditional experiments. Figure 1(b) compares the number of lost conversions,

relative to the optimal policy of always showing version B, for the bandit and for the traditional

experiments with power .5, .84 (the realized power of this simulation), and .95. Roughly 2/3 of the

simulation runs resulted in single digits of lost conversions compared to hundreds of lost conversions

for the traditional experiment with comparable power. Given that this artificial “site” generates

about 1 conversion every 10 days, 100 conversions is a staggering difference. The savings are partly

due to shorter experiment times, and partly due to the experiments being less expensive while

they are run. Both factors are important. Under the 95% power calculation the experiment would

take roughly 125 “years,” while 29 of 100 bandit simulations finished within one “year”. Both are

impractically long, but the bandit offers at least some chance of completing the experiment.

Detecting small differences is a hard problem, made harder when the baseline probabilities are

small as well. Scott (2012) gives similar results for an easier setting with true success rates of

4% and 5%, and for settings with multiple arms. When there is a difference to be found, the

multi-armed bandit approach is dramatically more efficient at finding the best arm than traditional

statistical experiments, and its advantage increases as the number of arms grows (Berry, 2011).

4.2 Contextual information

The multi-armed bandit can be sensitive to the assumed model for the rewards distribution. The

binomial model assumes all observations are independent with the same success probability. In

practice this assumption can fail if different arms are exposed to sub-populations with different

performance characteristics at different times. For companies with an international web presence

this can appear as a temporal effect as Asian, European, and American markets become active

during different times of the day. It can also happen that people browse in different modes on

different days of the week, for example by researching an expensive purchase during lunch hours at

work but buying on the weekends.

Now suppose an experiment has two arms, A and B. Arm A is slightly better during the week

when people browse but tend not to buy. Arm B is much better during the weekend, when people

buy. With enough traffic it is possible for the binomial model to conclude that A is the superior

arm prior to seeing any weekend traffic. This is a possibility regardless of whether the experiment

is run as a bandit or as a traditional experiment, but the bandit experiment is more susceptible
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because it will be run for a shorter period of time.

There are two methods that can be used to guard against the possibility of being misled by

distinct sub-populations. If the specific sub-populations are known in advance, or if a proxy for

them such as the geographically induced temporal patterns is known, then the binomial model can

be modified to a logistic regression

logit(pa|x) = β0a + βTx (6)

where x is a set of variables describing the context of the observation, pa|x is the success probability

if arm a is played during context x, β0a is an arm specific coefficient (with one arm’s coefficient set

to zero), and β is a set of coefficients for the contextual data to be learned as part of the model.

The value function may be taken to be va(θ) = logit−1(β0a).

If the important contexts are unknown then one may choose to assume that contexts occur as

random draws from a distribution of contexts, such as in the beta-binomial hierarchical model,

θat ∼ Be(αa, βa)

yt|a ∼ Bin(θat).
(7)

The model parameters here are θ = {αa, βa : a = 1, 2, . . . ,K}, with value function va(θ) = αa/βa.

Model (6) will give less “credit” to an arm that produces a conversion inside a context where

conversions are plentiful, and more in contexts where conversions are rare. Model (7) will continue

exploring for several update periods, even if arm a is dominant in the early periods, to guard against

the possibility that the advantage in the early periods was simply the result of random variation

at the θat level.

4.3 Personalization

The models in equations (6) and (7) purposefully omit interactions between contextual variables

and experimental factors because they are intended for situations where the experimental goal

is to find a global optimum. Interactions between contextual and design variables allow for the

possibility that the optimal arm may differ by context. For example, one version of a page may

perform better in Asia while another performs better in Europe. Depending on the granularity

of the contextual data available this approach may be used to personalize results down to the

individual level. Similar approaches, though not necessarily using Thompson sampling, are being

used in the context of personalized medicine (Chakraborty and Moodie, 2013).

4.4 Multivariate testing

Internet companies use the term “multivariate testing” to describe an experiment with more than

one experimental factor. Statisticians would call this the “multi-way layout” or simply a “designed
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experiment.” Scott (2010) showed how a multi-factor experiment can be handled using Thompson

sampling with a probit regression model analogous to equation (1).

Fractional factorial designs (e.g. Box, Hunter, and Hunter, 2005) are a fundamental tool for

handling traditional multi-factor experiments. Fractional factorial designs work by finding a mini-

mal set of design points (i.e. rows in a design matrix) that allow a pre-specified set of main effects

and interactions to be estimated in a linear regression. The equivalent for a multi-armed bandit

experiment is to specify a set of main effects and interactions to be estimated as part of the reward

distribution. Spike and slab priors can be used to select which interactions to include (Box and

Meyer, 1993).

In a manufacturing experiment, each distinct configuration of experimental units involves chang-

ing the manufacturing process, which is potentially expensive. Thus, having a design matrix with

a minimal number of unique rows is an important aspect of traditional fractional factorial experi-

ments. In an online service experiment different configurations can be generated programmatically,

so it is theoretically possible to randomize over all potential combinations of experimental fac-

tors. The restricted model helps the bandit because there are fewer parameters to learn, but the

constraint of minimizing the number of design points is no longer necessary.

4.5 Large numbers of arms

Many online experiments involve online catalogs that are too large to implement Thompson sam-

pling as described above. For example, when showing ads for commodity consumer electronics

products (e.g. “digital camera”) the number of potential products that could be shown is effec-

tively infinite. With infinitely many arms, attempting to find the best arm is hopeless. Instead,

the decision problem becomes whether or not you can improve on the arms that have already been

seen. This problem has been studied by Berry et al. (1997), among others.

One approach to the problem is as follows. Consider the infinite binomial bandit problem, and

assume that the arm-specific success probabilities independently follow θa ∼ Be(α, β). Suppose

Kt arms have been observed at time t. One can proceed by imagining a Kt + 1 armed bandit

problem, where success probabilities for Kt of the arms are determined as in Section 4.1, but

success probabilities for the “other arm” are sampled from the prior. If the “other arm” is selected

by the Thompson heuristic then sample an as-yet unseen arm from the catalog.

A similar hierarchical modeling solution can be applied to context-dependent or multivariate

problems by assuming the coefficients of the design variables with many levels are drawn from a

common distribution, such as a Gaussian or t. The amount of exploration can be increased by

increasing the number of draws from the prior at each stage.
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5 Conclusion

Multi-armed bandit experiments can be a substantially more efficient optimization method than

traditional statistical experiments. The Thompson sampling heuristic for implementing multi-

armed bandit experiments is simple enough to allow flexible reward distributions that can handle

the kinds of issues that arise in real applications.

Business and science have different needs. Traditional experiments were created to address un-

certainty in scientific problems, which is a naturally conservative enterprise. Business decisions tend

to be more tactical than scientific ones, and there is a greater cost to inaction. The two business

sectors that dominated the 20th century, agriculture and manufacturing, happen to have economic

structures that align with scientific conservatism, which partly explains why they succeeded so well

using the tools of science. In those sectors a type I error is costly because it means a potentially ex-

pensive change to a production environment with no accompanying benefit. In the service economy

type I errors are nearly costless, so artificially elevating them over expensive type II errors makes

very little sense. When paired with the fact that the proportion of type I errors is bounded by

the proportion of true null hypotheses, the significance vs. power framework underlying traditional

statistical experiments seems a poor fit to the modern service economy. By explicitly optimizing

value, multi-armed bandits match the economics of the service industry much more closely than

traditional experiments, and should be viewed as the preferred experimental framework. This is

not to say that there is no room for traditional experiments, but their use should be limited to high

level strategic decisions where type I errors are truly important.
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