
HANDLING PACKET LOSS IN WEBRTC

Stefan Holmer, Mikhal Shemer, Marco Paniconi
Google Inc. 1600 Amphitheatre Parkway, Mountain View, CA, USA

ABSTRACT
WebRTC is an open-source real-time interactive audio and
video communication framework. This paper discusses
some of the mechanisms utilized in WebRTC to handle
packet losses in the video communication path. Various
system details are discussed and an adaptive hybrid
NACK/FEC method with temporal layers is presented.
Results are shown to quantify how the method controls the
quality trade-offs for real-time video communication.

Index Terms— WebRTC, real-time communication,
error resilience, forward error correction.

1. INTRODUCTION

WebRTC [1] is an open-source project that enables web
browsers with real-time audio and video communication.
This paper presents some of the underlying video processing
aspects of WebRTC that enable reliable transmission of real-
time video over lossy networks. It is well known that it is
difficult to provide a high user experience for interactive
real-time applications such as video conferencing. These
applications are limited by the time-varying nature of the
network conditions (bandwidth, packet loss, network
latency), and requirements of low-latency real-time coding.
 Various approaches exist [2] to handle packet losses
during a multimedia transmission, such as packet
retransmissions based on negative acknowledgment
(NACK), forward error correction (FEC) [3][4], and
reference picture selection (RPS) [5]. These are often
supplemented with codec error-resilience methods [2], such
as intra-refresh and error concealment. For real-time
applications with strict delay requirements, a hybrid
NACK/FEC scheme [6] can be used to achieve some
balance of delay cost in the NACK method and redundancy
cost in the FEC method.
 This paper presents one set of protection tools currently
used in WebRTC for handling packet loss. In particular, an
adaptive hybrid NACK/FEC method with temporal layers
(TL) is proposed as a useful scheme to balance video
quality, smoothness of rendering (playout jitter), and end-to-
end delay. TL refers to the temporal scalability feature in the
VP8 [7] codec used in WebRTC. Various system details and
components are also discussed to highlight the adaptive
nature of our approach.
 The system description of the video processing in
WebRTC is discussed in Section 2. Section 3 discusses the
simulations and metrics used to quantify the system

behavior. Sections 3.1-3.3 contain some results and
discussion regarding hybrid NACK/FEC, FEC, and TL.
Conclusion follows in Section 4.

2. SYSTEM DESCRIPTION

Figure 1 - WebRTC video processing system diagram

Figure 1 shows the WebRTC video processing system
diagram. Raw frames entering the send side are first
preprocessed, and then encoded at a given target rate.
Subsequently, the frames are packetized, and when
applicable, an FEC encoder is applied. The FEC is a XOR
code based on RFC 5109 [8]. On the receiver side,
packetized encoded data is processed by the FEC Decoder,
followed by the Jitter Buffer (JB). The latter constructs
encoded frames from the received packets and estimates the
video jitter. Once a frame is complete, it is sent to the
decoder, which outputs raw data (YUV format). The JB is
also responsible for building a list of missing packets that
are the basis for the retransmission request.
 We model the jitter as composed of two components, one
random and one relative to the size of the video frames [9].
We then collect the per-frame statistics of the frame’s
capture time and receive times, and model it as linearly
dependent on the frame’s size difference. This method of
estimating the jitter makes it possible to adapt to changes in
frame size and link capacity, which often have an effect on
the video jitter. The jitter estimate adapts to frames being
late due to FEC decoding, but not due to retransmissions.
 The Media Optimization (MO) component on the send
side controls the adaptive hybrid NACK/FEC. MO
periodically receives network statistics, which are updated
with every incoming RTCP receiver report (approx. every
second). These network statistics include the available
bandwidth, fractions of packets lost and the Round Trip
Time (RTT). A receive-side bandwidth estimator computes

1860978-1-4799-2341-0/13/$31.00 ©2013 IEEE ICIP 2013

the available network bandwidth [9]. The MO also receives
encoder statistics such as the incoming frame rate and the
actual bitrates sent (video bitrate and FEC/NACK protection
overhead rate). The main function of MO with regard to the
hybrid NACK/FEC is to set the amount of FEC protection,
and update the encoder with the new source rate (available
bandwidth minus the estimated protection overhead).

3. SYSTEM BEHAVIOR AND RESULTS

The system was evaluated using an offline simulation tool,
which simulates various network conditions in a controlled
environment. The simulation tool acts as a transport module
between the sending client and the receiving client, and
consists of a queue that ads a network transit delay. A packet
dropper is placed after the queue, which can inflict packet
losses drawn from a bursty loss model using the Gilbert-
Elliot model [10]. In the following results, only complete
VP8 bitstreams are given to the decoder, so the video is
decoded without errors/packet loss, and the receiver is
configured to wait for all necessary packets. Video quality is
therefore mainly affected by the smoothness of the playback
and the available bitrate.
 The following performance metrics defined below are
measured to characterize the behavior of the system:
- End-to-end delay: the average of the time taken between
reading a frame from a file until it is about to be rendered
back to a file at the receiver.
- Render standard deviation: the standard deviation of the
time delta between two successive frames being rendered.
For the best temporal quality the render delta should be
close to the captured frame rate with low variance.
- Protection overhead: defined as the average percentage
overhead (relative to total bitrate) due to retransmissions and
FEC. This is a measure of how much the video protection
applied degrades the compressed video signal.

Simulations reported below were conducted on a talking
heads scene with a resolution of 640x360 at 30 fps, with low
to medium motion. The sequence is about ~30 seconds long,
and the results were averaged over multiple runs.

3.1 Hybrid NACK/FEC

WebRTC uses an adaptive hybrid NACK/FEC method to
obtain a better trade-off between temporal quality
(smoothness of rendering), spatial video quality and end-to-
end delay. The adaptive aspects of our method refer to the
dynamic setting of the FEC amount at the sender side, and
the playout delay at the receiver side.
 The cost of the hybrid NACK/FEC method is the overhead
penalty of the FEC, as shown in Figure 2a. Apart from that,
it has clear benefits over the NACK only method. Figure 2b

shows that on average end-to-end delay is reduced when
combining NACK and FEC since on average less time is
spent waiting for retransmissions, although the wait time for
a single retransmission is unchanged. As shown in Figure 2c
and d, the standard deviation of the render time delta is
significantly reduced as well.
 As mentioned in Section 2, the FEC amount (protection
level) is determined in the MO based on the received
network statistics. In particular, the amount of FEC is
conditioned on the RTT. Packets can be retransmitted
without substantial freezes when the RTT is low; therefore
the amount of FEC can be reduced, resulting in a smaller
delay penalty. In large RTTs, the delay has a bigger impact
on the temporal quality, and therefore the amount of FEC
should not be reduced. This is shown in Figure 2a, where
the FEC overhead is reduced for RTT/2 < ~50 ms.

Figure 2 – NACK and Hybrid NACK/FEC: for different
values of dadd, as a function of network transit delay. Solid lines
refer to NACK, dashed lines refer to hybrid NACK/FEC. For a 5%
packet loss rate, burst length of 1, at 500kbps. a) Protection
overhead. b) End-to-end delay. c) Rendering standard deviation. d)
Rendering standard deviation for hybrid NACK/FEC only.

The playout delay is controlled in the JB, and is used to
trade-off the temporal quality (smoothness of rendering)
with the end-to-end delay. The goal is to delay the playback
in order to reduce the duration in which the video is frozen
while waiting for a retransmitted packet. However, when the
RTT is large, additional playback delay is less suitable, as
one-way delays longer than 400 ms severely impair
communication [11]. Therefore the additional playback
delay should be chosen depending on the fraction of
unrecoverable packet losses, u, and the estimated RTT. The
additional playback delay can be calculated as

dadd = min(max(K – RTT/2 - djitter, 0), RTT), if u > Umin,
dadd = 0, otherwise.

1861

K is the maximum acceptable end-to-end delay, RTT/2 is an
estimate of the network transit time, djitter is the estimated
jitter and Umin is a threshold on the packet loss. The fraction
of unrecoverable losses can be estimated as the number of
packets NACKed and received unreasonably late compared
to the number of packets received within reasonable time,
counted over a fairly large window, e.g., ten seconds.
Unreasonably late can be defined as at least RTT/2 later than
when we expected the frame in question to be completed.
The cost of increased end-to-end delay can be seen in Figure
2b, while the gain of additional playback delay can be seen
in Figure 2c and 2d. The “adaptive” line in Figure 2 uses the
equation above for dadd, with K=100 ms and Umin = 0. The
other lines have dadd = kRTT with k in {0, 0.5, 1}.

3.2 Multi-Frame FEC

The FEC used in WebRTC is a XOR packet level code [8].
We denote the code as (k, m), where k is the number of
video packets in the protection group, and m is the number
of FEC packets in that protection group. The protection
overhead of the FEC is defined as PL=m/(k+m). The
maximum number of frames used in the protection group, λ,
also characterizes the code. This number is determined
dynamically in the MO, based on the received network
delay and video frame rate: λ ~ max(1, min(fRTT, λo)), where
f is the frame rate, λo is a fixed upper bound.
 Multi-frame FEC can reduce the FEC overhead at low
bitrates, where the granularity of the 1-frame FEC becomes
very small (i.e., for a small number of packets per frame).
Another feature of the multi-frame FEC is that it is generally
more effective at recovering losses than the 1-frame FEC,
especially for bursty losses. That is, given two codes with
similar protection levels, the longer code generally has
lower average residual loss than the shorter one. This is due
to the possibility of recovering more loss configurations
with the generator matrix of the longer FEC code (see
Figure 3). This improved recovery comes however at a cost
of increased FEC decoding delay.
 An excess overhead threshold controls the actual number
of frames used for the FEC. Excess overhead is defined as
the actual overhead (based on the actual number of packets
in the protection group) minus the target overhead
(determined by PL). Consequently, if the FEC generator
receives λ > 1 from MO, then the actual number of frames
used in the FEC protection group is increased (up to
potentially the maximum λ) until the excess overhead is
below the threshold.
 Figure 4 compares the 1-frame FEC with the multi-frame
FEC; for this comparison λ was fixed to 1 and 6,
respectively. We can see from Figure 4a and 4b that both the
end-to-end delay and the render delta variance are reduced
with the multi-frame FEC. For this loss simulation, the FEC

protection level set in the MO is such that the average
protection overhead is ~20/25%. Figure 4c shows how the
multi-frame FEC can hit the target protection overhead,
whereas the 1-frame FEC overshoots and hence generates
excess overhead, particularly for the lower bitrate range
(excess overhead decreases at higher bitrates, i.e., more
packets/frame). The lower protection overhead for the multi-
frame case results in a higher PSNR/quality.

Figure 3 - Multi-Frame FEC - Example of 2 packets per
frame at 33% protection overhead (FEC packets follow the source
packets they protect). The 1-frame FEC is the XOR of the two
source packets in each frame, whereas the 3-frame FEC has the
6x3 generator matrix shown above. The latter can recover more
loss configurations, in particular any consecutive loss of size <=3
packets is fully recoverable with the (6,3) code.

Figure 4 - Hybrid NACK/FEC - Multi-Frame FEC vs. 1-
frame FEC. For a packet loss rate of 5%, burst length of 2, and
RTT = 300ms; dadd = 0. a) End-to-end delay. b) Rendering standard
deviation. c) Protection overhead.

3.3 Hybrid NACK/FEC With Temporal Layers

The multi-frame FEC discussed above has potential for
reducing the protection overhead and improving recovery to
packet loss, but the longer FEC decoding delay becomes too
costly when the RTT is not significantly larger than the

1862

inverse frame rate. Hybrid NACK/FEC combined with
layered coding allows for another mechanism to reduce
overhead (e.g., by protecting only the base layer frames),
and provides an additional trade-off of lower end-to-end
delay with video quality (lower spatio-temporal resolution).
In this paper we discuss how temporal layers (TL) are used
in conjunction with hybrid NACK/FEC.
 Temporal scalability in VP8 [7] enables generating rate-
targeted temporal separable streams. For the results reported
here, the rate allocation for the base layer is 60% for TL=2
and 40% for TL=3 (2 and 3 temporal layers, respectively).
The temporal pattern structure has sync frames (placed
every 8 frames) that are used to enable dropping of
(incomplete/lost) enhancement frames at the receiver.
 The hybrid NACK/FEC + TL system operates as follows:
1) UEP-FEC (unequal error protection) is used where
protection is only applied to base layer frames. Sender only
re-transmits packets belonging to base layer frames.
2) The temporal layer ID and the sync frame flag are
embedded in the codec specific RTP header [12] of each
packet, and extracted at the receiver/jitter buffer.
3) A type of selective NACKing is done, where only missing
packets that correspond to the base layer frames are
NACKed. If a missing packet is detected in an enhancement
layer frame, then all enhancement frames are dropped until a
complete sync frame is received.

Figure 5 - Hybrid NACK/FEC + TL- For a packet loss rate
of 5%, burst length of 2, and RTT = 300ms; dadd = 0. a) End-to-end
delay. b) Rendering standard deviation. c) Protection overhead.

 Figure 5 shows the performance metrics for the hybrid
NACK/FEC with TL=1, 2, 3. In these comparisons, the 1-
frame FEC is used. Figures 5a and 5b show the significant
gains in lower end-to-end delay and render variance, along
with lower protection overhead in Figure 5c. The overhead
reduction is due to applying the FEC only to base layer
frames. The overhead reduction corresponds to roughly the
 base layer bitrates: ~60% for TL=2, and ~40% for TL=3.

 The trade-off of using TL has two components: (1) the
compression efficiency loss (codec penalty) in the absence
of packet loss, and (2) the lower temporal resolution (from
dropped enhancement frames at receiver) in the rendered
video. The visual quality loss from dropped enhancement
frames is difficult to quantify. Regarding the codec penalty
for TL > 1, at least in cases with relatively high overhead,
we can expect that the gains from the reduced FEC overhead
should compensate the compression efficiency loss. This is
suggested in Figure 6, which shows codec penalty loss
under temporal layers.

Figure 6 - PSNR for zero packet loss- Indicated in the plot
are two sets of points: one set at ~600kbps, the other at reduced
bitrates corresponding to protection overheads of ~33%,
~(33*0.6)%, ~(33*0.4)%, for TL =1, 2, 3, respectively. The 33% is
an example overhead for TL=1 in Figure 5c at ~600/700kbps.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented some aspects of the video
processing tools for handling packet loss in WebRTC.
Performance metrics were used to quantify the network
effects of packet loss and delay. An adaptive hybrid
NACK/FEC method combined with TL was proposed to
control the overall video quality, playout jitter, and end-to-
end delay. In particular, adaptive playout delay as a
mechanism for trading off render jitter with delay was
discussed, and two methods (multi-frame FEC and TL) were
proposed for reducing the protection overhead cost. When
considering bursty loss scenarios and relatively long RTTs,
the results indicate the potential for both methods to
improve all three system metrics: lower render jitter, lower
end-to-end delay, and higher or similar (spatial) video
quality/PSNR. Improved performance can be expected from
various extensions, such as more optimal use of selective
NACKing, multi-frame FEC, and UEP-FEC across temporal
layers. Extensions of this work also include improving the
metrics to include, e.g., a better measure of jerkiness [13].

1863

5. REFERENCES

[1]http://www.webrtc.org/ ;
http://code.google.com/p/webrtc/

[2] Y. Wang, S. Wenger, J.T. Wen, A.K. Katsaggelos,
“Review of Error Resilient Coding Techniques for Real-
Time Video Communications,” IEEE Signal Proc.
Magazine, vol. 17, no. 4, pp. 61-82, Jul. 2000.

[3] J, Korhonen, P. Frossard, “Flexible forward error
correction codes with application to partial media data
recovery”, Signal Processing: Image Communication 24,
(2009), 229-242.

[4] F. Battisti, M. Carli, E. Mammi, and A. Neri, "A study on
the impact of AL-FEC techniques on TV over IP Quality of
Experience", EURASIP Journal on Advances in Signal
Processing, 2011.

[5] S. Fukunaga, T. Nakai, and H. Inoue, “Error Resilient
Video Coding by Dynamic Replacing of Reference
Pictures”, Proceedings of IEEE Global Telecommunications
Conf. (GLOBECOM), London, vol. 3, Nov. 1996, pp.1503–
1508.

[6] F. Zhai, Y. Eisenberg, T. N. Pappas, R. Berry and A. K.
Katsaggelos, “Rate distortion optimized hybrid error control
for real-time packetized video transmission,” IEEE
Transactions on Image Processing, pp. 40-53, 2006.

[7] http://www.webmproject.org/; J. Bankoski, P. Wilkins
and Y. Xu, “VP8 Data Format and Decoding Guide,”
RFC6386 (Informational), Nov. 2011.

[8] Li, A., “RTP Payload Format for Generic Forward Error
Correction,” RFC 5109 (Proposed Standard), Dec. 2007.

[9] H. Lundin, S. Holmer and H. Alvestrand, “A Google
Congestion Control Algorithm for RealTime
Communication on the World Wide Web,” IETF
Informational Draft, April 2012.

[10] P. Ferre, D. Agrafiotis, T-K Chiew, A. Doufexi, A.R.
Nix, D.R Bull, “Packet Loss Modelling for H.264 Video
Transmission over IEEE 802.11g Wireless LANs”, in
WIAMIS 2005.

[11] ITU-T G.114, February 1996.

[12] P. Westin, H. Lundin, M. Glover, J. Uberti and F.
Galligan “RTP Payload Format for VP8 Video,” IETF
Internet Draft, Jan 2013.

[13] S. Borer, “A model of jerkiness for temporal
impairments in video transmission,” in Proc. Int. Workshop
Quality Multimedia Exper. (QoMEX), Jun. 2010, pp. 218–
223.

1864

