
FINE CONTEXT, LOW-RANK, SOFTPLUS DEEP NEURAL NETWORKS FOR
MOBILE SPEECH RECOGNITION

Andrew Senior Xin Lei

Google Inc., USA
{andrewsenior,xinlei}@google.com

ABSTRACT

We investigate the use of large state inventories and the soft-
plus nonlinearity for on-device neural network based mobile
speech recognition. Large state inventories are achieved by
less aggressive context-dependent state tying, and made pos-
sible by using a bottleneck layer to contain the number of
parameters. We investigate alternative approaches to the bot-
tleneck layer, demonstrate the superiority of the softplus non-
linearity and investigate alternatives for the final stages of the
training algorithm. Overall we reduce the word error rate of
the system by 9% relative. The techniques are also shown to
work well for large acoustic models for cloud-based speech
recognition.

Index Terms— Deep neural networks, hybrid neural net-
work speech recognition, Voice Search, mobile speech recog-
nition, embedded recognizer, low-rank approximation, singu-
lar value decomposition, softplus nonlinearity.

1. INTRODUCTION

In recent years speech recognition has become an important
modality for interacting with mobile devices. Speech is used
for general text entry but is particularly useful for interact-
ing with certain applications, such as search, maps search or
translation. While the majority of mobile speech recognition
systems operate “in the cloud” by sending the speech signal
over a network to a server which returns a transcription, there
are several scenarios where local speech recognition is use-
ful even when there is no network connection, for instance
contact dialing, dictating text messages or offline documents
and command-and-control of the device. For this reason we
are interested in building a high accuracy real-time speech
recognizer that can run on a mobile device. Previously we
have described [1] an embedded speech recognizer that uses
deep neural networks (DNNs) to transcribe speech on a mo-
bile phone.

In this paper we describe an investigation into improv-
ing the performance of this DNN-based speech recognizer
by improving the acoustic model. In particular, in Section 3,
we focus on increasing the state inventory of the model and
compensating for the increase in the number of parameters

by using a low-rank approximation to the weight matrices.
We have shown that this technique is effective in large-scale
acoustic models for transcribing YouTube audio [2]. In Sec-
tion 3.3 we demonstrate that a linear bottleneck layer outper-
forms an equivalent nonlinear bottleneck layer, and in Sec-
tion 3.2 discuss practical implementation of quantized ver-
sions of these networks.

In Section 4 we apply the softplus nonlinearity to speech
recognition for the first time and find that it gives better Word
Error Rates (WERs) and faster convergence than Rectified
Linear Units (ReLU). Finally Section 5 explores variations
of fine tuning to see if the final stages of training can be im-
proved.

2. BACKGROUND

In a previous paper [1] we described how a Gaussian mixture
model (GMM) based speech recognizer designed to run on
a mobile phone was replaced with a DNN-based recognizer
that gave a 27.5% lower WER but still ran in real-time on the
target device and required less memory. The deep neural net-
work model used in that work had 2.7M parameters, consist-
ing of six sigmoid hidden layers with 512 hidden units each
and softmax outputs for the 2000 context-dependent state pos-
teriors. The network processed a context window of 16 (10
past and 5 future) frames of speech, each represented with
40 dimensional log mel filterbank energies taken from 25ms
windows every 10ms. In this work we start with the same net-
work configuration but modify it by changing the nonlinearity
and the output layer. Following the success of ReLUs [3] for
speech, we build our baseline models with this nonlinearity.

The systems in the current and previous paper are trained
on a US English data set of 3M anonymized utterances
(1,750 hours or about 1 billion frames) collected from live
voice search and dictation traffic. The utterances are hand-
transcribed and force-aligned with a 70M parameter model
with 14,000 context-dependent (CD) states. Training is done
on a GPU using stochastic gradient descent with 200-frame
minibatches. WERs are evaluated on a test set containing
23,000 similar utterances. The language model used is a 23
million n-gram model trained with up to 5-grams, and a vo-
cabulary of 2.6 million words.

Output States Word error rate # of Parameters
2000 15.1 2 .7M
4000 14.2 3 .7M
8000 13.5 5 .7M

14000 13.4 9 .0M

Table 1: Word error rates (for ReLU networks) decrease as
the number of output states is increased, but the number of
parameters increases.

For this work we use the number of parameters as a proxy
for the final speed of the system, though we do not need to
compute all of the final outputs for every frame, since some
are not needed in the search because of beam constraints.

3. INCREASED STATE INVENTORY

The previously described model used 2000 output states as a
trade-off between the increased accuracy of a large inventory
and the slower inference speed caused by a larger number of
parameters. The 2000 state inventory was created by conven-
tional decision-tree based clustering of triphones in a GMM
system. The decision trees were pruned at different levels
to generate a nested series of state inventories with 14,000,
8,000, 4,000, 2,000 and 1,000 states, with a simple many:one
mapping from the labels of the 14000 set to the smaller inven-
tories.

As shown in Table 1, increasing the state inventory leads
to a decrease in word error rates, but with a corresponding
increase in the number of parameters.

3.1. Bottleneck layer

Sainath et al. [4] showed that, just as a matrix can be ap-
proximated as a product of two matrices with lower rank, a
large output layer can be approximated by a linear layer (a
layer with no nonlinearity) followed by a softmax layer, the
product of whose weight matrices approximates the original
weight matrix. If the number of linear units is small enough
(termed a bottleneck), this low-rank substitution can bring
down the total number of parameters, at the cost of limiting
the modelling power of the layer. However, if the weights
of the different outputs are highly correlated, as these authors
suggest they are, since many of them are modelling slightly
different context-dependent variations of the same context-
independent state, then the loss in modelling power may have
no impact on, or even (by regularization) improve WER. Re-
ducing the number of parameters reduces the storage size of
the networks and their computation time in training and infer-
ence. The technique can be applied to other layers, but there
is less advantage in layers where the numbers of inputs and
outputs are similar, and where there is less correlation in the
weights. Sainath et al. [4] showed no advantage from apply-
ing the technique in other layers.

Output States Low-Rank approximation Full
128 192 256 320 Rank

2000 15.1
2 .7M

4000 14.6 14.3 14.2 14.2 14.2
2 .2M 2 .5M 2 .8M 3 .1M 3 .7M

8000 14.1 13.8 13.7 13.7 13.5
2 .7M 3 .3M 3 .8M 4 .4M 5 .7M

14000 13.7 13.6 13.5 13.5 13.4
3 .5M 4 .5M 5 .4M 6 .4M 9 .0M

Table 2: Word error rates (upper) for ReLU networks with
linear bottleneck layers decrease as the size of the linear layer
is increased, increasing the number of parameters (lower).

Following this work, we consider a low-rank approxima-
tion to the final layer to reduce the number of parameters.
We train models with an additional hidden layer with fewer
outputs than the other hidden layers and with no nonlinear-
ity. This layer’s outputs are input to the final softmax layer.
We initialize these layers with the same low variance random
initialization as ReLU, and use the same low learning rate
(0.005) as has been used for ReLU, with exponential decay
(by a factor of 10 every 6 billion frames [5]). Word error rates
are shown in Table 2, and are plotted against number of pa-
rameters in Figure 1. The baseline model has 2000 output
states, with a WER of 15.1% and 2.67M parameters. The re-
sults for the 8000 output, rank 128 model (2.74M parameters)
show that we can achieve a 1% absolute word error rate im-
provement over the baseline by a modest (2.7%) increase in
the number of parameters.

 13.5

 14

 14.5

 15

 2 3 4 5 6 7

W
E

R
 (

%
)

Millions of parameters

20
00

40
00

/1
28

40
00

/1
92

40
00

/2
56

40
00

/3
20

40
00

80
00

/1
28

80
00

/1
92

80
00

/2
56

80
00

/3
20

80
00

14
24

7/
12

8

14
24

7/
19

2

14
24

7/
25

6

14
24

7/
32

0

Fig. 1: Graph of Word Error Rate against number of parame-
ters for the networks of Table 2 labeled with number of out-
puts / bottleneck size.

3.2. Quantized linear networks

As previously described [6], evaluating networks in real
time is computationally challenging and we use a number
of ways to maximize the size of network that we can eval-
uate in a given computation budget. One of the most sig-
nificant of these is 8-bit quantization of weights and activa-
tions which allows for 16-way-parallel execution of multi-
plications. Switching to ReLUs presents a challenge for the
quantization of the activations, because the ReLU outputs are
not bounded above. However, we find that activations rarely
if ever exceed 16, so we can quantize activations such that the
ReLU saturates above 16. Since the ReLU layers are linear
when non-zero, we can in fact scale the first layer’s weights
and biases down by a factor of 16 so that activations of all
subsequent layers are scaled down by a factor of 16. The first
non-ReLU layer (in our case the softmax) has its weights (but
not biases) scaled up by a factor 16 to compensate.

The addition of a linear layer complicates things further,
since the activations are not bounded above or below. How-
ever, we find in practice that activations fall within [−8, 8] so
by adding 8 to all the linear layer’s biases, and compensating
by changing the biases of the softmax layer, we can operate
with always-positive activations, and in fact this quantized
shifted linear layer can actually be implemented as a ReLU
layer.

3.3. Nonlinear, low-rank bottlenecks

The success of deep learning, the addition of a linear low-rank
bottleneck layer, and our ReLU replacement in the quantized
case, raise the question of whether we could achieve greater
modelling power by using a nonlinearity in the additional
layer. We trained more networks from random initialization
with a ReLU nonlinearity on the bottleneck layer units. The
results in Table 3 show that the linear bottleneck layer tends
to perform better than the ReLU bottleneck.

3.4. Low-rank decomposition of trained networks

Given an already-trained softmax layer, we can make a low-
rank factorization of its weight matrix W , and replace it with
a linear layer with weights W1 followed by a softmax layer
with weights W2 where W1 ∗ W2 ≈ W . A common way
to compute the factorization is to compute the singular value
decomposition (SVD) or W where W = USV T with S be-
ing a diagonal matrix of k singular values. By choosing to
truncate the number of preserved singular values to the de-
sired rank R (and trimming U and V to have R columns)
then we have a low-rank approximation to W , in particular
we choose W1 = UR

√
SR and W2 =

√
SRV

T
R . Xue, Li and

Gong [7] have shown that performing such an approximation
hurts the accuracy of a neural network temporarily, but fur-
ther fine-tuning by continuing training of the new network can
recover some of the lost accuracy and, in their experiments,

outperform the bottleneck network of the same shape and size
trained from random initialization.

We have applied this technique on the output layers with
a variety of bottleneck ranks, as shown in Table 4. We find
that for our task, this technique always leads to an equal or
higher error rate than the method of Section 3.1. Since it also
takes longer to train (both in number of epochs and compu-
tation required for the earlier epochs) and adds an additional
hyperparameter (when to make the low-rank approximation)
compared to the technique of Sainath et al. [4], we prefer the
latter.

4. THE SOFTPLUS NONLINEARITY

Having validated the approaches using ReLU units, we car-
ried out the same experiments using the softplus nonlinearity

f(x) = log(1 + exp(x)) (1)

described by Glorot et al. [8], which can be considered as a
smooth approximation to the ReLU function that is always
differentiable and has a non-zero gradient below 0. Previ-
ous work [9] showed no gain from using a different non-
saturating approximation to the ReLU which they termed the
leaky ReLU: f(x) = x(x > 0); f(x) = 0.01x(x ≤ 0). The
main reason for using the softplus is that it propagates gradi-
ents throughout its domain. This can make networks easier
to train since ReLUs propagate no gradient in the saturated
x < 0 domain, whence they are not able to recover.

Table 4 shows that the softplus nonlinearity always gives a
WER equal to or lower than that when using ReLU, and again
we find that training with a bottleneck from initialization al-
ways performs at least as well as when making a low-rank ap-
proximation during training. We also find again (not shown)
that putting a nonlinearity in the bottleneck layer always gives
the same or higher WER. Further we find that softplus con-
verges faster than ReLU, reaching the lowest WER after about
12B frames of training, compared to about 16B for the ReLU,
presumably because the ReLU’s gradients are frequently zero,
making training less effective.

The softplus nonlinearity and large state inventory with a
linear bottleneck were also found to be effective for a large
acoustic model as shown in Table 5.

Nonlinearity Bottleneck Outputs Params. WER
Rectified Linear None 14,000 85.0 10.1
Rectified Linear 1024 33,000 84.8 10.0
Softplus 1024 33,000 84.8 9.8

Table 5: WERs for three large (85M parameter) networks on
the same test set as above. These three networks have 8 layers
of 2560 hidden units and a context window of 20 past and 5
future stacked frames.

Output States Low-Rank approximation (Linear/ReLU) Full
128 192 256 320 Rank

2000 15.1
4000 14.6 / 14.7 14.3 / 14.5 14.2 / 14.3 14.2 / 14.2
8000 14.1 / 14.1 13.8 / 14.0 13.7 / 13.8 13.7 / 14.0 13.5

14000 13.7 / 13.9 13.6 / 13.6 13.5 / 13.5 13.5 /13.4 13.4

Table 3: Making the linear bottleneck layer (left) a ReLU layer (right) hurts performance for the lower dimension bottlenecks.

Outputs Nonlinearity Bottleneck Bottleneck size Full
Creation 128 192 256 320 Rank

8k ReLU From-scratch 14.1 13.8 13.7 13.7 13.5
8k Sigmoid From-scratch 14.1 13.8 13.6 13.6 13.6
8k Softplus From-scratch 13.8 13.6 13.5 13.5 13.5
8k ReLU 14B frames 14.2 14.0 13.8
8k Softplus 7B frames 13.8

14k ReLU From-scratch 13.7 13.6 13.5 13.4 13.4
14k Softplus From-scratch 13.6 13.4 13.4 13.3 13.2

Table 4: WERs for 8k outputs when making a low-rank approximation (retaining a variable number of singular values) part
way through training at full rank compared to training the same sized bottleneck networks from scratch. The table shows both
the initial ReLU nonlinearity and the softplus nonlinearity of Section 4 for networks with 8k and 14k outputs.

Techniques WER Frame accuracy
Baseline 13.8 49.5
Squared Error 14.1 49.7
Thresholding 14.2 49.0

Table 6: Percentage WERs and frame accuracies (on a
200,000 frame held-out set) when applying various fine-
tuning strategies to the baseline softplus 128-rank bottleneck,
8k output network.

5. TRAINING REFINEMENTS

In the past it has been reported [1, 10] that thresholding small
weights to zero during training improves performance, as a
simple regularizer. We apply the same technique here to the
best softplus 8k, 128-rank network, choosing the threshold
(0.04) so that about 30% of the weights in most layers are set
to zero with a higher fraction of the input layer. The thresh-
olding is applied to every weight at every update after 10B
frames. We also follow Golik et al. [11] who demonstrated
better WERs when training softmax outputs to a squared er-
ror criterion after initial fine tuning with the standard cross-
entropy criterion.

Table 6 shows that neither of these refinements helps:
training towards the squared error criterion increases the
frame accuracy (0.2%), but also increases the WER by 0.3%.
For this model, thresholding the weights also hurts the WER,
and we suggest that this is because the low-rank layer has less
redundancy where even the small weights are critical.

6. CONCLUSIONS

We have shown that increasing the state inventory consis-
tently decreases the WER on our task. By using a bottleneck
layer we were able to keep the number of parameters almost
the same (2.6% increase) and still achieve a 1% absolute re-
duction in WER. We have demonstrated that the softplus non-
linearity is superior to ReLU, bringing a further reduction in
word error rate and faster training. These three techniques
together were able to bring the Word Error Rate for a 2.7M
parameter network down to 13.8%, a 9% reduction relative
to the initial network. Softplus has outperformed ReLU, both
for networks for mobile devices and for much larger networks
for cloud-based servers. We expect softplus to receive wide
application for speech recognition.

We found that using a nonlinearity in the bottleneck layer
increased the WER, and found no advantage to constructing
a low-rank approximation during training, relative to train-
ing with the corresponding bottleneck from the start. Using a
squared error objective increased the WER, as did the weight
thresholding which helped in our previous work.

7. REFERENCES

[1] X. Lei, A. Senior, A. Gruenstein, and J. Sorenson, “Ac-
curate and compact large vocabulary speech recognition
on mobile devices,” in Proc. Interspeech, 2013.

[2] H. Liao, E. McDermott, and A. Senior, “Large scale
deep neural network acoustic modeling with semi-

supervised training data for YouTube video transcrip-
tion,” in Proc. ASRU, 2013.

[3] M.D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang,
Q.V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean,
and G.E. Hinton, “On rectified linear units for speech
processing,” in ICASSP, 2013.

[4] T.N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy,
and B. Ramabhadran, “Low-rank matrix factorization
for deep neural network training with high-dimensional
output targets,” in Proc. ICASSP, 2013.

[5] A. Senior, G. Heigold, M. Ranzato, and K. Yang, “An
empirical study of learning rates in deep neural networks
for speech recognition,” in Proc. ICASSP, 2013.

[6] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving
the speed of neural networks on CPUs,” in Proc. Deep
Learning and Unsupervised Feature Learning NIPS
Workshop, 2011.

[7] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural
network acoustic models with singular value decompo-
sition,” in Proc. Interspeech, 2013.

[8] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rec-
tifier neural networks,” in Proc. AISTATS, 2011.

[9] A. Maas, A. Jannun, and A. Ng, “Rectifier nonlineari-
ties improve neural network acoustic models,” in ICML
Workshop on Deep Learning for Audio, Speech and Lan-
guage Processing, 2013.

[10] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting
sparseness in deep neural networks for large vocabulary
speech recognition,” in ICASSP, 2012.

[11] P. Golik, P. Doetsch, and H. Ney, “Cross-entropy vs.
squared error training: a theoretical and experimental
comparison,” in Proc. Interspeech, 2013.

