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Abstract

An IF-Condition Invariance Violation (ICIV) occurs when,
after a thread has computed the control expression of an IF
statement and while it is executing the THEN or ELSE clauses,
another thread updates variables in the IF’s control expression.
An ICIV can be easily detected, and is likely to be a sign of a
concurrency bug in the code. Typically, the ICIV is caused by a
data race, which we call IF-Condition Data Race (ICR).

In this paper, we analyze the data races reported in the bug
databases of popular software systems and show that ICRs occur
relatively often. Then, we present two techniques to handle ICRs
dynamically. They rely on simple code transformations and,
in one case, additional hardware help. One of them (SW-IF)
detects the races, while the other (HW-IF) detects and prevents
them. We evaluate SW-IF and HW-IF using a variety of applica-
tions. We show that these new techniques are effective at finding
new data race bugs and run with low overhead. Specifically,
HW-IF finds 5 new (unreported) race bugs and SW-IF finds 3
of them. In addition, 8-threaded executions of SPLASH-2 codes
show that, on average, SW-IF adds 2% execution overhead,
while HW-IF adds less than 1%.

1. Introduction

Parallel programming often leads to spending substantial time
trying to find and fix concurrency bugs. Examples of such bugs
include deadlocks, data races, atomicity violations, and ordering
violations. It is therefore important to find new approaches to
find these bugs in an effective and inexpensive manner.

One approach that has been used in the past is to look for
code patterns that both are easy to identify in the source code
and have a high probability of being involved in a bug. Such
patterns are often related to synchronization operations. For
example, grabbing two locks in different orders in different
locations in the code is often a sign of a deadlock bug [5]. As
another example, grabbing the same lock multiple times in the
same function is often a sign of an atomicity violation bug [24].

In this paper, we focus on IF statements and apply a similar
approach. IF statements are very easy to recognize in the source
code. In addition, we note that, after a thread has computed
the control expression of the IF statement and is executing the
THEN or ELSE clauses, no other thread should update the vari-
ables in the control expression. If this happens, it is likely to
be a bug. The rationale is that the statements in the THEN and
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ELSE clauses are control dependent on the IF control expres-
sion. Hence, the program is likely to malfunction if the value
of the expression does not hold until the completion of the IF
statement. In other words, it is likely that the programmer im-
plicitly assumed that the value of the control expression remains
invariant while the THEN and ELSE clauses execute. An update
to a location accessed in the control expression breaks such in-
variance. Consequently, we define an IF-Condition Invariance
Violation (ICIV) as “a pattern where, after a thread (77) has
computed the control expression of an IF statement and while
it is executing the THEN or ELSE clauses, another thread (72)
updates variables in the IF’s control expression”.

The typical way for thread 72 to update variables in the IF’s
control expression is through a data race on the variables —
although this is not the only way, as we will see. Consequently,
we define an IF-Condition Data Race (ICR) as “a data race
where a memory location accessed by a thread (77) in the control
expression of an IF statement is updated by a racy write from
T2 while T1 is executing the THEN or ELSE clauses”. Note
that 7/ may or may not access the location again in the THEN
or ELSE clauses. Figure 1 shows an example of ICR.

Tl T2
if (varl) {
varl =
access
to varl
(optional)

}

Figure 1: Example of an IF-condition data race (ICR), where time pro-
gresses from top to bottom. Note that T7 may or may not
access the racy location again in the THEN or ELSE clauses.

If one considers the IF’s control expression to be the "Check"
and the THEN or ELSE clauses to be the "Action" of the IF
statement, ICRs share a similar pattern with what are called
TOCTTOU (time of check to time of use) [36, 38] races. The
difference is that while TOCTTOU races apply to conditions
in the file system between competing processes, ICRs apply to
memory accesses of multi-threaded programs.

ICR detection can be done in an extremely efficient and
lightweight way. Since ICRs are associated with a particular
program structure, they are easy to spot and check with a fast
and specific test. There is no need for profiling or training runs
to find the targets for the checks — a simple compiler analysis of
the code structure is typically enough. In addition, these races
are likely to be especially harmful races because, intuitively,
they break the logic of the IF statement and are unlikely to be



placed by the programmer on purpose.

In this paper, we analyze the data races reported in the bug
databases of popular software systems and find that ICRs occur
relatively often. We present two techniques to handle them. One
technique is entirely software-based and detects ICRs during
the code testing phase (SW-IF). The other relies on additional
hardware and is able both to detect and prevent ICRs during
production runs (HW-IF).

Our techniques use the compiler to identify IF statements
with control expressions that contain accesses to shared loca-
tions. Then, in SW-IF, the compiler inserts code to check that
the value of the expression has not been changed by another
thread. The check is performed in the THEN and ELSE clauses,
either before the first local write to one of the locations in the
control expression or, if there is no such write, at the end of the
clauses. In HW-IF, the compiler inserts code to “watch” the
shared locations that participate in an IF’s control expression.
During the IF’s execution, the local processor can access the
watched locations, but any remote processor that attempts to
do it gets a failed access signal and has to retry. This simple
mechanism prevents other threads from causing ICRs.

We evaluate SW-IF and HW-IF using a variety of applications.
We show that these techniques are effective at finding new data
race bugs with very few (or harmless) false positives, and run
with low overhead. Specifically, HW-IF finds 5 new (unreported)
ICR bugs in the Cherokee web server and the Pbzip2 application;
SW-IF finds 3 of them. In addition, 8-threaded executions of the
SPLASH-2 applications show that, on average, SW-IF adds 2%
execution overhead, while HW-IF adds less than 1%.

The contributions of this paper are: (1) defining a new invari-
ant whose violation is likely to be a bug (IF-Condition Invariance
Violation or ICIV) and identifying the new, common type of
data race that violates it (IF-Condition Data Race or ICR); (2)
proposing two new techniques to detect and prevent ICR bugs;
and (3) showing that these techniques find several new bugs
with very few (or harmless) false positives, and little execution
overhead.

This paper is organized as follows: Section 2 provides a back-
ground; Section 3 examines ICIVs in detail and their relation
to races; Section 4 characterizes ICRs; Sections 5 and 6 present
SW-IF and HW-IF; Section 7 shows the potential of these tech-
niques; Section 8 evaluates them; Section 9 discusses related
work; and Section 10 concludes.

2. Background on Race Detection

Data races are one of the most common concurrency bugs. A
data race occurs when two threads access the same memory
location without any intervening synchronization and at least
one of the accesses is a write. Data race debugging can be
very hard and, therefore, the topic has received much attention
(e.g., [2,7,8,9,17, 20, 21, 23, 25, 26, 27, 31, 32, 34, 37, 43,
441). The work includes the proposal for software tools for
race detection (e.g., [2, 31, 32, 34, 43]) and special hardware
structures in the machine (e.g., [8, 17, 19, 26, 27, 44]).

In general, there are two approaches to find data races: lockset

algorithms, such as in Eraser [32], and happened-before algo-
rithms, such as in Thread Checker [2]. The lockset approach
is based on the idea that all accesses to a given variable should
be protected by a common set of locks. This approach tracks
the set of locks held while accessing each variable. It reports a
violation when the currently-held set of locks (lockset) at two
different accesses to the same variable have a null intersection.

The happened-before approach relies on identifying concur-
rent epochs. An epoch is a thread’s execution between two
consecutive synchronization operations. Each thread uses a
vector clock to order its epochs relative to the other threads’
epochs. In addition, each variable has a timestamp that records
at which epoch it was last accessed. When a thread accesses the
variable, it compares the variable’s timestamp to its own clock,
to determine the relationship between the two corresponding
epochs: either one happened before the other, or the two overlap.
In the latter case, we have a race.

Thanks to all this work, the state of the art in data race debug-
ging has made giant strides in the last decade. Unfortunately,
commercial race-detection tools (e.g., [2, 34]) still suffer from
several limitations. Two of the most vexing ones are the lack of
specificity and the high runtime overhead.

The first issue refers to the lack of focus on the key data races.
If we run a commercial race-detection tool on a large software
system, we typically obtain a long list of data races. While it
can be argued that all data races are undesirable, for productivity
reasons, it is imperative to focus the human’s attention on those
races that truly cause program malfunctioning — at least first.

The high runtime overhead — often 100x or more — burdens
the program developer, who needs to run the race detector mul-
tiple times during development. The overhead results from the
tool’s desire to provide a complete analysis. Recently, there have
been proposals for race detectors that use program sampling
(e.g., [4, 16]) or hardware support (e.g., [8, 19, 44]). These are
promising approaches, although they come with shortcomings
in race detection ability or hardware cost.

In this paper, we focus on a type of data race that is very easy
to find, since it can be detected by looking for IF statements
in the source code. In addition, it is likely to be a especially
harmful race since, intuitively, it breaks the logic of the IF
statement and is unlikely to be placed by the programmer on
purpose.

More discussion on related work is presented in Section 9.

3. IF-Condition Invariance Violations & Races

We define an IF-Condition Invariance Violation (ICIV) as “a
pattern where, after a thread (77) has computed the control
expression of an IF statement and while it is executing the
THEN or ELSE clauses, another thread (72) updates variables
in the IF’s control expression”. We consider this pattern a likely
bug deserving of programmer attention because the THEN and
ELSE clauses are control dependent on the IF control expression.
As aresult, it is likely that the programmer implicitly assumes
that the condition tested by the IF statement remains unchanged
while these clauses execute.



Application # Reported Bug ID # IF-Condition Language
H H Data Races Data Races ‘ H
Apache 26 25520,21287,45605, 49986-1, 49986-2, 49985, 47158, 48790, 1507, 20 C, C++, Java
31018, 45608, 44178, 254653, 49972, 40681, 40167, 728, 41659,
37458, 36594, 37529, 40170, 46211, 44402, 46215, 50731
MySQL 13 644,791, 2011, 3596, 12848, 52356, 19938, 24721, 48930, 8 C, C++
42101, 59464, 56324, 45058
Mozilla 11 622691, 341323, 13377, 225525, 342577, 52111, 224911, 325521, 8 C, C++
270689, 73761, 124923
Redhat (glibc) 2 2644,11449 0 C
Java SDK 1 6633229 1 Java
Pbzip2 1 Data race from [40] 1 C++
[[ Total I 54 [ — [ 38 [ — 1]

Table 1: Data races studied. They are mostly obtained from the bug databases of popular software systems.

In Section 1, we said that the obvious way to induce an ICIV
is through a data race, which we call IF-Condition Data Race
(ICR). However, there are also non-racy ICIVs. They appear
when the IF control expression is enclosed in a critical section,
T1 releases the lock after computing the expression and, before
T1 completes the THEN or ELSE clauses, another thread (72)
acquires the lock and updates variables in the expression.

Figure 2 shows two examples of non-racy ICIVs. In Fig-
ure 2(a), 72 changes the value inside a critical section while 7/
is still executing the IF statement; Figure 2(b) is like (a) except
that, in addition, 7/ reads the changed value. In neither case is
there a data race.

T1 T2 T1 T2
if (varl) { if (varl) {
unlock(L) unlock(L)
lock(L) lock(L)
varl = lvarl varl = lvarl
unlock(L) unlock(L)
lock(L)
= varl
unlock(L)
1 1
(@) (b)

Figure 2: Examples of non-racy ICIVs.

While these patterns are likely indications of bugs, in this pa-
per, we focus on racy ICIVs, namely ICRs. We experimentally
find and characterize ICRs.

ICIVs are not the same as what is conventionally referred to
as atomicity violations. Specifically, a single-variable atomicity
violation requires that, in between two accesses to the same
variable by a thread 7'/, a second thread 72 accesses the vari-
able. Many ICIVs are not single-variable atomicity violations
because, as shown in Figure 1, 71 may not access the variable
for the second time. Consider now multi-variable atomicity vio-
lations. For example, a two-variable atomicity violation requires
that T1 accesses two variables (say with rd x and rd y) and, logi-
cally in between, another thread accesses these variables. For
example, if 72 only executes wr x in between, this is not an
atomicity violation because wr x can be logically moved after
TI’s rd y. Instead, T2 has to execute wr x and wr y in between
for it to be a two-variable atomicity violation. Consequenty,
ICIVs are not necessarily multi-variable atomicity violations
either. Conversely, many atomicity violations are not ICIVs

because ICIVs require a particular pattern associated with an IF
statement.

4. An Analysis of IF-Condition Data Races

To get an idea of whether or not ICRs are common, we collected
and analyzed data race bugs. Specifically, we took the 9 data
races from Yu’s list [40], and also mined the bug report databases
of Apache, MySQL, Mozilla, the glibc library of Redhat, and
JAVA SDK. From the bug report databases, we did our best
effort to collect the bugs that met the following conditions: 1)
programmers used the words “race condition” in the description
of the bug and 2) it was relatively easy to pinpoint the race in
the source code according to the description. The resulting 54
data race bugs obtained are listed in Table 1.

From this list, we identify those that are IF-Condition Data
Races (ICRs). An ICR is “a data race that occurs when a memory
location accessed by a thread (7'7) in the control expression of
an IF statement is updated by a racy write from 72 while 71 is
executing the THEN or ELSE clauses”. Note that 7/ may or
may not access the location again in the THEN or ELSE clauses.
Figure 1 shows an example.

As shown in Table 1, we find that, of all these races, 38
(or 70%) are ICRs. This percentage should not be taken as
representing an average that is valid across a wide range of
applications — since we did not exhaustively analyze all the
data races in the databases. Instead, it is an indication that
ICR bugs are common and, therefore, deserve to be targeted by
(inexpensive) debugging techniques. In addition, 6 out of these
38 ICR bugs (or 16%) involve 2 racing variables. These bugs
are all double-checked lock (DCL) [33] races.

We now present two new techniques, SW-IF and HW-IF,
which are best efforts to detect and prevent ICRs. Strictly speak-
ing, SW-IF and HW-IF detect and prevent ICIVs but, in this
paper, we are interested in racy ICIVs — that is, ICRs. Both
SW-IF and HW-IF rely on a compiler pass that identifies IF state-
ments with control expressions that include shared variables.

5. SW-IF: Detecting IF-Condition Data Races

5.1. Main Idea

SW-IF attempts to find ICRs by inserting code at the end of
the THEN and ELSE clauses of the IF statement, that checks
whether the value of the control expression has changed. If
it has, it is a very good indication that another thread wrote



to the variables in the expression. Sometimes, the compiler is
forced to insert the check earlier, before the THEN or ELSE
ends, because local writes modify or can modify the value of the
control expression. We call the locations in the program where
the compiler inserts these checks Confirmation points.

More formally, for a given IF statement, call E the control ex-
pression, E(SL) the set of potentially-shared locations accessed
in E, and E(L) the set of all locations accessed in E. We only
analyze an IF statement if its E(SL) is not empty. In this case,
the compiler sequentially searches each of the THEN and ELSE
clauses for any statement that might potentially perform a write
to E(L). If it finds any, the Confirmation point is placed before
the first such write. If the compiler cannot find a candidate write,
the Confirmation point is placed at the end of the clause. There
is at most one Confirmation point in each of the THEN and
ELSE clauses. This is so to reduce overhead.

At a Confirmation point, the compiler inserts code that re-
computes E. If the logic value of E is different than the logic
value E had when it was first executed in the IF’s control expres-
sion, then a race bug is declared. Figure 3(a) shows the idea.
Note that, to reduce overhead, we do not insert synchronization
operations around the recomputation of E.

Like DataCollider [10], this approach is a best-effort one.
This scheme may miss an ICR because the Confirmation point
is placed earlier than at the end of the THEN or ELSE clause,
and the data race happens between the two points. It can also
miss the race because, although some variables in E changed,
expression E returns the same logic value. In the following, we
present the algorithm, and then discuss the limitations.

5.2. Algorithm

We use the Cetus source-to-source compiler [13] to analyze
and transform the code. The structure of our transformation
algorithm, called SW-IF, is shown in Figure 3(b). The algorithm
is performed in two steps: “Add Check” and “Add Delay”. “Add
Check” identifies the Confirmation points and inserts the checks.
This is the only step used if we want to run SW-IF with minimal
overhead. “Add Delay” is a pass that is useful if we want to
force different program interleavings and we can tolerate more
overhead.

5.2.1. Adding Checks. In the first step, the compiler needs
to identify all the IF statements that will be augmented with
Confirmation points. We call this set the Monitor set. Such a set
starts with all the IF statements that have control expressions that
potentially access shared locations. Cetus is able to tell when
accesses reference provably private locations. IF statements
where E contains only accesses to provably private locations are
not part of the Monitor set.

SW-IF removes from the Monitor set those IF statements
where E includes writes. SW-IF does not support writes because,
otherwise, when it recomputes E at a Confirmation point, it
would have side effects. The only exception to this rule is when
E only contains the ++ or - - operator, and Cetus can prove that
there is no aliasing. In this case, the IF statement is kept in the
Monitor list, and E will be recomputed at the Confirmation point
without the ++ or - - operation.

if(var=‘=0){

if(!(var==0)) <— Check expression >Confirmati0n
printf("Possible IF-Condition Data Race\n"); / point
}
()

[I1if (E) {S1] else {S2} |

‘for each I, get E(SL) ‘

E(SL) == Null
E(SL) != Null
Does E contain func call or write
operation beyond the exceptions?
Yes
===
No
Locate Confirmation point in S1 and in S2
E
=
o
=]
Z
Add check !E before Confirmation point in S1 and
add check E before Confirmation point in S2
% ‘ Is I inside a loop? ‘
[a)
3 Yes
3
2 No
‘ Is Iinside a critical section? ‘
Yes
No
=
‘ Does I's call stack contain a recursive call? ‘
Yes No
=
‘ Add delay before the check

(b)
Figure 3: High-level structure of the SW-IF algorithm.

SW-IF also removes from the Monitor set those IF statements
where E contains a function call. SW-IF does this to avoid
unwanted side effects at Confirmation points, or the need to
perform expensive interprocedural analysis to analyze function
side effects. The exceptions are C standard functions that do not
write variables, such as string compare (strcmp and strncmp)
and absolute (abs). In general, neither writes nor procedure calls
are common in control expressions.

For each IF statement in the Monitor set, SW-IF finds the Con-
firmation points of the THEN and ELSE clauses. Then, it inserts
there the recomputation of /E and E, respectively. Finding the
Confirmation point boils down to finding the first potential write
to E within the THEN or ELSE clause and for this, we rely on
the alias analysis provided by Cetus. We make an exception
for function call statements however. Limitations of Cetus in
analyzing the side effects of function calls cause the placement



Lock (1)
if (var==0){

for(i=0; i<MAX; i++){

if (var==0){
Do not add delay here.
if (!(var==0)) ... )
J Unlock (1)
(a) (b)

}

Do not add delay here.
if (!(var==0)) ...

foo (n){ bar(){
bar(); if (var==0){
foo(n-1); Do not add delay here.

if (!(var==0)) ...
} }

©)

Figure 4: Three types of IF statements where SW-IF does not insert delays.

H Mode H False Negatives (Failure to Signal IF-Condition Race)

[ False Positives (Incorrectly Signal IF-Condition Race) H

Occasional:

e Racing writes update E but do not change the overall logic value of E

Rare:
o Before the Confirmation point, the local thread modi-

o Simplified support for monitoring nested IFs

SW-IF o Potential local writes to E force Confirmation point early and race happens later | fies the logic value of E without the compiler being able
o Unsupported writes or functions in E prevent insertion of Confirmation point and | to analyze it.
race happens o Certain non-racy IF-Condition Invariance Violations
Rare: Harmless:

HW-IF o Inability to watch the side effects of functions called in E and race happens there | e Due to simplified AWT hardware: “False sharing”

o Race under special conditions: breaking a deadlock and preempting a thread

data races and external read conflicts
o Non-racy IF-Condition Invariance Violations

Table 2: False positives and false negatives in SW-IF and HW-IF.

of Confirmation points to be too conservative if placed before
every call that might potentially update E. Hence, we insert a
Confirmation point before only the function calls that have a
high probability of updating E, that is, functions with arguments
that contain addresses of or references to variables in E. Also, if
the IF statement includes a loop and the loop contains a potential
write to E, SW-IF places the Confirmation point before the loop.
If no potential writes are found, the Confirmation is inserted at
the end of the THEN or ELSE clause.

5.2.2. Adding Delays. In a development scenario, we may want
to precede each Confirmation point check with a small sleeping
delay, so that we can potentially force a different interleaving
and uncover a bug. Consequently, in the “Add Delay” step,
SW-IF selects the IF statements within the Monitor set that can
additionally be instrumented with delays. We call the resulting
set the Delay&Monitor set. To obtain the Delay&Monitor set,
SW-IF removes three types of IF statements from the Monitor
set (Figure 4). Adding delays in these IF statements could
potentially add too much overhead.

The first two types of IF statements to remove are those
inside loops or critical sections. We use Cetus’ intermediate
representation tree to check interprocedurally if there are loops
or critical sections enclosing the IF statement. The third type
of IF statements to remove are those whose call stack contains
a recursive function. This case is identified using the strongly-
connected component analysis in Cetus.

5.3. Limitations

SW-IF is attractive because, while being an entirely software-
only solution, the impact on execution speed is almost negligible,
allowing it to be used extensively with many input sets and test
cases. It can be left on during the entire testing phase with the
programmer barely noticing any slowdown. However, it may
suffer from false negatives (i.e., miss an ICR) and, in unusual
cases, false positives (i.e., incorrectly declare an ICR). The top
row of Table 2 summarizes the sources of ICR false negatives
and false positives for SW-IF.

There are three scenarios where SW-IF can suffer false nega-

tives. One is when racing writes update one or more locations
in E but the overall logic value of E remains the same. SW-IF
chooses to check the logic value of E only because it assumes
that the programmer only relies on it being invariant. The sec-
ond scenario is when a potential local modification of E forces
SW-IF to place the Confirmation point early, and the data race
happens between that point and the THEN/ELSE clause end.
The final scenario is when unsupported writes or function calls
in E prevent SW-IF from inserting a Confirmation point and a
data race happens. False negatives caused SW-IF to miss some
ICR bugs in the applications we tested.

False positives occur in two cases. First, they occur when the
thread executing the IF statement updates the logic value of E
before the place in the code where SW-IF puts the Confirmation
check. In this case, the check will incorrectly declare a data
race. This case can occur due to function side effects in function
calls before which Cetus chose not to insert a Confirmation
point. Figure 5 shows such an example, where F modifies *p
as a side effect, and the check in the end signals an ICR. The
second case occurs in certain non-racy ICIVs, such as in those
shown in Figure 2. Overall, we found these two cases to be very
rare: in our experiments with real applications, SW-IF did not
experience any false positives.

If (*p ==q){
FQO;// *p=!qin F
Confirmation point

}
Figure 5: Example of false positive in SW-IF.

Note that, since SW-IF does not place synchronizations in
Confirmation points, it can insert a racing read in non-racy
ICIVs, such as those in Figure 2. Finally, SW-IF is also limited
in that it can only detect, not prevent, ICRs. By the time it
detects the race at the Confirmation point, the race has already
happened. SW-IF can only raise an exception or print an error
message. To address the limitations of SW-IF, we now propose
HW-IF, which augments it with some hardware support.



6. HW-IF: Detecting & Preventing ICRs
6.1. Main Idea

In HW-IF, the compiler searches for IF statements that can
cause ICRs as before. But this time, instead of Confirmation
points, the compiler inserts, right before the IF statement, code
to “watch” all the shared locations that are accessed in the con-
trol expression. The hardware envisioned has a functionality
that extends the current watchpoints provided by x86 proces-
sors [11]. Specifically, we envision that the local processor can
still access the watched locations. However, any remote pro-
cessor that attempts to access them will get a failed memory
access signal that will prompt the hardware to retry the access —
transparently to the software. At the end of the IF statement, the
compiler inserts code to stop watching the memory locations. At
that point, the accesses from the other processors will succeed.
In this way, HW-IF detects and prevents ICRs.

6.2. Operation of HW-IF

A simple design of HW-IF is shown in Figure 6(a). For simplic-
ity, we consider a bus-based multicore, although more scalable
organizations can be designed. As part of the bus controller,
there is a hardware table called the Address Watch Table (AWT).
Each AWT entry contains information about one watched mem-
ory location: it contains the address of the cache line containing
the watched location and the ID of the “owner” processor.

Pl P2 Watch(shared varl in Exp)
c Watch(shared var2 in Exp)
cow if (Exp){
watched ~ 4¢C¢SS
vars stmtl
Nack }else {
X [ 7 stmt2
Address }
Pl Watch Unwatch()
Table (AWT)

(a) (b)
Figure 6: Hardware needed for HW-IF (a) and code augmented by the
compiler (b).

The compiler augments the code as in Figure 6(b). For each
shared location accessed in the control expression, the compiler
emits a Watch instruction. If the expression has a function call,
the Watch instructions are for the addresses passed as arguments
to the function. A Watch instruction for an address issues a
bus access that allocates an entry in the AWT with the address.
The bus access has the same effect as a bus write by the issuing
processor in an invalidation-based protocol. Specifically, any
cache (other than the issuing one) with a copy of the cache
line has to write it back to memory (if its state was Dirty) and
invalidate it (irrespective of the state it was in).

This operation does not add much execution overhead. The
reason is that the control expressions in IF statements typically
access few shared locations. For our applications, a control
expression accesses on average 1.6 shared locations.

From then on, during the execution of the IF statement, when
a processor other than the owner tries to reference a location
being watched, it misses in its cache and issues a bus access.

As shown in Figure 6(a), the AWT observes the access. If
the requested address matches an address in one of AWT’s
entries and the requester is not the owner of the entry, the AWT
returns a failed-access transaction (called negative-acknowledge
or Nack). A Nack prompts the requesting processor’s hardware
to automatically retry the access, transparently to the software.
This will continue until the owner processor removes the address
from the AWT. The owner processor can always access the
watched locations, either from its cache or from memory. Its
bus access is not Nacked by the AWT.

At the end of the IF statement, the owner processor issues an
Unwatch instruction, which clears all the AWT entries that it
owns. A subsequent access from any processor to the previously-
watched locations now succeeds.

Watch and Unwatch have acquire and release semantics, re-
spectively. This means that no access past the Watch can proceed
until Watch completes, and all accesses prior to the Unwatch
have to be completed before Unwatch can proceed.

For simplicity, we flatten out nested IF statements, which
means that the watched locations of all the nesting levels have
equal status, and the first Unwatch clears all the entries of the
owner processor. As a result, the remaining parts of the outer IF
nests lose the ability to watch their addresses.

Overall, the proposed HW-IF design emphasizes hardware
simplicity. We can improve its efficiency at the expense of more
complicated hardware. For example, we can improve IF nesting
support by including hardware counters in the AWT that are
incremented and decremented at each monitored IF entry and
exit. Similarly, we can eliminate the continuous Nack and retry
with hardware support. However, our evaluation shows that this
HW-IF design is already highly effective.

6.3. Discussion

HW-IF is attractive because it has an overhead low enough
to be used on-the-fly, and can both detect and prevent ICRs.
This means that HW-IF can prevent bugs from manifesting in
a production environment. In addition, HW-IF suffers very
few false negatives (i.e., failures to signal ICRs) and the false
positives that it may have (i.e., incorrect signaling of ICRs) are
usually harmless. The bottom row of Table 2 summarizes the
sources of false negatives and false positives for HW-IF.

HW-IF has very few false negatives because it has none of
those present in SW-IF (i) since it constantly monitors all ac-
cesses to shared locations in E, it detects racy writes even if their
combined effect does not change E’s logic value; (ii) it monitors
IF statements from beginning to end, and so has no false neg-
atives due to premature Confirmations; and (iii) it monitors IF
statements even when E includes write operations and function
calls, since E is not re-evaluated at any Confirmation point.

The only false negatives can occur due to the inability to
watch the side effects of functions called in E, the simplified
support for nested-IF monitoring, and certain special conditions
related to deadlocks and thread preemption. We consider this
third class in Section 6.4.

False positives can still happen, but they typically cause noth-
ing but a slight delay in a cache line access. There are three



sources of false positives. The first one results from the fact that
the AWT deals with cache line addresses, and false sharing can
cause it to signal a data race even when there is none. This issue
can be avoided by designing an AWT that works at word or
byte granularity. The second source of false positives is external
reads to addresses accessed in E. These accesses do not cause
ICRs, but induce Nacks from the AWT. This issue can be easily
avoided by building the AWT to allow external read accesses.
The third source of false positives is non-racy ICIVs. Overall,
since false positives are inexpensive, we tolerate these cases.

Finally, note that HW-IF, as an extension of current watch-
points, provides a good hardware primitive to use in a broad
range of debugging and security uses.

6.4. HW-IF Implementation Issues

6.4.1. Deadlock Effects. Whenever there is a mechanism for
one processor to stall a second one, as in the case of HW-IF, one
must watch for possible deadlocks. In HW-IF, a deadlock may
occur in two cases, which may lead to false negatives and are
easily handled. The first one appears when two processors are
executing IF statements, both allocate AWT entries, and the tim-
ing is such that each ends up waiting for the other. Specifically,
processor P references a variable that is being watched by P2
(it is in AWT’s P2 entry) and gets Nacked, while P2 references
a variable watched by P1 and gets Nacked. This may occur, for
example, when the control expressions of the two IF statements
have common variables, or when the variables are different but
share the same cache line (false sharing).

This case is solved by adding a Cycle Detection (CD) vector
to the AWT controller. The CD vector has one entry per proces-
sor, and each entry contains the ID(s) of the processor(s) that
are being Nacked by that particular processor, if there exists any.
When a Nacking processor executes Unwatch and clears all its
AWT entries, its CD entry is also cleared. On each Nack, the
CD vector hardware attempts to detect a cycle by starting from
the entry of the Nacking processor, reading the IDs in the entry,
and using the IDs to read the corresponding entries in the CD.
This process repeats until either there are no more Nacked pro-
cessors or we end up in the entry of the original processor after
two or more steps. In this case, a deadlock has been detected.
If this happens, the AWT controller simply lets one of the bus
accesses proceed instead of Nacking it. In the worst case, we
are allowing a data race (which becomes a false negative); in
the most likely case, the deadlock was due to false sharing.

The second case is when a thread T/ executing an IF state-
ment that is stalling a second one (72) ends up spinning on a
synchronization variable owned by 72. This case is solved by a
small modification to the synchronization library. Specifically,
after a processor has spun on a synchronization variable for a
long time, the library simply clears the processor’s AWT entries
by executing Unwatch. If the spinning was due to the scenario
described, the deadlock is broken by allowing a potential data
race (which is a false negative). Custom user synchronizations
can be instrumented in a similar fashion, after identifying them
using methods proposed by Tian et al. [35]

6.4.2. Other Effects. There are other issues related to the prac-
tical implementation of the HW-IF hardware. The first one has
to do with thread preemption and context switching. When
a thread executing an IF statement with an entry in the AWT
is preempted from its processor, the OS clears the processor’s
AWT entries using Unwatch. This avoids the possibility of long
spins by other threads. While more advanced solutions are pos-
sible that rely on associating process IDs to AWT entries, they
are unlikely to be cost-effective.

The second issue is support for multithreaded processors.
Multithreaded processors have multiple hardware contexts and
run multiple threads at a time. It is possible that different threads
executing on different contexts of the same processor concur-
rently execute different IF statements. In this case, HW-IF can
use an approach similar to the one described by Pacman [28].
The approach requires an extension where the messages sent
by processors to the AWT include both the processor ID and
the hardware context ID within the processor. Similarly, AWT
entries would have both a PID and a context ID field. However,
since the AWT is connected to the network, it can only observe
data sharing across processors — not across contexts in a pro-
cessor. Consequently, for HW-IF to work, a parallel program
can only use one context per processor — although multiple
programs can use multiple contexts of a processor. To allow
a program to use multiple contexts from a processor, bigger
changes would be needed.

A final issue has to do with the scalability of the AWT. We
have assumed a centralized AWT, which is reasonable for a
snoopy protocol. However, in a directory-based protocol, we
need to distribute the AWT across different directory modules.
Fortunately, like the directory, the AWT can be designed for a
distributed environment, which is partitioned based on address
ranges. Hence, each directory module has an associated AWT
module, which is in charge of the range of physical addresses
corresponding to that directory module.

7. Potential: Detect Existing ICR Bugs

We take the 38 ICR bugs from Table 1 and characterize whether
they can potentially be detected with SW-IF and/or detected and
prevented with HW-IF. Our approach is to manually inspect the
source code of these bugs and, from it, decide whether they can
be handled by our schemes. We estimate that SW-IF can detect
47% of these bugs. On the other hand, HW-IF can detect and
prevent all of them. Table 3 shows the data broken down on a
per-application basis.

# IF-condition # Detected # Detected

Application Data by SW-IF | and Prevented
Races by HW-IF

Apache 20 7 20
MySQL 8 6 8
Mozilla 8 5 8
Redhat (glibc) 0 0 0
Java SDK 1 0 1
Pbzip2 1 0 1
Total 38 18 38

Table 3: Bugs potentially handled on a per-application basis.



T1 T2

void ...print_thd (..) { bool do_command(...) {

if (thd—>proc_info) {

ute(’ ’, 1);
P thd—>proc_info = 0;

fputs(thd—>proc_info, f); }

}
}

(a) MySQL #3596

T1 ™

if (apr_atomic_casptr(
&(qi—>rp), new_recycle,
new_recycle—>next)== new_recycle—>next = qi—>rp
new_recycle—>next){

break;

(b) Apache #44402

Figure 7: Examples of IF-condition data races (ICRs).

To understand how we reached these conclusions, Figure 7
shows examples of two ICR bugs from Table 1. Figure 7(a) is a
typical ICR that can be detected by SW-IF. In the bug, thread
T1 tests thd—proc_info and then uses it. Meanwhile, 72 sets
thd—proc_info to 0.

Figure 7(b) shows an ICR that cannot be detected by SW-IF
but can be handled by HW-IF. There is an IF statement in 7'/ and
a write statement in 72. The control expression in the IF con-
tains a call to apr_atomic_casptr, which is an atomic compare-
and-swap. It swaps &(qi—rp) and new_recyle if &(gi—rp) is
equal to new_recycle—next. In addition, apr_atomic_casptr
returns the old value of &(gi—rp). Between the return of
apr_atomic_casptr and the comparison to new_recycle—next,
T2 intervenes and pollutes new_recycle—next, causing the bug.
Detecting the bug in SW-IF is problematic because recomput-
ing the control expression before leaving the THEN clause can
cause side-effects due to the compare-and-swap. However, HW-
IF can easily have the hardware watch all the shared locations
accessed in the control expression and prevent the bug.

HW-IF also prevents a prevalent class of data race bugs called
double-checked locking (DCL) [33]. In Section 4, we showed
that 16% of all reported ICR bugs were DCL bugs. Figure 8
shows a simplified form of a bug from Apache (Bug #47158).
In the example, a thread (7'/7) finds x to be null. Then, it updates
x.m (as part of Object()) and x. The compiler or hardware can
reorder the updates so that x gets updated before x.m. After the
update to x but before the update to x.m, another thread (72)
executes the same code. 72 finds that x is not null and goes on to
use x.m, which is still uninitialized. If we use HW-IF, we place
Watch(x) and Unwatch() around the innermost IF. This prevents
T2 from interleaving with 77 during the initialization process
and, therefore, avoids this bug. Recall that Unwatch has release
semantics (Section 6.2) and, therefore, it only executes after all
prior accesses have completed, including the updates to x and
x.m. SW-IF is unable to detect this bug.

if (x == NULL){ // start of DCL
synchronized (this) {
if (x == NULL){
x =new Object(); // initializes x.1, x.m, etc

}

}
} // end of DCL
y =X.m;

Figure 8: Example of a double-checked lock (DCL) bug.

8. Evaluation

In this section, we evaluate SW-IF and HW-IF. We start by
describing our experimental setup (Section 8.1). Then, we char-
acterize the IF statements in the applications (Section 8.2), and
evaluate the execution overhead of our algorithms (Section 8.3),
their effectiveness at detecting new data race bugs (Section 8.4),
and the sensitivity of SW-IF to the delay inserted at Confirmation
points (Section 8.5).

8.1. Experimental Setup

We use the Cetus source-to-source compiler [13] to analyze and
transform applications for SW-IF and HW-IF. Cetus uses its
intermediate representation tree and call graph to find the IF
statements that access shared locations. It then instruments them
with either Confirmation points or Watch/Unwatch instructions.

For SW-IF, we run the applications with 8 threads on a desk-
top with 4 2-context Intel Xeon cores running at 2.33 GHz. For
HW-IF, since there is no hardware that implements the AWT
watchpoint table described in Section 6.2, we instrument the ap-
plication code with PIN and call an execution-driven, cycle-level
architectural simulator. The simulator models a chip multipro-
cessor (CMP) with 4 or 8 processors and a memory subsystem.
The simulator intercepts the Watch and Unwatch instructions
and emulates the AWT.

Each AWT entry is 62-bit long, and contains the line address,
processor-ID, and Valid bit. Although a watched IF statement
only accesses 1.6 locations on average, we conservatively have
100 entries in the AWT. In our experiments, the AWT never
gets full. If it did, we would simply discard entries. When we
add delay at Confirmation points, we add 15us. The default
parameters are shown in Table 4.

Architecture
Coherence protocol
Processor type
Private L1 cache
Private L2 cache

L1 and L2 hit latency
L2 miss latency

CMP with 4 or 8 processors
Snoopy-based MESI on a 64byte bus
2-issue, in-order, 1GHz
32Kbytes, 4-way assoc., 64byte lines
512Kbytes, 8-way assoc., 64byte lines
Min. 2 and 8 cycles round trip, respect.
Min. 30 cycles round trip to other L2s and
250 cycles round trip to main memory

Watch/Unwatch instr. Min. 500 cycles (includes main mem. access)
AWT size 100 entries; each entry is 62 bits
Delay added (optional) | 15 us

Table 4: Default architectural parameters.

For the evaluation, we use the following applications. To
characterize the IF statements in programs and to quantify the



performance overhead of our algorithms, we use the SPLASH-2
applications. The reason is that these codes have a well-defined
standard input set, which is useful for measuring performance.
As areference, we also measure the performance overhead of
running the popular Valgrind-3.6.1 [22] debugging tool. For
Valgrid, we only turn-on its race detection part (Helgrind).

SW-IF and HW-IF do not find any ICRs in the SPLASH-2
codes. Therefore, we also run our algorithms on Cherokee-
0.9.2 [1] and Pbzip2-0.9.4 [3]. Cherokee is a web server written
in C, and Pbzip is a parallel data compression application that
can be compiled by Cetus after disabling a few macros. Since
Cetus can only analyze C programs, we cannot run any of the
other applications from Table 1 that are written in C++ or Java.
The glibc library is written in C. However, testing glibc in a
stand-alone manner is not representative. For this reason, we
do not do it. We also use Cherokee and Pbzip to explore the
sensitivity of the race detection capabilities of SW-IF to the
length of delay at Confirmation points.

We ran Cherokee and Pbzip using SW-IF and HW-IF 6 times
each. As we will see, they found 8 ICRs. In addition, these
are the only ICRs found by Helgrind. This indicates that our
techiques are robust.

8.2. IF Statement Characterization

We first try to understand the structure of the IF statements. For
this experiment, we use SW-IF with delay insertion. Table 5
lists the total number of IF statements in the codes and the
number of checked (i.e., monitored with Confirmation points)
IF statements — both the static number seen in the source code
and the dynamic number observed at runtime. We see that about
a third of all the dynamic IF statements are checked on average.

Apps [ #IF Statements | # Checked IF Statements |
| Static | Dynamic [ Static | Dynamic |
Radiosity 357 12246807 216 3225037
Water_nsquared 63 13210272 39 13134311
Water_spatial 111 8995819 48 4955930
Ocean_con 518 141680 313 16794
Ocean_non 302 141676 235 8170
Cholesky 283 834469 200 715804
FFT 60 804 55 35
LU_cont 92 13620 79 12387
LU_non 64 449 58 285
Radix 51 121 31 45
Barnes 90 1686857 62 777343
FMM 308 33421676 238 1432271
Raytrace 354 8530683 159 3128360
Average 204 6094225 133 2108213

Table 5: Static and dynamic number of IF statements.

Figure 9 characterizes the dynamic IF statements further.
It breaks the number of dynamic IF statements into Checked,
SharedNoCheck, and PrivateOnly. Checked are those that are in-
strumented with Confirmation points; SharedNoCheck are those
that have a shared location access in the condition expression
but are not instrumented due to compiler limitations; Priva-
teOnly are those that only have accesses to private locations
in the condition expression and thus do not need checks. The
figure shows that SW-IF checks almost all of the IF statements
that have shared accesses. It misses only 3% of the cases.
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Figure 9: Fraction of dynamic IF statements that are checked.

Figure 10 shows the fraction of checked dynamic IF state-
ments that have delays inserted in them. The figure breaks the
number of checked dynamic IF statements into those that receive
delays (Delayed) and those that do not. The Loop, Recursive,
and Lock categories show the cases where the IF statement did
not receive a delay because it was (i) in a loop, (ii) in a recursive
call but not in a loop, and (iii) in a critical section but not in any
of the prior categories. The figure shows that SW-IF inserts de-
lays in about 20% of the dynamic checks on average. The main
reason why this number is not higher is due to IF statements
inside loops.
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Figure 10: Checked dynamic IF statements that receive delays.
8.3. Performance Overhead

We now evaluate the performance overhead of SW-IF and HW-
IF. To evaluate SW-IF, we run the instrumented applications
natively using 8 threads. We consider two scenarios: binary
instrumented with Confirmation points without delays (SW-IF)
and with delays for the appropriate Confirmation points (SW-
IFdelay). We also run the original uninstrumented binary (Orig-
inal). As a reference, we also show the execution time of the
applications running on Helgrind, which is the race detection
part of Valgrind. While Helgrind is a much more general data
race detector than SW-IF, it gives a reference data point. The
results are shown in Figure 11 where, for each application, the
bars are normalized to Original.

From the figure, we see that the average performance over-
head of SW-IF is 2%. This is a very low overhead, which shows
that SW-IF could even be used in a production environment. SW-
IFdelay has an average performance overhead of 6%, which is
still small enough for a debugging and testing environment. We
also see that Helgrind has a much higher performance overhead.
This is because it runs sequentially and uses a general algorithm
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Figure 11: Execution time of the applications under SW-IF.

that can find many classes of races.

To evaluate HW-IF, we run 4- and 8-threaded applications on
the architecture simulator described in Section 8.1. The results
are shown in Figure 12. The bars show the execution time
overhead of running the application on a machine with HW-IF
hardware over one without HW-IF hardware. We see that, on
average, the execution overhead is less than 1% for both 4 and
8 threads. This makes HW-IF perfectly suitable for on-the-fly

production environments.
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Figure 12: Execution time overhead of the programs under HW-IF. The
figure shows data for 4- and 8-threaded runs.

The execution time overhead shown in Figure 12 is broken
down into two components: Stalls due to Nacks and Instruction
overhead. The Stall overhead is due to delays incurred by
processors when they are issuing bus requests that are Nacked
by the AWT. The instruction overhead refers to slowdowns
incurred by processors when they are executing Watch and
Unwatch, or when they suffer additional cache misses due to
them. We can see from the results that the stalls due to Nacks
cause negligible overhead; the overhead primarily comes from
the Watch and Unwatch execution, and misses.

There is no standard input set for Cherokee and Pbzip2. How-
ever, if we use the same input set as Yu et al. [41], the measured
execution time overhead for Cherokee and Pbzip2 is 3.2% and
1.4%, respectively, for SW-IFdelay; 1.1% and 0.6%, respec-
tively, for SW-IF; and 0.8% and 0.4%, respectively, for HW-IF.
These are small overheads.

8.4. Detecting New IF-condition Data Race Bugs

SW-IF without delays and HW-IF do not find any ICRs in the
SPLASH-2 codes. However, they find several in Cherokee and

Pbzip, and some of them are new, unreported bugs. Table 6
shows the ICRs that these algorithms find. The table assigns an
ID to each bug, shows whether it is a new bug, lists the source
code locations of the ICR, and shows whether SW-IF or HW-IF
can find it.

Bug ID New Locations of the ICR Found by
Bug? SW-IF | HW-IF
Cherokee-1 Yes thread.c:327 — server.c:1676 No Yes
Cherokee-2 Yes thread.c:57 — bogotime.c:114 Yes Yes
Cherokee-3 Yes thread.c:1890 — server.c:1132 No Yes
Cherokee-4 Yes thread.c:1945 — server.c:275 Yes Yes
Cherokee-5 No bogotime.c:114 — bogotime.c:109 No Yes
Cherokee-6 No buffer.c:92 — buffer.c:187 No Yes
Pbzip2-1 Yes pbzip2.cpp:704 — pbzip2.cpp:966 Yes Yes
Pbzip2-2 No pbzip2.cpp:1044 — pbzip2.cpp:889 No Yes

Table 6: ICRs found.

As shown in the table, our algorithms find 6 ICRs in Cherokee
and 2 in Pbzip2, of which 5 are new, unreported bugs. We have
reported these bugs to the software developers. SW-IF without
delays detects 3 of them while HW-IF detects and prevents all
of them.

To understand the new bugs in detail, Figure 13 displays the
source code and the buggy interleaving for each new bug.

Source Code
BugID Tl T2
if (thread—>conns_num >0)
Cherokee—1 conns_num += THREAD(threafi)
thread—>conns_num——; —>conns_num;
if(thd—>bogo_now
Cherokee-2 == cherokee_bogonow_now) cherokee_bogonow_now = newtime;
return;
if(unlikely(srv—>wanna_exit))
Cherokee-3 srv—>wanna_exit= true;
thd—>exit = true;
if ((thd—>exit==false)&& ...)){
Cherokee—4 | step_ MULTI_THREAD_block THREAD(i)—>exit = true;
(thd, ...); ’
}
if(OutputBuffer[currBlock]
. bufsize<l II...){
Pbzip2-1 OutputBuffer[blockNum]
usleep(50000); bufSize=outSize;
}

Figure 13: Description of the new ICRs found by SW-IF and HW-IF.

In Cherokee-1, 72 updates shared variable conns_num, which
could be aliased to the variable that 7/ reads and writes. HW-IF
can detect and protect against this bug. However, SW-IF cannot
because T2 makes conns_num bigger and, therefore, if we test
the thread— conns_num>0 condition later, it will still be true.

In Cherokee-2, 72 may change cherokee_bogonow_now be-
fore T1 executes the return in the THEN clause of the IF state-
ment. If so, the rest of the function that contains this IF statement
may be incorrectly skipped. This bug can be detected by both
SW-IF and HW-IF.

In Cherokee-3, T2 can change srv—wanna_exit after T1 has
used it in an IF control expression. Since the latter contains the
function call unlikely with potential side-effects, SW-IF cannot
be used. Hence, only the HW-IF scheme can detect this bug.



Cherokee-4 and Pbzip2-1 are similar to Cherokee-2 in that
T2 can change the value of the IF control expression while 7/
is executing the THEN clause. For Cherokee-4, the result is an
unnecessary block; for Pbzip2-1, the result is an unnecessary
sleep. Both bugs can be detected with SW-IF and HW-IF.

It is important to note that while SW-IF missed some ICRs
(i.e., it had false negatives) due to the limitations described in
Table 2, it did not suffer any false positives: all ICRs reported
by SW-IF were actual races. On the other hand, HW-IF detected
and prevented all the ICRs that were reported by Helgrind (i.e.,
it had no false negatives). While HW-IF did suffer from the
occasional false positive due to false sharing and due to external
read conflicts in the AWT (as described in Table 2), false posi-
tives only result in Nacks. These Nacks had negligible impact
on performance as we saw in Section 8.3.

Helgrind finds the data races in Table 6. However, when we
ran Helgrind, we obtained messages for hundreds or thousands
of data races — many of which have low importance. It took us
several days to analyze the log.

8.5. Sensitivity of SW-IF to Delays

Previous work [10] showed that adding delays at strategic points
is beneficial when trying to expose data races. Hence, we per-
form the same experiments as in the previous section, but used
SW-IF with delays. Our goal is to extend the time that SW-IF is
able to detect the races.

We find that SW-IFdelay finds exactly the same number of
data races as SW-IF, namely those of Table 6. It seems, therefore,
that delays are not important for exposing ICRs for the particular
applications we use.

9. Related Work

9.1. Specialized Data Race Detectors

In the area of data race debugging, we see race specialization
and low-overhead techniques as promising. One approach to
reduce overhead is to use sampling, as in LiteRace [16] and
DataCollider [10]. LiteRace looks for data races in infrequently-
exercised code regions. DataCollider looks for data races in
the kernel. It places hardware watchpoints on some variables
(or repeatedly reads them) to find if a remote thread modified
their values in between. When DataCollider places a watch-
point, a processor interrupts all other processors and atomically
updates their watchpoint registers. Theoretically, putting all the
addresses from the IF control expression in watchpoints could
deliver a functionality like HW-IF. However, it would have a
very large overhead, and be incompatible with production runs.

Some techniques try to avoid data races at runtime (e.g., [6,
28, 29, 30, 42]). In particular, ToleRace [30] and ISO-
LATOR [29] focus on asymmetric races, where a well-
synchronized thread inside a critical section has a race with
a second thread lacking proper synchronization. They avoid this
by isolating the well-synchronized thread. Pacman [28] supports
fine-grain isolation in hardware. It avoids asymmetric races by
using hardware cache coherence mechanisms to prevent other
processors from accessing variables that the well-synchronized

thread is accessing inside the critical section. Pacman proposes
a hardware primitive similar to our Watch in HW-IF. However,
it differs from HW-IF in several ways: (i) it has a different goal,
(ii) it is more costly, since it needs to protect all the addresses ac-
cessed in a critical section, (iii) it does not use any compiler pass,
and (iv) it is implemented with more elaborate signature-based
hardware.

9.2. Hardware Transactional Memory

One could think of using Hardware Transactional Memory
(HTM) in place of the AWT for HW-IF to guarantee atom-
icity. However, in its most popular form, HTM is not the best
primitive for ICRs. Using a transaction prevents accesses from
other threads to any variable inside the IF statement. This is
not what we intend. We want to prevent only accesses to the
variables that are inside the IF control expression. Table 7 shows
an example where HTM does not work as we want: there is no
ICR and the transaction fails.

Tl T2

begin_transaction;
if (x) {
lock L; lock L:
unlock L;
}

end_transaction;

Table 7: HTM does not work as we want for ICRs.

However, if HTM gives the program the ability to selectively
mark which accesses set the speculative cache bits, then HTM
could be used to protect only the variables in the IF-condition.
Still, we would have to overcome two HTM limitations. First,
false sharing would result in squashes with HTM, rather than
stalls as with the AWT. Second, in large IF statements, HTM
would be subject to squashes due to cache overflow.

9.3. Atomic Region Detection and Violation

A related concurrency bug is atomicity violations. Many works
have focused on these bugs, such as SVD [39], AVIO [14],
AtomAid [15], AtomTracker [18], LifeTx [42], and AFix [12].
SVD [39] identifies atomic regions called CUs on-the-fly by
looking at the pattern of reads/writes. It uses heuristics to build
CUs: (i) a CU needs to start with a read, and then a write, and (ii)
a CU should not contain two independent computations. SVD
works by instrumenting an executable. SVD can be slow (up to
65x slowdown) and require a post-pass analysis to fix the CUs.

AtomAid [15] and LifeTx [42] prevent illegal interleavings
from manifesting by using transactional memory to protect
code regions. AVIO [14], AtomTracker [18], LifeTx [42] and
AFix [12] employ some form of training mechanism. They try
to learn some semantic invariants from correct training runs, and
use this information to detect/fix bugs that violate such invari-
ants. One drawback of the training approach is that, unless the
training is done with all kinds of interleavings and inputs, the
scheme may not be effective at detecting violations.



10. Conclusions

This paper introduced the IF-Condition Invariance Violation
(ICIV) as a code pattern that is likely to be a sign of a concur-
rency bug, and the IF-Condition Data Race (ICR) as an ICIV
caused by a data race. An analysis of the data races reported in
bug databases showed that ICRs occur relatively often. ICRs
are typically bugs because of the implicit invariance of the IF
condition implied by IF statements. Moreover, their obvious
structure allows the implementation of a very efficient data race
detector. This paper introduced how such a detector can be built
purely in software (SW-IF) or with the help of some hardware
(HW-IF). HW-IF can be used to both detect and prevent ICRs.

We evaluated SW-IF and HW-IF using a variety of applica-
tions. We showed that these new techniques are effective at find-
ing new data race bugs and run with low overhead. Specifically,
HW-IF found 5 new (unreported) ICR bugs in the Cherokee web
server and the Pbzip2 application; SW-IF found 3 of them. In
addition, 8-threaded executions of the SPLASH-2 applications
showed that, on average, SW-IF added 2% execution overhead,
while HW-IF added less than 1%. These minuscule overheads
point to the use of both SW-IF and HW-IF as lightweight race
detectors. SW-IF' can speed-up the process of code develop-
ment and testing, while HW-IF can be used to avoid races in
production runs.
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