
Biperpedia: An Ontology for Search Applications

Rahul Gupta† Alon Halevy† Xuezhi Wang§∗ Steven Euijong Whang† Fei Wu†

†Google Research §Carnegie Mellon University
{grahul, halevy, swhang, wufei}@google.com xuezhiw@cs.cmu.edu

ABSTRACT
Search engines make significant efforts to recognize queries that
can be answered by structured data and invest heavily in creating
and maintaining high-precision databases. While these databases
have a relatively wide coverage of entities, the number of attributes
they model (e.g., GDP, CAPITAL, ANTHEM) is relatively small. Ex-
tending the number of attributes known to the search engine can
enable it to more precisely answer queries from the long and heavy
tail, extract a broader range of facts from the Web, and recover the
semantics of tables on the Web.

We describe Biperpedia, an ontology with 1.6M (class, attribute)
pairs and 67K distinct attribute names. Biperpedia extracts attributes
from the query stream, and then uses the best extractions to seed at-
tribute extraction from text. For every attribute Biperpedia saves a
set of synonyms and text patterns in which it appears, thereby en-
abling it to recognize the attribute in more contexts. In addition to
a detailed analysis of the quality of Biperpedia, we show that it can
increase the number of Web tables whose semantics we can recover
by more than a factor of 4 compared with Freebase.

1. INTRODUCTION
For the first time in the history of the Web, structured data is a

first-class citizen among search results. The main search engines
make significant efforts to recognize when a user’s query can be
answered using structured data. In parallel, they are investing sig-
nificant resources in building a curated database of facts extending
knowledge bases like Freebase [3]. These databases contain triples
such as (France, CAPITAL, Paris) that model a broad range of top-
ics of interest. Search results from structured data are displayed
prominently on the top of or to the right of normal search results.

While the databases serving structured data in search results have
a relatively wide coverage of entities (e.g., Sweden, Gerhard Weikum,
Ghostbusters), the number of attributes they model (e.g., CAPITAL,
PUBLICATIONS, RELEASE DATE) is relatively small. For example,
for the class COUNTRIES, Freebase has less than 200 attributes,
whereas the number of attributes of interest is in the thousands.
∗Work done while on leave from Carnegie Mellon University at
Google Research.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 7
Copyright 2014 VLDB Endowment 2150-8097/14/03.

Attribute: capital (Class: Countries, Type: atomic-textual)
Primarily attached to: Locations
Synonyms: capitals
Misspells: capitai, capita, captal, captel, capit, ...
Sub relations: city capital, former capital, fashion capital, ...
Provenance:

Text forms: “Hanoi is the capital of Vietnam.”, “Beijing, the capital of China, is ...”
Query forms: “capital Brazil”, “What is the capital of Australia?”

Source InstanceCount QueryCount Entities with this attribute
Query Stream 317 11M vietnam, turkey, romania, ...
Text 441 3M afghanistan, iraq, pakistan, ...
Freebase n/a n/a n/a

Figure 1: The elements of a Biperpedia attribute
Extending the number of attributes the search engine knows about

is important for several reasons. First, additional attributes will en-
able the search engine to more precisely answer queries from the
long and heavy tail (e.g., brazil coffee production). Second, addi-
tional attributes enable extracting facts from Web text using open
information extraction techniques [9]. Finally, a broad repository
of attributes can also enable us to recover the semantics of tables
on the Web [24], because it is easier to recognize attribute names in
the column headers and in the surrounding text.

We describe Biperpedia, an ontology of binary attributes that
contains up to two orders of magnitude more attributes than Free-
base. An attribute in Biperpedia (see Figure 1) is a relationship
between a pair of entities (e.g., CAPITAL of countries), between an
entity and a value (e.g., COFFEE PRODUCTION), or between an en-
tity and a narrative (e.g., CULTURE). Biperpedia is concerned with
attributes at the schema level. Extracting actual values for these
attributes is a subject of a future effort. Biperpedia is a best-effort
ontology in the sense that not all the attributes it contains are mean-
ingful. However, we show that it has high precision (e.g., 0.91 for
the top 100 attributes and 0.52 for the top 5000 attributes).

In addition to its scope, a second distinguishing characteristic of
Biperpedia is that its goal is to support search applications. In par-
ticular, Biperpedia should enable tasks such as parsing a user query,
recovering the semantics of columns of Web tables, and recogniz-
ing when sentences in text refer to attributes of entities. Traditional
ontologies have been used for search in the past (e.g., [15, 23]).
However, traditional ontologies tend to be brittle in the sense that
they contain a single way of modeling the world, including a single
name for any class, entity or attribute. Hence, supporting search ap-
plications with an ontology can be tricky because mapping a query
or a text snippet to the ontology can be arbitrarily hard.

Biperpedia includes a set of constructs that facilitates query and
text understanding. In particular, Biperpedia attaches to every at-
tribute a set of common misspellings of the attribute, its synonyms
(some which may be approximate), other related attributes (even if
the specific relationship is not known), and common text phrases
that mention the attribute (in the spirit of [20]).

In addition to bootstrapping from Freebase itself, Biperpedia ex-
tracts new attributes from two sources: the query stream and text
on the Web. The query stream is a source of frequently asked
attributes, but the challenge is to recognize the attribute seeking
queries among all the others. Web text is even broader in coverage
than the query stream, but as previous work on open information
extraction has shown [9], can be a source of many meaningless at-
tributes. This paper makes the following contributions.
• We describe a new kind of ontology that is tailored for search

applications by adding constructs that enable interpreting Web
queries and text.
• We develop algorithms for extracting attributes for the ontology

from the query stream and from Web text. In particular, we
develop a method for extracting attributes from text with high
precision, by using distant supervision to learn text extractors
that are seeded attributes we extract from the query stream and
Freebase.
• We describe a novel algorithm that uses verbs with which at-

tributes are mentioned to classify attributes into categories of
numeric (e.g., GDP), atomic (e.g., CAPITAL), and narrative (e.g.,
HISTORY). Such a classification is invaluable while curating at-
tributes into an existing schema, for further filtering attributes
in Biperpedia, and for downstream applications like fact extrac-
tion and question answering.
• We describe an algorithm for attaching attributes to the most

appropriate class in a given class hierarchy. Such an algorithm
is crucial in order to contribute attributes from Biperpedia into
other ontologies.
• We demonstrate the utility of Biperpedia by showing that it

can help interpret the semantics of Web tables. We describe
a schema matching algorithm that leverages Biperpedia and in-
creases the number of tables we can interpret by more than a
factor of 4 compared to what is possible with the schema of
Freebase alone.
• We experimentally validate Biperpedia’s high precision and re-

call for attributes of interest. In particular, we obtain over 0.5
precision for the top 5000 attributes. Among those attributes,
only 1% exist in Freebase and 1% in DBpedia [2].

The paper is organized as follows. Section 2 defines our prob-
lem setting, and Section 3 describes the architecture of Biperpe-
dia. Section 4 describes how we extract attributes from the query
stream, and Section 5 describes how we extract additional attributes
from text. Section 6 describes how we merge the attribute extrac-
tions and enhance the ontology with synonyms. Section 7 evaluates
the attribute quality. Section 8 describes an algorithm for placing
attributes in the hierarchy. Section 9 describes how we use Biper-
pedia to improve our interpretation of Web tables. Section 10 de-
scribes related work, and Section 11 concludes.

2. PROBLEM DEFINITION
The goal of Biperpedia is to find schema-level attributes that can

be associated with classes of entities. For example, we want to
discover CAPITAL, GDP, LANGUAGES SPOKEN, and HISTORY as
attributes of COUNTRIES. Biperpedia is not concerned with the
values of the attributes. That is, we are not trying to find the specific
GDP of a given country.

Class hierarchy: We assume a given set of classes of entities, such
as COUNTRIES or US PRESIDENTS (note that class names always
begin with a larger font letter). These classes include the types

in Freebase and additional classes that identify subsets of Free-
base types. For our purposes, we assume that (1) the classes are
of high quality (i.e., they correspond to natural sets of entities to
model in the world), (2) for each class we have a set of instances
(e.g., France is a country). We also have a subclass hierarchy im-
posed on the set of classes (e.g,. US PRESIDENTS is a subclass of
POLITICIAN), but the subclass hierarchy may be incomplete. Fur-
thermore, siblings in the hierarchy are not always of equal stature
(e.g., under the class LOCATIONS we could have an important sub-
class such as TOURIST ATTRACTIONS and an uninteresting one
such as SPORTS TEAMS LOCATIONS).

Name, domain class, and range: The name of an attribute in
Biperpedia is a string with one or more tokens, such as POPULA-
TION or LIFE EXPECTANCY FOR WOMEN. Each attribute has a do-
main class, i.e., the set of entities for which the attribute is defined.
Multiple classes may have attributes that have the same name. For
example, POPULATION is an attribute of the class LOCATIONS and
of the class BIOLOGICAL BREEDS. Hence, the combination of
class name and attribute name uniquely defines an attribute.

The domain of an attribute merely specifies that the attribute is
applicable to instances of that class. However, attributes are often
attached to many classes. For example, the attribute POPULATION
is applicable to over 2500 classes (including all subclasses of LO-
CATIONS). Hence, Biperpedia also tries to identify the best classes
to which to attach an attribute (Section 8).

Biperpedia attaches a range with every attribute. The range spec-
ifies the classes or data types to which the values of the attribute
should belong. For example, the range of CAPITAL is CITIES,
while the range of LIFE EXPECTANCY is a real number. We do
not address the problem of computing ranges in this paper except
for simple cases.

Synonyms and misspellings: The main goal of Biperpedia is to
be able to identify mentions of attributes in user-generated content
such as queries and text. Users will obviously not necessarily refer
to an attribute with the same name that Biperpedia has for it, and
they have also grown accustomed to search engines automatically
fixing common spelling mistakes. To support as wide of a recall
as possible, Biperpedia attaches to each attribute a set of common
misspellings and a set of synonyms that Biperpedia believes refer
to the same attribute (Section 6). It is important to note that mis-
spellings and synonyms depend on the class. For example, MOTER
is a misspelling of MOTHER for the class PERSON, while it is a
misspelling of MOTOR for the class CARS.

Related attributes and mentions: It is also important that Biper-
pedia can recognize closely related attributes. For example, Biper-
pedia should know that MOTHER is a subset of PARENT, that FIRST
NAME is a part of FULL NAME, and that RURAL POPULATION is a
component of POPULATION. Such knowledge can help a search en-
gine answer a broader set of queries, and retrieve relevant Web ta-
bles when they contain more detailed data. For example, it is com-
mon that a user query specifies an attribute abstractly (e.g., POPU-
LATION), and there is a high-quality table that contains component
attributes such as RURAL POPULATION and URBAN POPULATION.
Biperpedia does not currently identify all possible relationships and
collapses all these relations to sub/super attributes.

In the same vein, in order to facilitate recognition of mentions
of attributes in text and queries, Biperpedia also attaches to every
attribute a set of sentence patterns and query patterns that mention
the values of that attribute (see Figure 1). In this respect, Biperpedia
is very similar to the Patty System [20]. We do not discuss the
problems of detecting related attributes and mentions in this paper.

Provenance: Since Biperpedia’s attributes are extracted from mul-
tiple sources, we attach the set of data sources in which the attribute
was discovered (Freebase, QueryStream, Text) and a few
source-specific provenance information (described in Sections 4
and 5). When we merge two attributes we deem to be synonymous,
we preserve the provenance of each of the synonyms.

Differences from a traditional ontology: At the heart of the dif-
ferences between Biperpedia and a manually created ontology is
the fact that Biperpedia attempts to find attributes that people con-
sider relevant to entities in the way they are expressed in queries
and text. In contrast, design considerations may dictate that a man-
ually curated ontology model an attribute in more complex ways.
For example, ARCHITECTURAL STYLE is an attribute that Biperpe-
dia considers relevant to the class MUSEUMS. However, the same
attribute is modeled in Freebase as a path: MUSEUMS has an at-
tribute BUILDINGS OCCUPIED that has a set of buildings, and the
class BUILDINGS has an attribute ARCHITECTURAL STYLE. The
Freebase design is more modular, but in queries and in text people
still refer to the architectural style of museums, and our goal is to
recognize such mentions. Of course, Biperpedia may still have the
attribute BUILDINGS OCCUPIED for MUSEUMS and ARCHITEC-
TURAL STYLE for BUILDINGS. To support more complex reason-
ing that involves traversing paths in the ontology, Biperpedia will
need to identify the redundant paths it contains. In general, com-
bining the benefits of a best-effort ontology such as Biperpedia and
a manually created ontology presents exciting directions for future
research.

Evaluation: Given our goals, we evaluate the quality of Biperpedia
in two ways. First, given an attribute A that Biperpedia proposes
for class C, is A a reasonable attribute for instances of the class C?
Second, we evaluate whether Biperpedia is useful in applications.
In this paper we show that Biperpedia is an indispensable tool for
understanding the semantics of Web tables.

3. THE BIPERPEDIA SYSTEM
The Biperpedia extraction pipeline is shown in Figure 2. At a

high level, the pipeline has two phases. In the first phase, we extract
attribute candidates from multiple data sources, and in the second
phase we merge the extractions and enhance the ontology by find-
ing synonyms, related attributes, and the best classes for attributes.
The pipeline is implemented as a FlumeJava pipeline [6].

Group by Class

Detect Misspellings and Synonyms

Discover Sub-attributes

Attach Attributes to Best Classes

Ontology
Enhancement

Merged Attributes

Query
Stream

Web
Documents

Extract Candidate Attributes

Freebase

Biperpedia

Label Attributes as
Numeric/Textual/Non-atomic/None

Figure 2: Biperpedia extraction pipeline.

Attribute extraction: The pipeline begins by extracting attribute
candidates from multiple sources, including Freebase, the query
stream, and Web text.

The extraction from Freebase proceeds as follows (note that in
Freebase, classes are referred to as types and attributes are referred
to as properties). We iterate over all the types and retrieve each
of its attached properties as an attribute in Biperpedia. For each
property, we store the name, the type of range, and the English de-
scription if one exists. We also attach Freebase properties to their
sub-types. For example, POPULATION is a property of LOCATIONS
in Freebase, but we attach it also to COUNTRIES and to CITIES.
The extractions from the query stream and from Web text are more
involved and we describe them in Section 4 and Section 5, respec-
tively.

We note that we also experimented with extracting attributes
from Web tables [4]. However, we found that the vast majority of
the attributes in Web tables are very context sensitive. As we show
in Section 9, we can use Biperpedia to better interpret the attributes
in Web tables.

Ontology enhancement: Once the extractions are completed, we
merge the sets of attribute candidates and we index them by the
domain class (e.g., we collect all attributes of COUNTRIES). Hence,
the following steps are done within a single domain class.
Misspellings: we begin by identifying which attributes are com-
mon misspellings of good attribute names. Our experiments show
that misspellings account for 4% of the attributes, but some tend to
occur very frequently and so end up being highly-ranked attributes
(e.g., FALG was one of the top attributes queried for COUNTRIES).
Naturally, misspellings are much more common in the query stream
than in other sources.
Synonyms: Next, Biperpedia identifies synonyms among attribute
names (see Section 6). Our experiments show that 32% of the
(spell-corrected) attributes can be considered synonyms of others.

Note that in principle, we could try to detect misspellings and
synonyms at query time when the ontology is used to interpret a
query. However, storing misspellings and synonyms in Biperpedia
offers the benefit of analyzing many past queries. In addition, mis-
spellings and synonyms do not tend to change very often, hence
analyzing the query in real-time does not provide significant bene-
fit.
Sub-attributes: We currently use two heuristics to identify sub-
attributes: (1) if we find sufficient evidence on the Web (using
techniques such as [14]) that “A ISA B”, where both A and B are
attributes, we deem attribute A to be a sub-attribute of B (e.g.,
MOTHER is a PARENT). (2) if we find a pair of attributes where
one includes a modifier on the other (e.g., RURAL POPULATION
and POPULATION), we deem the first to be a sub-attribute of the
second. Although noisy, these heuristics produce useful results in
practice.
Best class: Biperpedia processes each attribute in turn and tries to
find the best classes in the hierarchy to attach it to.
Categorization as numeric/textual/non-atomic: Biperpedia cat-
egorizes each attribute as numeric (e.g. COFFEE PRODUCTION),
atomic-but-textual (e.g. POLICE-CHIEF), non-atomic (e.g. HISTORY),
or none of the above. These labels are useful for, for example,
manually curating or extracting facts for only atomic attributes, or
inferring measurement units and ranges for numeric attributes.

4. QUERY STREAM EXTRACTION
The query stream is an excellent source for attributes that reflect

users’ interests. The main challenge in mining the query stream
is that queries that involve attributes of entities are mixed in with
other queries, and it is hard to tease them apart. Biperpedia extracts
attributes from a set of 36 billion anonymized unique queries in the
following steps:

united states, population, 3M queries
usa, population, 2M queries
sweden, population, 1M queries

/id/usa, population, 5M queries
/id/sweden, population, 1M queries

Countries, population, 5M queries
Countries, population, 1M queries
Scandinavian_countries, population, 1M queries

Countries, population, InstanceCount=2, QueryCount=6M
Scandinavian_countries, population, InstanceCount=1, QueryCount=1M

Reconcile to Freebase Entities

Assign Classes

Aggregate by Class

Figure 3: Query stream extraction

Find candidate attributes: Initially, we consider all queries of the
form “what is the A of E” to find candidate attribute names A. For
example, we may find the query “what is the population of france”
in the query stream. We denote by A all the values of A found.

Next, we consider all the queries of the form “A E” or “E A”,
where A ∈ A and E has been tagged as an entity by an entity recog-
nizer [12]. Note that since this short form is much more common
in queries, this step will match many more queries than in the first
step. In particular, we will find attributes A applying to many more
entities, which will be crucial for the rest of our pipeline.

We output a set of triples of the form (A, E, f), where A ∈ A is a
candidate attribute name, E is an entity string, and f is the number
of times the query “A E” or “E A” appeared in the query stream.
Reconcile to Freebase: The goal of this step is to lift attribute
mentions from instances to classes so we can reason about them in
aggregate. Specifically, for every pair (C, A), where C is a class
and A is a candidate attribute name, we compute two values:
• InstanceCount(C, A): the number of distinct entities E of C

for which queries of the form “A E” or “E A” were mentioned
in the query stream, and
• QueryCount(C, A): the total number of queries in the stream

of the form “A E” or “E A” where E refers to an instance of C.
InstanceCount(C, A) indicates how prevalent the attribute A is
for instances of C, whereas QueryCount(C, A) indicates how
popular the attribute A is in the query stream. Together, these values
indicate whether a particular A is even an attribute at all – candidate
A’s with low counts are typically noise. For each triple, (A, E, f),
we proceed as follows (see Figure 3).
• Reconcile E with an entity E in Freebase. This step is inherently

heuristic: in some cases we will match e to the wrong entity and
in others we will not find a match at all. Our recognizer returns
a ranked list of candidate entities and we conservatively choose
the first one. There are cases where we miss valid mappings
(e.g., for apple the recognizer will return both the company and
the fruit but we choose only the company). However, we can
afford to be conservative because even if we miss a few enti-
ties it will not degrade the schema-level extractions. There are
plenty of other companies who will not be confused with fruit
names, and so properties of companies will be found reliably.
• Given the value of E, we look up all the classes in Freebase,

C1, . . . , Cn, in which E is known to be a member of. For each
pair (Ci , A) we increase InstanceCount(C, A) by 1 and add
C to QueryCount(C, A).

Remove co-reference mentions: A common pattern in search queries
is to follow an entity by a qualifier. For example, many users query
barack obama president (and do so for every president of the USA!)

As a result, we could extract PRESIDENT as a top attribute of the
class US PRESIDENTS, which is clearly undesirable.

To filter such extractions, we look for evidence in Web text that
suggests that BARACK OBAMA is a president. We run a standard
coreference resolution algorithm [13] to find if the strings “barack
obama” and “president” co-refer to the same entity sufficient num-
ber of times in the text corpus. For coreferring string pairs, we do
not increase the counters InstanceCount(C, A) andQueryCount
(C, A). Instead, we maintain a counter CoReferences(C, A) to
track the number of co-reference occurrences.

Output attribute candidates: Biperpedia keeps any pair (C, A)
for which InstanceCount(C, A) is above a pre-determined thresh-
old. The provenance of the attribute includes the counters Instance-
Count(C, A) and QueryCount(C, A).

5. EXTRACTION FROM WEB TEXT
Text on the Web offers an even richer source of attributes for

Biperpedia, and is in many ways complementary to attributes ex-
tracted from queries. While queries indicate attributes that people
are asking about, text provides more of an encyclopedic overview
of an entity (e.g., Wikipedia, news articles, press releases, prod-
uct brochures, etc.). For example, while many people query for
the current MAYOR of a town, relatively much fewer query for its
FIRE-CHIEF. In addition, attribute extraction from text also serves
as a way to corroborate attributes extracted from queries and other
sources. In this section we describe how we extract attributes for
Biperpedia from text. The main technical challenge we face is that
extraction from text can be extremely noisy. Our main technical
contribution in this section is to show that we can use the extrac-
tions from the query stream and Freebase to train a learner a high-
quality text extractor.

But before we describe our extraction process, it is instructive to
step back and look at two broad questions: (1) Can we manually de-
fine a handful of patterns by hand, like we did for queries, obviating
the need for designing an extractor?, and (2) Since our extraction
goal is open-domain, can we simply leverage existing open infor-
mation extraction systems instead of designing a new extractor?

The answer to the first question is no, and we provide empiri-
cal evidence later in the section that we do need lots of extraction
patterns in practice. The intuitive reason is that in document text,
attributes might be co-expressed with entities in lots of different
ways, as opposed to query text, which is short and allows only a
few possibilities of attribute expression.

The answer to the second question is also no, and warrants the
following detailed discussion.

Can we leverage existing open-domain systems? As mentioned
earlier, Biperpedia’s goal is schema-level attribute extraction while
most existing open-domain extraction systems output facts. In prin-
ciple, one can use the output of a conventional open-domain extrac-
tor to emit attributes instead of attribute values. For example, one
can extract many instances of (PERSON, STARRED IN, MOVIE)
and posit that STARRED IN is an attribute applicable to PERSON.
However, such an approach has a few limitations, that are best il-
lustrated in the context of various state of the art open-domain ex-
tractors.

The ReVerb system [9, 10] extracts binary relationships like “starred
in” and “was elected to” between entities. Each relation is con-
strained to be a verb phrase, or satisfy a verb-centric regular ex-
pression on the parts-of-speech tags. This is restrictive as many
attributes like CULTURE or POLICE-CHIEF are unnatural to repre-
sent via verb-phrases. Secondly, it is non-trivial to deduplicate verb
phrases and canonicalize them to a noun-phrase form. For example,

we need to be able to normalize STARRED IN, IS THE STAR OF, and
HAS ACTED IN to the noun-phrase form LEAD ACTOR, while ex-
cluding close phrases like STARRED which incidentally expresses
the reverse attribute.

The OLLIE system [18] is an improvement on ReVerb, as it also
induces noun-phrase patterns, and therefore can extract values for
attributes like POLICE-CHIEF. While this is better, this still does not
properly handle cases like “Brazil’s coffee production rose by 5%”.
In this sentence, the extracted relation would be “rose by” between
“Brazil’s coffee production” and “5%”, instead of the desired rela-
tion between Brazil and coffee-production. It is simpler to directly
learn the pattern that connects Brazil and coffee production.

Last, the NELL system [5] has a limited set of ≈ 600 relations
(including inverses), so one cannot get a huge attribute set out of it.

In light of these issues, we take the approach of directly learn-
ing patterns that connect an entity to an attribute. Both the entity
and the attribute are assumed to be noun-phrases, which bypasses
the issue of deduplicating verb forms of attributes to a canonical
noun phrase form. Note that deduplication is required even in the
case of noun-phrase attributes (e.g., LEAD ACTOR and STAR AC-
TOR should be the same), but here we use the synonym detection
system described in Section 6.

Since we already have high-quality attributes extracted from Free-
base and from the query stream, it is natural to apply distant super-
vision to seed the extraction of attributes from text.

5.1 Extraction via distant supervision
Biperpedia extracts attributes from text by inducing a set of (en-

tity, attribute) extraction patterns and applying them to a text cor-
pus. These patterns leverage a set of standard natural language pro-
cessing (NLP) primitives. For example, once we have identified
noun phrases in the text, we can apply the lexical pattern “A of E”,
where A and E match noun phrases, and represent an attribute and
entity respectively. Similarly, the parse pattern “E poss> A” iden-
tifies the second noun phrase as the attribute once the text has been
processed by a dependency parser (here the dependency label poss
refers to ‘possessive’). We note that the induced patterns would
need to be extended in order to extract values for the attributes.

We use distant supervision [19] and high-quality attributes ex-
tracted from Freebase and the query stream to induce extraction
patterns from text. Distant supervision has been successfully used
in various large scale extraction tasks, e.g., [19, 27]. In distant su-
pervision, one is not given a supervised corpus (as that would be
very expensive to obtain); instead one is provided with a knowl-
edge base (KB) containing sample facts of the kind that we wish to
extract. In our case, KB is created from the top attributes already
extracted by Biperpedia. We then assume that if a pair of related
entities in this KB is seen in a sentence, then that occurrence ex-
presses the corresponding relation. As an example, consider the
left-half of Figure 4. Say we know that COFFEE PRODUCTION is
an attribute of Brazil. Then if we see the text “The coffee pro-
duction of Brazil rose by 5%”, we can posit that the lexical pattern
‘The A of E’ and the parse pattern ‘A prep> of pobj> E’ are candi-
date patterns that connect an attribute to an entity.

We obtain an aggregated list of candidate patterns sorted by fre-
quency, along with the number of known attributes they cover. Ta-
ble 1 shows some of the top lexical and parse patterns thus induced.
We select all patterns induced by at least 10 unique existing (entity,
attribute) pairs, and that fire at least 10 times in a held-out subset of
the text corpus.

Attribute extraction using induced patterns: We begin by ap-
plying the following natural language pre-processors to all the text:
parts-of-speech (POS) tagger, dependency parser, noun phrase seg-

Pattern Example
E A [Google] (CEO) Larry Page

A , E Larry Page, (CEO), [Google]
(E = his) A [his] (wife)

E ’s A [Google] ’s (CEO)
A of E (CEO) of [Google]
A in E (urban population) in [Kingston]

A of the E (captain) of the [Australian cricket team]
(E = its) A [its] (fire-chief)

A at E (CEO) at [Google]
A for E (spokesman) for [gun control]

E nn> A [Eagles] (coach) Al Skinner
E poss> A [Susan Sarandon] ’s (partner)

(E = his) <poss A [his] (wife)
A prep> of pobj> E (CEO) of [Google]
A prep> in pobj> E (MVP) in the [National League]

A appos> E Steve Jobs, former (CEO), [Apple]
(E = her) <poss A [her] (husband)

A prep> with pobj> E (hitting coach) with the [Yankees]

Table 1: Top few induced lexical (top-table) and parse patterns
(bottom table) for attribute-extraction, along with an example.

menter, named entity recognizer, coreference resolver, and entity
resolver. These steps are necessary so we can define specific ex-
traction patterns as illustrated earlier. The coreference resolver re-
solves pronouns and nominals to entities, thereby increasing cov-
erage. For example in the text “John Smith lives in London. [His]
(wife)...”, the coreference resolver will tell us that ‘His’ and ‘John
Smith’ are the same entity, so ‘wife’ is really an attribute of ‘John
Smith’. The entity resolver maps mentioned entities to Freebase,
enabling us to generalize from individual extractions to classes as
we did with the query stream.

The coffee production of
Brazil rose by 5%...

 Pattern Induction

 Distant supervision

 Poland urban population
 China tourist attractions
 Brazil coffee production

A of E
...
A prep> of pobj> E

 The foreign minister of
Australia met with...

 “Australia”,
 id(Australia),
 “foreign minister”, 1

“foreign minister”, “met”, 1

 Verb Signatures

New Attributes

Figure 4: Distant supervision and subsequent extraction.

The induced patterns are then applied using lexical and parse
pattern matchers on a large NLP-processed web-crawl corpus (right
half of Figure 4). Matches where the attribute is not a nominal (i.e.,
common noun) are discarded. This step outputs a set of extraction
tuples of the form (A, E, E-ID, f). These tuples have the same
form as the extractions from the query stream, except that E-ID is
the Freebase id of E. These tuples are processed in the exact same
way as the query stream.

Figure 5 shows the yield of the top induced extraction patterns.
Although we induce more than 2500 patterns, we see that the top-
200 patterns account for more than 99% of the extractions. At the
same time we observe that no pattern covers more than 6% of the
extractions, which means that we indeed need a pattern-induction
pipeline to learn the large variety of patterns, and we cannot simply
operate with a small set of hand-written patterns.

5.2 Attribute classification
Given the huge number of attributes we can extract from Web

text, we still need a method for selecting the ones we add to Biper-
pedia. Given the anticipated uses of Biperpedia (e.g., additions

0.
00

0.
02

0.
04

0.
06

Pattern Id

Fr
ac

tio
n

1 41 81 121 161 201+

Figure 5: Extraction yield of patterns. X-axis plots patterns
in decreasing order of extraction yield, and the y-axis plots the
yield as a fraction of total.

to Freebase, question answering, and table interpretation), we fo-
cus Biperpedia on atomic attributes with clearly defined values.
In particular, our goal is to distinguish atomic-numeric attributes
(e.g., COFFEE PRODUCTION), and atomic-textual attributes (e.g.,
POLICE-CHIEF) from non-atomic attributes such as CULTURE and
HISTORY. Classifying attributes as atomic versus non-atomic also
enables future efforts to detect meta-data such as ranges and units,
and ultimately extraction of attribute values.

The technical challenge is to classify attributes without having
to extract values for them (which is an even harder problem). The
algorithm we describe below demonstrates another benefit of the
natural language processing we perform. Specifically, since our
text corpus is already pre-processed, we have the dependency parse
information for every sentence in the corpus. Since each attribute
is a noun phrase, we know the verb in the sentence that it is a gram-
matical subject of (as specified by the nsubj dependency label). We
found that the list of most frequent verbs for an attribute are highly
informative for our classification task. For example, by looking
at the text “Brazil’s coffee production increased by 5%”, we can
infer that COFFEE PRODUCTION is a numeric attribute since the
verb-lemma ‘increase’ is positively correlated with the presence of
numeric attributes. Similarly, by looking at the text “New York’s
police-chief resigned today...”, we can infer that POLICE-CHIEF is
not a numeric attribute as the verb-lemma ‘resign’ is negatively cor-
related with numeric attributes.

We note that our classification is not exhaustive as there are other
kinds of attributes that are not fully covered by our three cate-
gories e.g., phone-numbers, dates, misspellings, discrete-valued at-
tributes, etc. We club all of them in a fourth category called other,
which is a less structured ‘background’ category. In what follows
we describe how we learn three independent binary classifiers for
our three more-structured categories of interest.

Features. Our list of raw features is just the set of top-k verbs
that are nsubj parents of the attribute in our text corpus, where k
is set via cross-validation. These are extracted from the text along
with the attribute (see Figure 4). It is possible to enrich this fea-
ture space further by adding extra linguistic cues like adjectives,
modifiers, and special clauses attached to the attribute, and this is
something that we wish to explore in future work.

Table 2 shows the top few verbs for some sample attributes. As
illustrated earlier, numeric attributes like COFFEE PRODUCTION
and ENROLLMENT are strongly associated with verb-lemmas like
increase, decline, drop, etc. At the same time, popular verbs like
have, say, become are present in every category, and will ultimately
be given low weights during training.

However, using raw lexical terms as features is prone to overfit-
ting due to the huge vocabulary size, as well as unknown features
at test time, as we only have a limited training corpus. Therefore

we employ the fairly standard feature hashing trick to reduce the
verb vectors to a standard space with a preset dimensionality d.
More concretely, each verb vi is hashed to dimension h(vi) mod d,
where h is a hash-function. Hashing has the extra advantage that
ones does not need to lug around a lexicon of features; instead only
the hash function h and d need to be stored.

Classifier. The final hashed features thus obtained are combined
using a logistic regression model, whose weights are learnt using
a small manually labeled corpus of attributes. The model is regu-
larized using both L1 and L2 costs, i.e., we optimize the following
training objective:

min
W

∑
i

WT · F(xi, yi) + λ1||W||+ λ2||W||2 (1)

where W is the weight vector to be trained, F(xi, yi) is the hashed
feature vector for training attribute xi labeled as yi ∈ {−1, 1}, and
λ1, λ2 are the L1/L2 hyperparameters set using cross-validation.
This objective is optimized using a standard off-the-shelf second-
order solver. We emphasize that separate models (i.e., W vectors)
are learnt for the three categories of interest, and that the hyperpa-
rameters λ1, λ2, d, k are separately tuned for each classifier via
grid search and cross-validation.

Experiments. We trained and evaluated our three classifiers us-
ing 5-fold cross validation on a manually labeled corpus of 1212
attributes. These attributes belong to 16 varied classes so as to
avoid any bias during training. We compare our classifiers against
a simple baseline that always assigns the majority label (positive
or negative) to each attribute. Our goal is to see how much the
verb-signatures help in classifying the attributes over this baseline.

Table 3 lists the classification results for the three tasks, with
best settings of the hyperparameters. The two metrics of interest
are: our precision/recall/F1 over just the positive label (i.e., label-
ing an attribute as numeric, atomic-textual, or non-atomic, respec-
tively, in the three tasks), and our overall accuracy on both positive
and negative labels. We see that our classifiers can identify atomic
attributes (both numeric and textual) with a fairly high positive-F1
score as well as overall accuracy. Numeric attributes in particular
are very easy to identify with verb signatures, with an overall accu-
racy of 93.9%. Non-atomic attributes on the other hand, are harder,
with a lower F1-score, but even there the verb-signatures help us in
improving over the baseline by almost 10 absolute points.

We observe that the three tasks require varying lengths of verb
signatures (i.e., k). While only 50 verbs are enough to identify
numeric attributes, other attributes need a lot more verb evidence to
make a decision. Figure 6 plots the F1 of the positive label and the
overall accuracy for the three classifiers as we vary k. We see that
for all the classifiers, the performance increases up to a point, then
starts decreasing/flattening after a particular k. This is expected as
the system initially benefits from seeing more informative verbs,
and then degrades once it is fed more and more verbs that lack
discriminatory power. Overall we observe that 50–200 verbs are
sufficient to classify an attribute with a fairly good accuracy.

Category # of Verbs P(+) R(+) F1(+) Base Acc Our Acc
Numeric 50 86.5 78.8 82.5 81.6 93.9
Atomic-textual 100 83.3 86.4 84.8 59.2 81.7
Non-atomic 200 69.3 57.1 62.8 77.6 86.0

Table 3: Attribute classification results. (+) means that the met-
ric is only for the positive class.

Attribute Type Top associated verbs
coffee production numeric fall, decline, rise, drop, increase, reach, climb, have, expand, grow, come, total
urban population numeric grow, increase, exceed, reach, rise, double, expand, surpass, have, continue, jump, outnumber, pass

enrollment numeric increase, grow, drop, rise, decline, fall, continue, jump, double, begin, go, reach, stand
police chief atomic-textual say, tell, resign, announce, accuse, confirm, have, warn, quit, ask, call, take
headquarters atomic-textual say, remain, have, move, receive, become, open, collapse, announce, provide, issue, locate,
protagonist atomic-textual have, say, find, go, win, work, make, do, come, take, become, ask, struggle, fall
abbreviation atomic-textual stand, say, mean, become, refer, have, come, appear, feature, use, reveal, derive, go, begin

doctrine non-atomic say, apply, require, make, have, provide, teach, hold, become, seek, allow, mean, call
history non-atomic show, say, make, date, go, include, have, begin, suggest, give, tell, come, prove, mean
culture non-atomic have, say, change, become, make, come, go, allow, continue, encourage, need, seem

employee benefits non-atomic include, say, recognize, offer, continue, increase, account, decrease, match, terminate
family structure non-atomic include, become, weaken, crumble, prove, continue, base, have, collapse, say, undergo, mean, make

Table 2: Verb-signatures for sample attributes in Biperpedia. For each attribute, the verbs are represented in lemma form, and
sorted in decreasing order of count.

 50
 55
 60
 65
 70
 75
 80
 85

 0 100 200 300 400 500 600

F
1

of
 p

os
iti

ve
 c

la
ss

Verb signature length (k)

Non-atomic
Atomic-textual

Numeric

 76
 78
 80
 82
 84
 86
 88
 90
 92
 94

 0 100 200 300 400 500 600

O
ve

ra
ll

ac
cu

ra
cy

Verb signature length (k)

Non-atomic
Atomic-textual

Numeric

Figure 6: Attribute classification performance vs verb-
signature size.

6. SYNONYM DETECTION
By nature, people refer to the same attribute in different ways in

queries and in Web text. For example, the TOURIST ATTRACTIONS
and TOURIST SPOTS of a country are synonymous. Furthermore,
the query stream contains many spelling mistakes that users assume
the search engine will fix for them automatically. The quality of
Biperpedia critically depends on its ability to recognize synonyms
and misspellings. We note that both misspellings and synonyms are
dependent on the class to which the attribute is attached.

Detecting synonyms and misspellings deserves a detailed treat-
ment on their own, and is not a major contribution in this paper. For
completeness, we describe how Biperpedia addresses these prob-
lems. In both cases we use internal implementations of techniques
proposed for query expansion [7] and spell correction.

For spell correction, we rely on the search engine. Given an at-
tribute A of a class C, we examine the spell corrections that the
search engine would propose for the query “C A”. If one of the
corrections is an attribute A’ of C, then we deem A to be a mis-
spelling of A’. For example, given the attribute WRITTER of class
BOOKS, the search engine will propose that books writer is a spell
correction of books writter.

To detect synonyms, we train an SVM classifier that uses the fol-
lowing features on a pair of attributes A1 and A2: (1) Jaro-Winkler
text similarity between attributes, (2) whether one attribute is a sub-
attribute of the other, (3) whether the two attributes are known to be
antonyms in WordNet [11], and (4) similarity of query expansion.
Specifically, we compare the query expansion results of the queries
“C A1” and “C A2”. High overlap in the sets of expansions is a
signal that A1 and A2 may be synonyms. Based on experiments
that we do not report in this paper, we estimate the precision of the
SVM-based synonymizer to be 0.87.

7. ATTRIBUTE QUALITY
In this section, we evaluate the quality of Biperpedia attributes

and compare it to DBpedia [2], which is an ontology that is auto-
matically extracted from InfoBoxes in Wikipedia.

7.1 Experimental setting
The current version of Biperpedia is built using a hierarchy of

slightly over 10,000 classes. After extraction, merging synonyms
and attaching attributes only to the best classes, we ended up with
1.6M class-attribute pairs with 67,000 distinct attribute names. (We
note that the step of attaching attributes to best classes reduces the
number of class-attribute pairs by almost 50%.) As seen in Table 4,
Biperpedia is about 30 times bigger than DBpedia. We extracted
all the attributes from Freebase, but limited our extraction from the
query stream to 8000 attributes per class and only an additional
4000 from text that were not extracted from the query stream. We
note that the number of attributes extracted from Freebase accounts
for less than 6% of the total number of attributes.

Statistics Biperpedia DBpedia
Number of classes 10,309 529
Number of class-attribute pairs 1.6M 52,380
Average number of attributes per class 269 99
Number of unique attributes 67K 2,379

Table 4: Biperpedia and DBpedia statistics.

We experiment with 10 representative classes (Table 5), chosen
so some are broad and others are narrow. We also show the number
of attributes in corresponding DBpedia classes if they exist.

Class No. of attributes
Biperpedia DBpedia

FILMS 7.2K 44
COUNTRIES 7K 186

UNIVERSITIES 4.8K 21
NEWSPAPERS 4.3K 10

HOTELS 4.2K 17
COMEDY FILMS 5.1K n/a
US PRESIDENTS 3.9K n/a
UK COUNTRIES 3.5K n/a
SPORTS CARS 1.6K n/a

AMUSEMENT RIDES 0.8K n/a

Table 5: 10 classes for evaluation.

7.2 Overall quality
To measure precision, we manually labeled 100 randomly cho-

sen attributes out of the top-k for several values of k (unless k ≤
100, in which case we labeled all of them). We then used majority
voting among 3 evaluators to determine whether an attribute is good
or bad for this class. In Table 6 we measure the precision with two
different rankings of the attributes: Rank by Query – ranks the at-
tributes of a class by the number of instances of that class for which
the attribute appeared in the query stream, and Rank by Text does
the same for appearances in text. The Precision column specifies
the fraction of attributes that were labeled as good. As k increases,

the precision drops, but is still over 0.5 at 5000. We note that previ-
ous work [16, 21] reported precision only as far as k = 50 and the
precision reported at k = 50 is slightly lower than what we obtain
for k = 1000. The results also suggest that there are many more
good attributes beyond 5000 that could be added to Biperpedia, but
we need more focused techniques to identify them. The Freebase
column shows the fraction of good attributes that are also found
in Freebase, which drops rapidly. One striking observation is that
99% of attributes at k = 5000 are new for Freebase, which brings
out the importance of Biperpedia for schema augmentation. Sim-
ilarly, the DBpedia column shows the fraction of good attributes
that are also in DBpedia (using the 5 classes in Table 5 that exist in
DBpedia), which also drops as k increases.

The precision of the attributes when ranked by text is a bit lower
initially than when ranked by the query stream. This can be ex-
plained by the fact that extraction from the query stream can be
made more precise than from general text. However, at the lower
ranks the precision starts being similar. While we do not show this
in the table, it is interesting to note that the precision for attributes
that appear in both the query stream and text is similar for the small
values of k, but higher by up to 8% for k = 5000. This happens
because when an attribute appears very frequently in one of the
sources, it does not need any corroboration, but as the frequency
decreases, corroboration becomes a factor.

Top-k Rank by Query Rank by Text
Precision Freebase DBpedia Precision Freebase DBpedia

10 0.98 0.4 0.06 0.88 0.25 0.24
50 0.95 0.14 0.09 0.76 0.15 0.11
100 0.91 0.11 0.06 0.7 0.08 0.06
500 0.79 0.04 0.03 0.64 0.05 0.03

1000 0.72 0.02 0.02 0.6 0.02 0.02
2000 0.6 0.02 0.01 0.57 0.01 0.02
5000 0.52 0.01 0.01 0.54 0.01 0.01

Table 6: Attribute quality. The Freebase (DBpedia) column
shows the ratio of good attributes also in Freebase (DBpedia).

Table 7 shows an interesting relationship between an attribute’s
rank (k) and its number of synonyms. As k increases, the synonyms
per attribute decreases. For example, the class UNIVERSITIES has
2.8 synonyms per top-10 attributes, but only 0.75 synonyms per
top-1000 attributes. Hence, the highly-ranked attributes tend to be
expressed in many forms.

Class Top-10 Top-100 Top-1000
FILMS 2.3 1.61 1.13

COUNTRIES 1 1.9 1.05
UNIVERSITIES 2.8 1.46 0.75
NEWSPAPERS 2.6 1.45 0.88

HOTELS 2.9 1.5 0.88
COMEDY FILMS 2.5 1.5 0.98
US PRESIDENTS 1.8 1.36 0.75
UK COUNTRIES 1.8 1.34 0.88
SPORTS CARS 2.2 0.92 0.44

AMUSEMENT RIDES 0.9 1.01 0.37

Table 7: Avg. # synonyms per attribute.

7.3 Discussion
The analysis of Biperpedia reveals several important observa-

tions. First, the most significant reason for losses in precision is
caused by errors in mapping strings to entities in Freebase. For ex-
ample, for classes such as COUNTRIES or US PRESIDENTS where
entity linking is easier, we obtain precision at 5000 that is 20-
30% higher, while the precision for classes such as FILMS and

HOTELS, where there is a much higher frequency of erroneously
linking strings to entities, is lower by that amount. Fortunately, im-
proving entity linking is a subject of several ongoing efforts. In
the same vein, Biperpedia does not extract attributes for classes of
objects whose instances are not notable enough to be in Freebase,
such as SPOONS. To extract attributes for such classes, Biperpedia
can still use the same extraction patterns, but should not attempt
to map the entity in the pattern to Freebase, but rather assume that
each mention is to an anonymous entity of the appropriate class.

Second, we note that many of the highly queried attributes are
the non-concrete ones (e.g., CULTURE, HISTORY). This can be ex-
plained by the fact that users start their explorations of a topic with
such queries. We also note that there are classes with which many
more attributes can be associated than others. For example, geo-
graphical locations tend to have many attributes because quantities
are often measured with respect to geography.

Finally, we realized that one of the strengths of Biperpedia is ex-
tracting multi-token attributes. These attributes tend to be richer
and also tend to appear often in Web tables. To extract additional
such attributes, we implemented the following rule, explained by
example. If POPULATION or RURAL POPULATION are highly ranked
attributes from the query stream, then we infer that other attributes
like URBAN POPULATION that share the same syntactic root (i.e.,
‘population’) are also good, even if their support is not high. For
each class in Table 5 we evaluated a random subset of 100 multi-
token attributes sampled from beyond the first 5000 attributes from
Web text, and we obtained an average precision of 0.67. This is
better than the precision of 0.64 over the first 500 attributes from
Web text (Table 6). Using this method, we were able to approx-
imately double the size of Biperpedia while maintaining its aver-
age precision. In general, we believe that Biperpedia demonstrates
that there are many more good attributes to be mined beyond the
top 5000, but we will need more focused techniques to get them.

8. FINDING BEST CLASSES
As mentioned earlier, Biperpedia attaches an attribute to every

class in the hierarchy to which it is relevant. This is appropriate
when we want to verify whether an attribute is relevant to a partic-
ular class, but if we wish to create a more modular ontology or find
attributes that can be contributed to Freebase, we need to find the
best classes to which to attach an attribute.

The challenge in finding the best classes is illustrated by the fol-
lowing example. Suppose we want to assign the attribute BAT-
TERY LIFE to classes in the hierarchy shown in Figure 7. The
top-most class CONSUMER PRODUCTS is too broad because not all
consumer products (e.g., SHOES) have batteries. The leaf classes
SLR DIGITAL CAMERAS and COMPACT DIGITAL CAMERAS, on
the other hand, are too specific because any digital camera has a
battery. As a result, the class DIGITAL CAMERAS can be consid-
ered as a best class for BATTERY LIFE. Using a similar argument,
COMPUTER PERIPHERALS (a sibling class of DIGITAL CAMERAS)
can also be viewed as a best class for BATTERY LIFE. Alternatively,
if BATTERY LIFE applies to the vast majority of the sub-classes of
CONSUMER PRODUCTS, we may now want to attach it to CON-
SUMER PRODUCTS. Hence, the challenge is to find the classes that
are not too general, but not too specific either, and trading off par-
simony of the ontology.

The key idea underlying the algorithm we describe below is that
we compute a support for each attribute within a class. We then
compare the support of the attribute in the class with its support in
parent classes and in sibling classes to make a decision on the best
placement of the attribute. Importantly, the notion of support en-
ables us to consider multiple ways to make the placement decision.

Our algorithm makes the placement decision for each attribute
independently of others. An interesting future direction is to use
previous attribute placement decisions to drive subsequent ones.

Consumer_products

Digital_camerasComputer_peripherals

SLR_digital_cameras Compact_digital_cameras

battery life

Shoes

Figure 7: Class hierarchy and attribute placement

8.1 Placement Algorithm
Algorithm 1 computes the best classes,OA, for an attribute A. In-

formally, for every attribute A, the algorithm traverses, in a bottom-
up fashion, each tree of classes for which A has been marked as
relevant (i.e., each tree that contains class C where (C, A) is ex-
tracted). For each pair of class and attribute, (C, A), we compute
the support for A in C, S(C, A). The support is computed from
the provenance. For example, for an attribute extracted from the
query stream, the support is the ratio between the number of in-
stances of C that have A and the maximal number of instances for
any attribute of C.

Squery(C, A) =
InstanceCount(C, A)

max
A*
{InstanceCount(C, A*)}

The support from text extractions is computed similarly, and the
support for attributes from Freebase is 1. We define S(C,A) to be
the maximal support it gets from any of the sources.

The key decision the algorithm needs to make is the following.
When there are several siblings with sufficient support, should they
all be in OA, or should we continue up the class hierarchy. To
address this challenge, the algorithm computes a diversity measure
for the siblings. If there is little diversity among the support for the
siblings, we continue up the tree. If there is significant diversity,
i.e., only a few of the siblings have sufficient support, we output
these siblings. The diversity is defined as follows.

D(C1 , . . ., Cn ,A) =

 1
n−1

n∑
i=1

max
j=1,...,n

{S(Cj ,A)}−S(Ci ,A)

max
j=1,...,n

{S(Cj ,A)} n > 1,

0 n = 1

where C1 ,. . ., Cn are sibling classes. When the diversity is above
a threshold θ (Line 9 in Algorithm 1), we add to OA all the siblings
whose support is a factor of α more than the highest among the
siblings. In our example, for attribute BATTERY LIFE, the diver-
sity for sibling classes under CONSUMER PRODUCTS will be high
because some consumer products have batteries, but others do not.
Hence, the sibling classes that have high support will be added to
OBATTERY LIFE. We tuned θ separately in our experiments.

8.2 Evaluation
We applied Algorithm 1 on the attributes of Biperpedia and de-

scribe the result of evaluating the assignments of 50 attributes onto
1100 classes. For each assignment, we asked 3 evaluators to specify
whether the assignment is (1) correct, (2) should be to the immedi-
ate parent, (3) to one of its immediate children, (4) to classes other
than the immediate parent/children in the same hierarchy, or (5)
completely erroneous. We call an assignment exact if an attribute
is assigned to one of its best classes and approximate if it is exact
or is assigned to immediate parents or children of best classes. Our
results consider several precision measures:

Algorithm 1: Place attribute in class hierarchy
input : An attribute A and a forest of classes T .
output: OA: the classes to which we attach A.

1 OA ← ∅;
2 foreach C ∈ T .Classes s.t. (C, A) is extracted do
3 Add the roots of T that contain C to relevantRoots;

4 foreach R ∈ relevantRoots do
5 t← tree with root R;
6 foreach C ∈ t.Classes in post order do
7 if C is not leaf node then
8 Compute S(Ci , A), i = 1, . . . , n, Ci ∈ C.children;
9 Smax ← max

i=1,...,n
S(Ci , A);

10 if D(C1 , ..., Cn , A) > θ then
11 OA ← OA∪ {Cj : S(Cj , A) > α · Smax};
12 else if C = root then
13 Add C to rootList;

14 foreach ROOT ∈ rootList do
15 if S(ROOT, A) > α ·maxR∈rootList {S(R, A)} then
16 OA ← OA∪ ROOT;

17 return OA;

• Mexact: ratio of number of exact assignments to all assign-
ments.
• Mapprox: ratio of number of approximate assignments to all

assignments. Note that an approximate assignment is still valu-
able because a human curator would only have to consider a
small neighborhood of classes to find the exact match.

Mfiltered
exact (resp.Mfiltered

approx) is the same asMexact (resp.Mapprox)
but applied only to attributes deemed good in the experiments in
Section 7.

To demonstrate the benefits of the diversity index, we also com-
pare with a strawman algorithm that traverses the tree bottom up
using the following rule when considering a node n with sufficient
support. When the support for the parent of n is similar to that of
n, or there are 5 (tuned to perform best in the experiment) or more
children with similar support to n, the algorithm continues up the
tree. Otherwise, the attribute is assigned to n and any of its siblings
that have sufficient support.

The evaluation results, shown in Table 8, demonstrate that the
best results for our algorithm are obtained when we set θ to be
0.9 (we show only a few selected values from the ones we experi-
mented with), and that the algorithm outperforms the strawman al-
gorithm by more than 50% on both unfiltered attributes and filtered
attributes. Even on the unfiltered attributes, our algorithm shows a
precision of 72% for approximate matches, which offers an excel-
lent starting point for importing Biperpedia attributes into a curated
ontology. Mapprox andMfiltered

approx at θ = 1.0 are not computed
because under this extreme case, attribute A will be assigned to and
only to every relevant root, which has no immediate parent. In the
experiments, the value of α is set to 0.1, but we note that α (Line
10 in Algorithm 1) mostly affects the number of classes returned,
rather than the precision of the results.

Algorithm Mexact Mfiltered
exact Mapprox Mfiltered

approx

Strawman 0.36 0.45 0.66 0.83
θ = 0.5 0.41 0.55 0.63 0.84
θ = 0.7 0.47 0.61 0.68 0.88
θ = 0.9 0.56 0.71 0.72 0.91
θ = 1.0 0.4 0.52 n/a n/a

Table 8: Attribute placement precision.

Analyzing the errors of our algorithm illustrates an interesting
challenge for future work. Our diversity measure is highly depen-

dent on peoples’ interest in specific entities. For example, users
frequently query about the brothers of presidents, but not of peo-
ple with other government titles. As a result, the diversity of the
class GOVERNMENT TITLE becomes large, and the algorithm as-
signs the attribute BROTHER to the class PRESIDENTS instead of
GOVERNMENT TITLES. However, GOVERNMENT TITLES is the
parent class of PRESIDENTS and should be a better class (though
not the ultimate assignment) for BROTHER. A possible solution is
to consider the frequency of mentions for classes in the computa-
tion of the diversity index.

9. INTERPRETING WEB TABLES
Ultimately, Biperpedia is useful if it can improve search appli-

cations. In this section we show that Biperpedia considerably im-
proves our ability to recover the semantics of Web tables.

There are millions of high-quality HTML tables on the Web with
very diverse content. In addition to answering many user queries
on search engines, combining these tables in interesting ways can
yield novel data sets and insights. Several recent efforts have fo-
cused on harnessing such tables [1, 4, 17, 25, 26]. One of the major
challenges with Web tables is to understand the attributes that are
represented in the tables. For example, the table in Figure 8 dis-
plays the GROSS TONNAGE and LOAD CAPACITY of SHIPS. In
this section, we show how to interpret a Web table with Biperpe-
dia. Interpreting a Web table refers to the process of attaching with
it Biperpedia attributes. We may attach a Biperpedia attribute to
a specific column (which we refer to as column mapping), or at-
tach an attribute to the entire table (table mapping) if we cannot
pinpoint the precise column, or if the attribute name is not repre-
sented by a single column. If we can attach Biperpedia attributes
to a table, then the search engine can give much higher weight to
the page containing the table when a keyword query contains those
attributes, since that attribute plays a more significant role on the
page than arbitrary appearances elsewhere. As a result, the table
can be retrieved for keyword queries more precisely.

...
gross tonnage
...
load capacity
...
country
...
beam
...

<Surrounding Text> "... the maximum load capacity in
terms of filled TEUs ..."

"List of largest container ships"<Page Title>
Class: Ships

Name Beam Max. TEU GT

Marsk Mc-Kinney Moller 58 18270 174500 Denmark

...

Figure 8: Column and table mappings.

Interpreting Web tables also serves as an indication for the recall
of Biperpedia. In particular, we show that with Biperpedia we can
increase the number of tables we interpret by more than a factor
of 4 compared with Freebase.

9.1 Mapping Algorithm
We describe our algorithm for computing column and table map-

pings, which, in principle, is a variant on the schema matching
problem for which there is a plethora of literature [8]. The main
aspect distinguishing our problem setting from standard schema
matching is that we are not given as input a pair of schemas and
their corresponding tables. Instead, the attributes that best describe
the table may be in the surrounding text or the title of the page.
Surrounding text is particularly important for interpreting Web ta-
bles that have no schema. Hence, our algorithm’s task is to match
Biperpedia attributes to either column headers or token n-grams in
the surrounding text and page title. We proceed in two steps.

(1) Preprocess: Given a table with headers H1 . . . , Hn, and a
header H ∈ H1 . . . , Hn, we create a set of strings SH with which
to match. The set includes H as well as:
• if H has more than 3 tokens, we add to SH all 2-grams and

3-grams in H .
• if H includes the token or or and, we add to SH the text pre-

ceding and following that token.
• if the values in H’s column are all members of a class C, we

add the name of C to SH .
We also add the following strings to SH , but matches to these are
considered only if we cannot find matches to the above:
• if H has multiple tokens, add its acronym by concatenating the

first letters of its words.
• we add the root of the syntactic parse of the attribute (e.g. POP-

ULATION is the root of RURAL POPULATION).
We also create a table-level set of strings T from all 2-grams and

3-grams in the text in the title of the page or the text immediately
surrounding the table.
(2) Match: We assume that every table is associated with a class C
in the hierarchy that describes the entities in its subject column. If
we do not have a subject column, or our prediction of the class is
of low confidence, we ignore the table.

We consider all the attributes that Biperpedia has for the class
C and try to match their names with the elements of T and of
SH1 , . . . , SHn . We use Jaro-Winkler string similarity to find ap-
proximate matches. If we find matches in one of the SH ’s we out-
put them as column matches, and if we find matches in T we output
them as table matches.
Example: In Figure 8, the class of the subject column is SHIPS.
The column “Beam” maps directly to the attribute BEAM, and the
column “GT” maps to GROSS TONNAGE as an acronym. During the
preprocessing, the fourth column will be annotated with the label
COUNTRY and will map to the attribute COUNTRY. The attribute
LOAD CAPACITY will be output as a table mapping. In fact, the
columns “Beam”, “Max. TEU”, and “GT” do describe the load
capacity of a ship. The example in Figure 9 illustrates a case where
Biperpedia finds useful mappings for a table with no schema.

characteristics
...
weight
...
life span
...
life cycle
...

African Grey Parrot 73

American Alligator 56

American Newt 3

... ...

<Surrounding Text> "This chart provides the expected
maximum life span for a variety of
animals in years."

"The Life Span of Animals"<Page Title> Class: Animals

Figure 9: Table mappings for a table with no schema.

9.2 Evaluation
We evaluate the accuracy of our mapping algorithm on approx-

imately 200 tables extracted from the Web. We chose tables that
have relatively high quality as opposed to ones in which HTML
tables are used to render non-tabular content. We used the subject-
column annotator of WebTables and the class associated with it [24].
In addition to the full set of tables, we experiment with (1) a set of
Wikipedia tables that are typically of higher quality and have more
columns, and (2) a set of tables with no schema (i.e., a traditional
schema matching algorithm would return nothing).

To evaluate column matching, we measure precision (the per-
cent of correct matches) and recall (the fraction of columns that got

correct mappings). However, not all columns have the same im-
portance and many of the benefits of our mappings are in the table
mappings. To measure that, we posit that each table has one or
more representative attributes. Intuitively, these are the attributes
that should cause the table to be retrieved for a query because they
capture the essence of the table. For example, the attribute LOAD
CAPACITY can be considered representative for the table in Figure 8
while LIFE SPAN is representative for the table in Figure 9. The rep-
resentative attributes need not correspond to a single column in the
table. We asked our evaluators to judge whether the mappings cap-
ture what they considered the representative attributes of a table.

9.2.1 Interpretation Quality
Table 9 shows the results of the quality evaluation, based a ma-

jority voting of 3 evaluators. The Representative column shows
the number of tables for which at least one correct representative
attribute was found. The Overall (P/R) column shows the aver-
age precision/recall over all mappings. The Avg. P/R per table
columns compute the precision/recall per table and then averages
over all the tables. For the Full dataset, 46% of all mappings are
correct (51% per table), and 75% of all the columns are covered by
an attribute (78% per table). We are able to capture the essence of
the tables using representative attributes 82% of the time.

Dataset #tables Representative Overall (P/R) Avg. P/R per table
Full 193 158 (82%) 0.46 / 0.75 0.51 / 0.78

Wikipedia 102 83 (81%) 0.44 / 0.73 0.47 / 0.75
No Schema 27 21 (78%) 0.44 / 0.58 0.46 / 0.57

Table 9: Mapping quality.

Considering the Wikipedia tables alone, the precision and recall
are slightly lower for two reasons. First, the Wikipedia tables tend
to have more complicated surrounding text leading to some false
mappings. This shortcoming can be addressed by using IR tech-
niques to compute weights for words in the surrounding text based
on their importance. Second, the Wikipedia tables tend to have
more columns and therefore it is harder to map them all correctly.

Finally, we considered a set of tables that have no schema row,
or that WebTables was not able to identify a schema row. For these
tables, no conventional schema matching technique can provide
any interpretation. In a sense, these are the hardest tables to inter-
pret in the corpus. By generating table mappings, however, we are
still able to find representative attributes for 78% of the tables and
obtain significant precision and recall values, albeit slightly lower
than the Wikipedia tables. This experiment demonstrates that with
a large ontology of attributes, we are able to find the ones that de-
scribe Web tables even when they have no schema.

9.2.2 Comparison with Freebase
The next question is how many of these mappings are due to

Biperpedia versus the attributes that were already in Freebase. The
results in Table 10 show that the vast majority are due to the ad-
ditional attributes of Biperpedia. The first set of columns shows
the number of mappings to Biperpedia attributes, the number that
were mapped to Freebase attributes, and the ratio between them.
For example, when mapping the Full dataset, 142 of the 807 cor-
rect mappings are to Freebase attributes, so Biperpedia increases
the coverage by a factor of 5.7 compared to Freebase. The second
set of columns show these numbers for mappings to representative
attributes. For the representative attributes the improvement factor
is even higher because the representative attributes are more com-
plicated and thus less likely to be found in Freebase. For the tables
without schema, the relative coverages are even higher.

Dataset Mappings Rep. Attributes
All Freebase Rel. Cov. All Freebase Rel. Cov.

Full 807 142 5.7 188 23 8.2
Wikipedia 412 95 4.3 99 12 8.3

No Schema 67 3 22 25 0 n/a

Table 10: Relative coverage compared to Freebase attributes.

9.2.3 Error Analysis
The top part of Table 11 shows that the two most frequent causes

of error of our algorithm are the noisy token n-grams in the sur-
rounding text and page title that are mapped to attributes unre-
lated to the HTML table. We can reduce this error by using better
IR/NLP techniques for prioritizing the n-grams that are more “rel-
evant” to the table. The last cause is the various incorrect string
matchings against column headers using query expansion. Here, a
more judicious usage of query expansion may reduce the errors.

Cause Count
Incorrect Mappings
Noisy surrounding text 400 (41%)
Noisy page title 308 (32%)
Column header match error 261 (27%)
Missed Representative Attributes
Table is too specific 21 (60%)
Not enough information 5 (14%)
Evaluator disagreement 4 (11%)
Biperpedia too small 3 (9%)
Missed relevant phrases in context 2 (6%)

Table 11: Interpretation error analysis.

The bottom half of Table 11 considers the errors in detecting
representative attributes. The largest cause of error is when the ta-
ble description involves another constant (e.g., the winners of the
Ballon D’Or Award in different years). It is conceivable that our
class hierarchy should contain a class BALLON D’OR WINNERS,
but no matter how detailed, the class hierarchy will always have
gaps. The second cause is when there is simply not enough in-
formation in the column headers or context to make a comparison
with attributes. Here, external links into the page may provide ad-
ditional evidence. The third cause is where the three evaluators do
not agree on any representative attributes, but some of the attributes
are indeed representative. The fourth cause, insufficient coverage
of Biperpedia, applies only in 9% of the cases. The last cause is
when the attribute name is not a 2-gram or 3-gram and more so-
phisticated noun-phrase recognition is required.

10. RELATED WORK
We have already touched on several related works throughout the

paper. We focus here on other attribute extraction efforts. Pasca et
al. [21, 22] were the first to explore the use of query stream data
to generate attributes for entities, and their main result was that
the query stream yields 45% more accurate extractions of attributes
than text. While our results are consistent with that observation, we
go further and show that the query stream can be used to seed the
extractions from text. In addition, we address the problems of mis-
spelling and synonymy that arise with extraction from the query
stream and other sources. The scale of Biperpedia is considerably
larger than previous efforts. In particular, the precision they report
at rank 50 (which is the largest rank they consider) is slightly lower
than what we report at rank 1000. Finally, we show that a broad
collection of attributes is beneficial for interpreting HTML tables.

Lee et al. [16] addresses a related problem of determining how
typical a class C is given an attribute A, or how typical an attribute
A is given a class C. In contrast, we are interested in building an on-
tology with attributes, where we identify synonyms, misspellings,

and relationships between pairs of attributes. They also have a
pipeline for extracting attributes from queries and from Web text,
but there are several key differences. First, they use two patterns
to extract attributes from text, while we have shown that to obtain
a sizeable and high-quality ontology we need to employ hundreds
of patterns. Second, they extract attributes independently from the
sources, while we use the high-quality extractions from the query
stream to seed our text extraction. They also perform concept level
extractions which we do not, e.g., using patterns such as the acidity
of wine to extract attributes for the class WINES. The precision they
report at rank 50 is the same level we report at rank 1000. Lee et
al. mention interpreting Web tables as a motivation for their work,
but do not report applying their attributes to this task.

11. CONCLUSIONS
We described Biperpedia, an ontology of binary attributes that

extends Freebase with extractions from the query stream and from
Web text. The key idea underlying our extraction is to use the high-
quality attributes from Freebase and the query stream to seed ex-
traction from text. We demonstrated Biperpedia’s utility by show-
ing that it enables interpreting over a factor of 4 more Web ta-
bles than is possible with Freebase. We are currently adding high-
quality attributes from Biperpedia to Freebase.

In addition to improvements and extensions to our class hierar-
chy and to the algorithms for resolving strings to entities that im-
mediately benefit Biperpedia, we are pursuing two main directions.
First, we are developing methods for classifying different relation-
ships between pairs and attributes and discovering them from Web
text. Second, we are interested in mining a grammar for complex
attribute names. For example, we would like to be able to recognize
that INCREASE IN TOTAL ASIAN POPULATION describes a change
in the attribute ASIAN POPULATION. Such interpretation is crucial
for understanding a large portion of high-quality Web data.

Finally, from the perspective of a search application, our algo-
rithms can be applied to any query stream with possibly different
results. For example, applying our approach on the query stream
from mobile devices will emphasize different attributes than the
general query stream, and create an ontology more suited to the
search needs of that traffic.

Acknowledgements
We thank Manas Joglekar for his help in evaluation, and we thank
Tara McIntosh, Fernando Pereira, and Dekang Lin for comments
on earlier versions.

12. REFERENCES
[1] M. D. Adelfio and H. Samet. Schema extraction for tabular

data on the web. PVLDB, 2013.
[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,

and Z. G. Ives. Dbpedia: A nucleus for a web of open data.
In ISWC/ASWC, pages 722–735, 2007.

[3] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph database
for structuring human knowledge. In SIGMOD Conference,
pages 1247–1250, 2008.

[4] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on the
web. PVLDB, 1(1):538–549, 2008.

[5] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka, and T. M. Mitchell. Toward an architecture for
never-ending language learning. In AAAI, 2010.

[6] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. Flumejava: easy, efficient
data-parallel pipelines. In PLDI, pages 363–375, 2010.

[7] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Probabilistic
query expansion using query logs. In WWW, pages 325–332,
2002.

[8] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data
Integration. Morgan Kaufmann, 2012.

[9] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and
Mausam. Open information extraction: The second
generation. In IJCAI, pages 3–10, 2011.

[10] A. Fader, S. Soderland, and O. Etzioni. Identifying relations
for open information extraction. In EMNLP, pages
1535–1545, 2011.

[11] C. Fellbaum. WordNet: An Electronic Lexical Database.
Bradford Books, 1998.

[12] J. R. Finkel, T. Grenager, and C. D. Manning. Incorporating
non-local information into information extraction systems by
gibbs sampling. In ACL, 2005.

[13] A. Haghighi and D. Klein. Simple coreference resolution
with rich syntactic and semantic features. In EMNLP, pages
1152–1161, 2009.

[14] M. A. Hearst. Automatic acquisition of hyponyms from large
text corpora. In COLING, pages 539–545, 1992.

[15] J. Lee, J.-K. Min, and C.-W. Chung. An effective semantic
search technique using ontology. In WWW, pages
1057–1058, 2009.

[16] T. Lee, Z. Wang, H. Wang, and S.-W. Hwang. Attribute
extraction and scoring: A probabilistic approach. In ICDE,
pages 194–205, 2013.

[17] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and
searching web tables using entities, types and relationships.
PVLDB, 3(1):1338–1347, 2010.

[18] Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Etzioni.
Open language learning for information extraction. In
EMNLP-CoNLL, pages 523–534, 2012.

[19] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled data. In
ACL, pages 1003–1011, 2009.

[20] N. Nakashole, G. Weikum, and F. M. Suchanek. Patty: A
taxonomy of relational patterns with semantic types. In
EMNLP-CoNLL, pages 1135–1145, 2012.

[21] M. Pasca and B. V. Durme. What you seek is what you get:
Extraction of class attributes from query logs. In IJCAI,
pages 2832–2837, 2007.

[22] M. Pasca, B. V. Durme, and N. Garera. The role of
documents vs. queries in extracting class attributes from text.
In CIKM, pages 485–494, 2007.

[23] T. Tran, P. Cimiano, S. Rudolph, and R. Studer.
Ontology-based interpretation of keywords for semantic
search. In ISWC/ASWC, pages 523–536, 2007.

[24] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen,
F. Wu, G. Miao, and C. Wu. Recovering semantics of tables
on the web. PVLDB, 4(9):528–538, 2011.

[25] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu. Understanding
tables on the web. In ER, pages 141–155, 2012.

[26] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri.
Infogather: entity augmentation and attribute discovery by
holistic matching with web tables. In SIGMOD Conference,
pages 97–108, 2012.

[27] L. Yao, S. Riedel, and A. McCallum. Collective
cross-document relation extraction without labelled data. In
EMNLP, pages 1013–1023, 2010.

