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ABSTRACT
WebRTC is an open-source real-time interactive audio and 
video  communication  framework.  This  paper  discusses 
some  of  the  mechanisms  utilized  in  WebRTC  to  handle 
packet  losses  in  the  video  communication  path.  Various 
system  details  are  discussed  and  an  adaptive  hybrid 
NACK/FEC  method  with  temporal  layers  is  presented. 
Results are shown to quantify how the method controls the 
quality trade-offs for real-time video communication.

Index Terms— WebRTC, real-time communication, 
error resilience, forward error correction.

1. INTRODUCTION

WebRTC  [1]  is  an  open-source  project  that  enables  web 
browsers  with  real-time  audio  and  video  communication. 
This paper presents some of the underlying video processing 
aspects of WebRTC that enable reliable transmission of real-
time video over lossy networks. It is well known that it is 
difficult  to  provide  a  high  user  experience  for  interactive 
real-time  applications  such  as  video  conferencing.  These 
applications  are  limited  by  the  time-varying  nature  of  the 
network  conditions  (bandwidth,  packet  loss,  network 
latency), and requirements of low-latency real-time coding. 
   Various  approaches  exist  [2]  to  handle  packet  losses 
during  a  multimedia  transmission,  such  as  packet 
retransmissions  based  on  negative  acknowledgment 
(NACK),  forward  error  correction  (FEC)  [3][4],  and 
reference  picture  selection  (RPS)  [5].  These  are  often 
supplemented with codec error-resilience methods [2], such 
as  intra-refresh  and  error  concealment.  For  real-time 
applications  with  strict  delay  requirements,  a  hybrid 
NACK/FEC  scheme  [6]  can  be  used  to  achieve  some 
balance of delay cost in the NACK method and redundancy 
cost in the FEC method.
    This paper presents one set of protection tools currently 
used in WebRTC for handling packet loss. In particular, an 
adaptive hybrid NACK/FEC method with temporal  layers 
(TL)  is  proposed  as  a  useful  scheme  to  balance  video 
quality, smoothness of rendering (playout jitter), and end-to-
end delay. TL refers to the temporal scalability feature in the 
VP8 [7] codec used in WebRTC. Various system details and 
components  are  also  discussed  to  highlight  the  adaptive 
nature of our approach.
    The  system  description  of  the  video  processing  in 
WebRTC is discussed in Section 2. Section 3 discusses the 
simulations  and  metrics  used  to  quantify  the  system 

behavior.  Sections  3.1-3.3  contain  some  results  and 
discussion  regarding   hybrid  NACK/FEC,  FEC,  and  TL. 
Conclusion follows in Section 4. 

2. SYSTEM DESCRIPTION

Figure 1 - WebRTC video processing system diagram

Figure  1  shows  the  WebRTC  video  processing  system 
diagram.  Raw  frames  entering  the  send  side  are  first 
preprocessed,  and  then  encoded  at  a  given  target  rate. 
Subsequently,  the  frames  are  packetized,  and  when 
applicable, an FEC encoder is applied. The FEC is a XOR 
code  based  on  RFC  5109  [8].  On  the  receiver  side, 
packetized encoded data is processed by the FEC Decoder, 
followed  by  the  Jitter  Buffer  (JB).  The  latter  constructs 
encoded frames from the received packets and estimates the 
video  jitter.  Once  a  frame  is  complete,  it  is  sent  to  the 
decoder, which outputs raw data (YUV format). The JB is 
also responsible for building a list of missing packets that 
are the basis for the retransmission request. 
    We model the jitter as composed of two components, one 
random and one relative to the size of the video frames [9]. 
We  then  collect  the  per-frame  statistics  of  the  frame’s 
capture  time  and  receive  times,  and  model  it  as  linearly 
dependent  on the frame’s  size difference.  This  method of 
estimating the jitter makes it possible to adapt to changes in 
frame size and link capacity, which often have an effect on 
the video jitter.  The jitter estimate adapts to frames being 
late due to FEC decoding, but not due to retransmissions. 
    The Media Optimization (MO) component on the send 
side  controls  the  adaptive  hybrid  NACK/FEC.  MO 
periodically receives network statistics,  which are updated 
with every incoming RTCP receiver report  (approx. every 
second).  These  network  statistics  include  the  available 
bandwidth,  fractions  of  packets  lost  and  the  Round  Trip 
Time (RTT). A receive-side bandwidth estimator computes 
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the available network bandwidth [9]. The MO also receives 
encoder statistics such as the incoming frame rate and the 
actual bitrates sent (video bitrate and FEC/NACK protection 
overhead rate).  The main function of MO with regard to the 
hybrid NACK/FEC is to set the amount of FEC protection, 
and update the encoder with the new source rate (available 
bandwidth minus the estimated protection overhead).

3. SYSTEM BEHAVIOR AND RESULTS

The system was evaluated using an offline simulation tool, 
which simulates various network conditions in a controlled 
environment. The simulation tool acts as a transport module 
between  the  sending  client  and  the  receiving  client,  and 
consists of a queue that ads a network transit delay. A packet 
dropper is placed after the queue, which can inflict packet 
losses  drawn from a bursty loss model using the Gilbert-
Elliot  model [10].  In  the following results,  only complete 
VP8 bitstreams are  given to  the  decoder,  so  the  video  is 
decoded  without  errors/packet  loss,  and  the  receiver  is 
configured to wait for all necessary packets. Video quality is 
therefore mainly affected by the smoothness of the playback 
and the available bitrate.
   The  following performance  metrics  defined  below are 
measured to characterize the behavior of the system:
- End-to-end delay: the average of the time taken between 
reading a frame from a file until it is about to be rendered 
back to a file at the receiver.
- Render standard deviation: the standard deviation of the 
time delta between two successive frames being rendered. 
For  the  best  temporal  quality  the  render  delta  should  be 
close  to  the  captured  frame  rate  with  low  variance.
-  Protection  overhead:  defined  as  the  average  percentage 
overhead (relative to total bitrate) due to retransmissions and 
FEC. This is a measure of how much the video protection 
applied degrades the compressed video signal.

Simulations  reported  below  were  conducted  on  a  talking 
heads scene with a resolution of 640x360 at 30 fps, with low 
to medium motion. The sequence is about ~30 seconds long, 
and the results were averaged over multiple runs.

3.1 Hybrid NACK/FEC

WebRTC uses  an  adaptive hybrid  NACK/FEC method to 
obtain  a  better  trade-off  between  temporal  quality 
(smoothness of rendering), spatial video quality and end-to-
end delay. The adaptive aspects of our method refer to the 
dynamic setting of the FEC amount at the sender side, and 
the playout delay at the receiver side.
   The cost of the hybrid NACK/FEC method is the overhead 
penalty of the FEC, as shown in Figure 2a. Apart from that, 
it has clear benefits over the NACK only method. Figure 2b 

shows that  on  average  end-to-end delay  is  reduced  when 
combining NACK and FEC since on average less time is 
spent waiting for retransmissions, although the wait time for 
a single retransmission is unchanged. As shown in Figure 2c 
and  d,  the  standard  deviation  of  the  render  time  delta  is 
significantly reduced as well.
    As mentioned in Section 2, the FEC amount (protection 
level)  is  determined  in  the  MO  based  on  the  received 
network  statistics.  In  particular,  the  amount  of  FEC  is 
conditioned  on  the  RTT.  Packets  can  be  retransmitted 
without substantial freezes when the RTT is low; therefore 
the amount of FEC can be reduced, resulting in a smaller 
delay penalty. In large RTTs, the delay has a bigger impact 
on the temporal quality, and therefore the amount of FEC 
should not be reduced. This is shown in Figure 2a, where 
the FEC overhead is reduced for RTT/2 < ~50 ms.

Figure 2 – NACK and Hybrid NACK/FEC: for different 
values of  dadd, as a function of network transit delay. Solid lines 
refer to NACK, dashed lines refer to hybrid NACK/FEC. For a 5% 
packet  loss  rate,  burst  length  of  1,  at  500kbps.  a)  Protection 
overhead. b) End-to-end delay. c) Rendering standard deviation. d) 
Rendering standard deviation for hybrid NACK/FEC only.

The playout delay is controlled in  the JB, and is used to 
trade-off  the  temporal  quality  (smoothness  of  rendering) 
with the end-to-end delay. The goal is to delay the playback 
in order to reduce the duration in which the video is frozen 
while waiting for a retransmitted packet. However, when the 
RTT is large, additional playback delay is less suitable, as 
one-way  delays  longer  than  400  ms  severely  impair 
communication  [11].  Therefore  the  additional  playback 
delay  should  be  chosen  depending  on  the  fraction  of 
unrecoverable packet losses, u, and the estimated RTT. The 
additional playback delay can be calculated as

dadd = min(max(K – RTT/2 - djitter, 0), RTT),  if u > Umin,
dadd = 0, otherwise.
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K is the maximum acceptable end-to-end delay, RTT/2 is an 
estimate of the network transit  time,  djitter is  the estimated 
jitter and Umin  is a threshold on the packet loss. The fraction 
of unrecoverable losses can be estimated as the number of 
packets NACKed and received unreasonably late compared 
to the number of packets received within reasonable time, 
counted  over  a  fairly  large  window,  e.g.,  ten  seconds. 
Unreasonably late can be defined as at least RTT/2 later than 
when we expected the frame in question to be completed. 
The cost of increased end-to-end delay can be seen in Figure 
2b, while the gain of additional playback delay can be seen 
in Figure 2c and 2d. The “adaptive” line in Figure 2 uses the 
equation above for  dadd, with  K=100 ms and Umin  = 0. The 
other lines have dadd = kRTT with k in {0, 0.5, 1}.

3.2 Multi-Frame FEC

The FEC used in WebRTC is a XOR packet level code [8]. 
We denote the code as  (k,  m),  where  k is  the  number of 
video packets in the protection group, and m is the number 
of  FEC  packets  in  that  protection  group.  The  protection 
overhead  of  the  FEC  is  defined  as  PL=m/(k+m).  The 
maximum number of frames used in the protection group, λ,  
also  characterizes  the  code.  This  number  is  determined 
dynamically  in  the  MO,  based  on  the  received  network 
delay and video frame rate: λ ~ max(1, min(fRTT, λo)), where 
f is the frame rate, λo is a fixed upper bound.
    Multi-frame FEC can reduce the FEC overhead at low 
bitrates, where the granularity of the 1-frame FEC becomes 
very small (i.e., for a small number of packets per frame). 
Another feature of the multi-frame FEC is that it is generally 
more effective at recovering losses than the 1-frame FEC, 
especially for bursty losses. That is, given two codes with 
similar  protection  levels,  the  longer  code  generally  has 
lower average residual loss than the shorter one. This is due 
to  the  possibility  of  recovering  more  loss  configurations 
with  the  generator  matrix  of  the  longer  FEC  code  (see 
Figure 3). This improved recovery comes however at a cost 
of increased FEC decoding delay.
   An excess overhead threshold controls the actual number 
of frames used for the FEC. Excess overhead is defined as 
the actual overhead (based on the actual number of packets 
in  the  protection  group)  minus  the  target  overhead 
(determined  by  PL).  Consequently,  if  the  FEC  generator 
receives λ > 1 from MO, then the actual number of frames 
used  in  the  FEC  protection  group  is  increased  (up  to 
potentially  the  maximum  λ)  until  the  excess  overhead  is 
below the threshold.
    Figure 4 compares the 1-frame FEC with the multi-frame 
FEC;  for  this  comparison  λ was  fixed  to  1  and  6, 
respectively. We can see from Figure 4a and 4b that both the 
end-to-end delay and the render delta variance are reduced 
with the multi-frame FEC. For this loss simulation, the FEC 

protection  level  set  in  the  MO  is  such  that  the  average 
protection overhead is ~20/25%. Figure 4c shows how the 
multi-frame  FEC  can  hit  the  target  protection  overhead, 
whereas the 1-frame FEC overshoots and hence generates 
excess  overhead,  particularly  for  the  lower  bitrate  range 
(excess  overhead  decreases  at  higher  bitrates,  i.e.,  more 
packets/frame). The lower protection overhead for the multi-
frame case results in a higher PSNR/quality.
 

Figure 3 - Multi-Frame FEC -  Example of  2  packets  per 
frame at 33% protection overhead (FEC packets follow the source 
packets  they protect).  The 1-frame FEC is  the XOR of the two 
source packets in each frame, whereas the 3-frame FEC has the 
6x3 generator matrix shown above.  The latter can recover more 
loss configurations, in particular any consecutive loss of size <=3 
packets is fully recoverable with the (6,3) code. 

Figure 4 -  Hybrid NACK/FEC -  Multi-Frame FEC vs.  1-
frame FEC. For a packet loss rate of 5%, burst length of 2, and 
RTT = 300ms; dadd = 0. a) End-to-end delay. b) Rendering standard 
deviation. c) Protection overhead.

3.3 Hybrid NACK/FEC With Temporal Layers

The  multi-frame  FEC  discussed  above  has  potential  for 
reducing the protection overhead and improving recovery to 
packet loss, but the longer FEC decoding delay becomes too 
costly  when  the  RTT is  not  significantly  larger  than  the 
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inverse  frame  rate.  Hybrid  NACK/FEC  combined  with 
layered  coding  allows  for  another  mechanism  to  reduce 
overhead (e.g.,  by protecting only the base layer  frames), 
and  provides  an  additional  trade-off  of  lower  end-to-end 
delay with video quality (lower spatio-temporal resolution). 
In this paper we discuss how temporal layers (TL) are used 
in conjunction with hybrid NACK/FEC. 
   Temporal scalability in VP8 [7] enables generating rate-
targeted temporal separable streams. For the results reported 
here, the rate allocation for the base layer is 60% for TL=2 
and 40% for TL=3 (2 and 3 temporal layers, respectively). 
The  temporal  pattern  structure  has  sync  frames  (placed 
every  8  frames)  that  are  used  to  enable  dropping  of 
(incomplete/lost) enhancement frames at the receiver.
   The hybrid NACK/FEC + TL system operates as follows:
1)  UEP-FEC  (unequal  error  protection)  is  used  where 
protection is only applied to base layer frames. Sender only 
re-transmits  packets  belonging  to  base  layer  frames.
2)  The  temporal  layer  ID  and  the  sync  frame  flag  are 
embedded in the  codec  specific  RTP header [12]  of  each 
packet, and extracted at the receiver/jitter buffer.
3) A type of selective NACKing is done, where only missing 
packets  that  correspond  to  the  base  layer  frames  are 
NACKed. If a missing packet is detected in an enhancement 
layer frame, then all enhancement frames are dropped until a 
complete sync frame is received. 

Figure 5 - Hybrid NACK/FEC + TL- For a packet loss rate 
of 5%, burst length of 2, and RTT = 300ms; dadd = 0. a) End-to-end 
delay. b) Rendering standard deviation. c) Protection overhead.

   Figure 5 shows the performance metrics for the hybrid 
NACK/FEC with TL=1, 2, 3. In these comparisons, the 1-
frame FEC is used. Figures 5a and 5b show the significant 
gains in lower end-to-end delay and render variance, along 
with lower protection overhead in Figure 5c. The overhead 
reduction  is  due  to  applying  the  FEC only  to  base  layer 
frames. The overhead reduction corresponds to roughly the
 base layer bitrates: ~60% for TL=2, and ~40% for TL=3. 

  The trade-off  of using TL has two components:  (1)  the 
compression efficiency loss (codec penalty) in the absence 
of packet loss, and (2) the lower temporal resolution (from 
dropped enhancement  frames  at  receiver)  in  the  rendered 
video.  The visual  quality  loss  from dropped enhancement 
frames is difficult to quantify. Regarding the codec penalty 
for TL > 1, at least in cases with relatively high overhead, 
we can expect that the gains from the reduced FEC overhead 
should compensate the compression efficiency loss. This is 
suggested  in  Figure  6,  which  shows  codec  penalty  loss 
under temporal layers.

Figure 6 - PSNR for zero packet loss- Indicated in the plot 
are two sets of points: one set at ~600kbps, the other at reduced 
bitrates  corresponding  to  protection  overheads  of  ~33%, 
~(33*0.6)%, ~(33*0.4)%, for TL =1, 2, 3, respectively. The 33% is 
an example overhead for TL=1 in Figure 5c at ~600/700kbps. 

4. CONCLUSIONS AND FUTURE WORK

In  this  paper,  we  presented  some  aspects  of  the  video 
processing  tools  for  handling  packet  loss  in  WebRTC. 
Performance  metrics  were  used  to  quantify  the  network 
effects  of  packet  loss  and  delay.  An  adaptive  hybrid 
NACK/FEC method  combined  with  TL was  proposed  to 
control the overall video quality, playout jitter, and end-to-
end  delay.  In  particular,  adaptive  playout  delay  as  a 
mechanism  for  trading  off  render  jitter  with  delay  was 
discussed, and two methods (multi-frame FEC and TL) were 
proposed for reducing the protection overhead cost.  When 
considering bursty loss scenarios and relatively long RTTs, 
the  results  indicate  the  potential  for  both  methods  to 
improve all three system metrics: lower render jitter, lower 
end-to-end  delay,  and  higher  or  similar  (spatial)  video 
quality/PSNR. Improved performance can be expected from 
various extensions,  such as more optimal use of  selective 
NACKing, multi-frame FEC, and UEP-FEC across temporal 
layers. Extensions of this work also include improving the 
metrics to include, e.g., a better measure of jerkiness [13].
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