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ABSTRACT

Making recommendations by learning to rank is becoming
an increasingly studied area. Approaches that use stochas-
tic gradient descent scale well to large collaborative filtering
datasets, and it has been shown how to approximately opti-
mize the mean rank, or more recently the top of the ranked
list. In this work we present a family of loss functions, the k-
order statistic loss, that includes these previous approaches
as special cases, and also derives new ones that we show to
be useful. In particular, we present (i) a new variant that
more accurately optimizes precision at k, and (ii) a novel
procedure of optimizing the mean maximum rank, which
we hypothesize is useful to more accurately cover all of the
user’s tastes. The general approach works by sampling N
positive items, ordering them by the score assigned by the
model, and then weighting the example as a function of this
ordered set. Our approach is studied in two real-world sys-
tems, Google Music and YouTube video recommendations,
where we obtain improvements for computable metrics, and
in the YouTube case, increased user click through and watch
duration when deployed live on www.youtube.com.
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1. INTRODUCTION

While low-rank factorizations have been a standard tool
for recommendation for a number of years [2] optimizing
them using a ranking criterion is a relatively recent and
increasingly popular trend amongst researchers and prac-
ticioners alike. Methods like COFIRANK [7], CLIMF [5], or
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WSABIE [9] all learn, in some manner, to rank items that
a user prefers at the top of the ranked list of items. Such
loss functions are natural because the end product of such
systems is usually to suggest a few recommendations to the
user by choosing the top scoring (top ranked) items that
the model predicts. However, in contrast to methods like
SVD, where the user-item rating matrix is factorized in a
least-squares sense, the optimization is not always straight-
forward. For example, it is difficult to optimize a metric like
precision@k directly by gradient descent due to the discon-
tinuities introduced by ranking. That is, when two items at
the top of the list switch rank, the objective function score
can change drastically. On the other hand, when two items
at the bottom of the list switch rank there is no change
in the objective at all. Researchers have found many ap-
proximations to the ranking functions they would like to
optimize that are amenable to gradient descent. Note that
several methods in the information retrieval domain have
been proposed, e.g. [10, 11], but they have mostly focused
on linear models rather than factor models. Those methods
are not often applicable to recommendation tasks which typ-
ically involve thousands or millions of users and thousands
or millions of items to rank, thus direct modeling of the full
rank user-item matrix is infeasible. Hence, factored ranking
models are desirable.

Due to the size of recommendation datasets learning via
stochastic gradient descent (SGD) training is an attractive
option, however again not all loss functions are easily opti-
mized in this manner. For example the ListNet [10], SVM,ap
[11] or OWPC (ordered weighted pairwise classification) [6]
objectives involve computing the rank of positive examples
which is too slow in an SGD step when there are hundreds of
thousands or millions of items. Two choices of ranking loss
that can be trained via SGD are the AUC (area under the
curve) [4, 3] and WARP (weighted approximately ranked
pairwise) [8] losses. However, both methods ignore the fact
that there are multiple positive items per user and treat
those items independently, clearly an incorrect assumption.

In this work we propose a new class of loss functions, the
k-order statistic loss, which generalizes the existing AUC
and WARP methods, as well as providing novel choices of
loss, by taking into account the set of positive examples dur-
ing the gradient steps. In particular, it can more accuratel
optimize precision at k than the WARP loss, which WARP
was designed for. Secondly, it can optimize novel metrics
like maximum mean rank which we believe are useful for ac-
curately covering all of the user’s tastes when recommending



items. Experiments on real-world datasets indicate the use-
fulness of our approach.

2. K-ORDER STATISTIC LOSS

We consider the general recommendation task of ranking
a set of items D for a given user, the returned list should
have the most relevant items at the top. To solve this task,
we are given a training set of users U each with a set of
known ratings. We consider the case where each user has
purchased / watched / liked a set of items, which are con-
sidered as positive ratings. No negative ratings are given.
All non-positive rated items are thus considered as having
an unknown rating'. We define the set D, to be the positive
items for user u. We consider factorized models of the form

fa(w) = 1 > ViV,

i€ Dy

where V, which is an m x |D| matrix, one vector for each
item, contains the parameters to be learnt. We can further
define f(u) to be the vector of all item scores 1,...,|D| for
the user u. To learn f one typically minimizes an objective
function of the following form:

U]

> L(f(u), Du)

where L is the loss function, which measures the discrepency
between the known ratings D,, and the predictions for user .
The well-known AUC loss (sometimes known as the margin
ranking loss) [4, 3] is defined as:

Lave(f@), D) = 3 > max (0,1 fau) + fa(w)).

d€Dy dED\ Dy,

To optimize it by stochastic gradient descent, one selects
a user, a positive item and a negative item at random, and
makes a gradient step, corresponding to one term in the dou-
ble sum of the equation above. Repeated updates gradually
visit all the terms.

The AUC loss is known to not optimize well the top of the
rank list. Another set of loss functions called the OWPC
loss [6] and its SGD counterpart, WARP loss [8], attempt to
focus on the top of the list. The loss is defined as:

Lware(f(u), D) = 3 @(ranka(f()) (1)

dEDy,

where ®(n) converts the rank of a positive item d to a weight.
Here, the rank of d is defined as

rankq(u) = Z I(fd(u) > 1+ fJ(U))7 (2)

d¢ Dy

where [ is the indicator function.
Choosing ®(n) = Cn for any positive constant C' is equiv-
alent to the AUC loss. However, a weighting such as ®(n) =
7_, 1/i pays more attention to optimizing the top of the
ranked list. Unfortunately, training such an objective by
SGD directly is not tractable as eq. 2 sums over all items,
which is too slow to compute per gradient update. The

!The binary rating case described is rather common in many
real world recommendation tasks, especially for those where
ratings are harvested from implicit feeback.

Algorithm 1 K-0s algorithm for picking a positive item.

We are given a probability distribution P of drawing the
it" position in a list of size K. This defines the choice of
loss function.

Pick a user u at random from the training set.

Pick i =1,..., K positive items d; € D,.

Compute fq, (u) for each .

Sort the scores by descending order, let o(j) be the index
into d that is in position j in the list.

Pick a position k£ € 1,..., K using the distribution P.
Perform a learning step using the positive item do ().

Algorithm 2 K-0s WARP loss

Initialize model parameters (mean 0, std. deviation ﬁ)
repeat
Pick a positive item d using Algorithm 1.
Set N = 0.
repeat
Pick a random item d € D \ Du.
N =N+ 1.
until fz(u) > fa(u) — 1 or N > |D\ D,
if fz(y) > fa(u) — 1 then
Make a gradient step to minimize:
B(222u) max(0, 1+ f(u) — fa(w)).
Project weights to enforce constraints, e.g. if ||Vi|| >
C then set V; — (CV})/||Vi]-
end if
until validation error does not improve.

Algorithm 3 K-0s AUC loss

Initialize model parameters (mean 0, std. deviation ﬁ)
repeat
Pick a positive item d using Algorithm 1.
Pick a random item d € D \ Da.
if fz(u) > fa(u) — 1 then
Make a gradient step to minimize:
max(0, 1+ f2(u) — fa(u)).
Project weights to enforce constraints, e.g. if ||Vi|| >
C then set V; — (CV;)/||Vi||-
end if
until validation error does not improve.

WARP loss [8] was proposed to solve this problem. Us-
ing WARP, the rankq(u) is replaced with a sampled ap-
proximation: sample N items d until a violation is found,
ie. fu(d) <1+ fz(u) and then approximate the rank with
|D\ D.|/N.

While OWPC/WARP provides a generalized class of loss
functions including AUC as a special case, note that it still
treats each positive item independently via the sum in eq. 1.
In contrast, many evaluation metrics that we are interested
in do not treat positive examples in this way. For example,
precision at 1 only cares if one of the positives is at the top
of the ranked list, and does not care about the position of
the others. We thus generalize the above loss functions by
proposing the k-Order Statistic (k-OS) loss as follows. For
a given user u, let o be the vector of indices indicating the
order of the positive examples in the ranked list:

f’Dual (u) > fDU02 (w) > > f‘DUo‘S‘ (u).



The k-OS loss is then defined as:

Lk-os (f(u)7D")) = % ; P(|,Diu|)q>(7"ank‘pu% (f(u)))

where Z = 3", P(ﬁ) normalizes the weights induced by

P. P(ﬁ) is the weight assigned to the j** percentile of
the ordered positive items. Different choices of P result in
different loss functions. P(j) = C for all j and any positive
constant C results in the original WARP or AUC formula-
tions. Choices where P(i) > P(j) for ¢ < j result in paying
more attention to positive items that are at the top of the
ranked list, and tends to ignore the lower ranked positives.
This should have the effect of improving precision and recall
at the top whilst sacrificing some of the user’s taste prefer-
ences. Conversely, choosing P(i) < P(j) for ¢ < j should
focus more on improving the worst ranked positives in the
user’s rating set. We hypothesize that this may more accu-
rately cover all of the user’s tastes, and try to measure this
in our experiments using the mean maximum rank metric.

To optimize k-OS easily via SGD we make the following
simplification. During each SGD step we draw, for a random
user, K random positives and order them by f(u). Then
the P distribution only takes on K possible values. The
overall method is detailed in Algorithms 1, 2 and 3, for both
AUC and WARP generalizations. In the majority of our
experiments we use P(j) = 1if j = k/N, and 0 otherwise,
and leave k as a hyperparemater. That is, we simply always
select the positive in the k" position in the list.

3. EXPERIMENTS

We conducted experiments on three large scale, real world
tasks: artist recommendation and track recommendation
using proprietary data from Google Play Music (http://
music.google.com), and video recommendation from YouTube
(http://www.youtube.com). In all cases, the datasets con-
sist of a large set of anonymized users, where for each user
there is a set of associated items based on their watch/listen
history. The user-item matrix is hence a sparse binary ma-
trix. The approximate dataset sizes are given in Table 1.

To construct evaluation data, we randomly selected 5 items
for testing per user, and kept them apart from training. At
prediction time for the set of test users we then ranked all un-
rated items (i.e. items that they have not watched/listened
to that are present in the training set) and observe where the
5 test items are in the ranked list of recommendations. We
then evaluate the following metrics: mean rank (the position
in the ranked list, averaged over all test items and users),
mean maximum rank (the position of the lowest ranked item
out of the 5 test items, i.e. the furthest from the top, av-
eraged over all test users), precision at 1 and 10 (P@1 and
P@10), and recall at 1 and 10 (RQ1 and R@10).

Hyperparameters (C, learning rate) were chosen using a
portion of the training set for validation, although for mem-
ory and speed reasons we limited the embedding dimension
to be m = 64. As we trained our model, K-0s, with a rank-
ing criteria which includes the WARP loss and AUC losses
as special cases, we consider those as our baselines, and re-
port relative changes in metrics compared to them. For K-0s
in all cases we used K = 5 in Algorithm 1, i.e we sample 5
positive items. After ordering them by score, we then select
the item in the k" position. We report results for different

Table 1: Recommendation Datasets

Dataset Music: Artists | Music: Tracks | YouTube
Number of Items ~75k ~700k ~500k
Train Users Millions
Test Users Tens of Thousands

Table 2: Google Music Artist Recommendation.

The baseline model is AUC. Mean/Max Rank, P@N
and RQN metrics are given relative to it. Decreases
in rank and increases in R@QN and P@N indicate
improvements. K-0s uses AUC via Algorithm 3.

Mean Max

Method Rank Rank Pa1l Pa@l10 R@1 R@10
SVD +254% | +284% | +1.6% | -2.5% | +0.72% | -2.1%
WARP +23% +26% +25% +14% +25% +13%
AUC - - - - - -
K-o0s k=1 | +159% | +194% | +1.3% -5% -0.1% -5.6%
K-08 k=2 | +65% +80% +9% | +0.3% +7% -0.4%
K-0s k=3 | +15% +20% +10% | +3.9% +9% +3.6%
K-os k=4 | -2.7% | -1.6% +6% +3% +5.9% | +2.7%
K-0s k=5 -2.2% -3.7% -25% -8% -24% -8%

Table 3: Google Music Artist Recommendation with
WARP baseline. K-0s uses WARP via Algorithm 2.

Mean Max

Method Rank Rank Pal PQ@l10 R@1 R@10
SVD +187% | +205% | -19% | -14% -19% -14%
WARP - - - - - -

K-0s k=1 | +195% | +224% | -1.3% | -5.2% | -1.8% | -5.6%
K-os k=2 | +88% | +110% | +1% | -0.4% | +0.7% | -0.6%
K-0s k=3 | +23% +32% -1% -0.4% | -1.6% | -0.4%
K-0s k=4 | -7.7% -6.4% -3% 2% -4% 2%
K-0s k=5 -16% -18% -14% -T% -14% -T%

Table 4: Google Music Track Recommendation

Mean Max
Method Rank Rank Pa@i P@10 RQ@1 R@10
WARP - - - - . -
K-0s k=1 | +323% | +271% | +16% | +3.3% | +17% | +4.3%
K-0s k=2 | +209% | +199% | +22% | +14% | +23% | +15%
K-0s k=3 | +50.7% +61% +22% +19% +22% +20%
K-0s k=4 | -44.1% | -40.9% | +9.1% | +15% | +12% | +16%
K-08 k=5 | -54.7% | -54.8% -50% -32% -50% -33%

Table 5: YouTube Video Recommendation

Mean Max
Method Rank Rank Pal P@i1o0 R@1 R@10
SVD +56% | +45.3% -54% -57% -54% -96%
WARP - - - - - -
K-0s k=1 | +119% | +101% +14% | +6.5% | +12% | +3.5%
K-08 k=2 | +55% +71% +7% +6% | +5.8% | +4.8%
K-0s k=3 +10% +19% -1.4% | +1.3% | -1.2% | +2.1%
K-0s k=4 -10% -13% -10% -6.4% -8% -3.8%
K-0s k=5 -14% -23% -36% -32% -34% -30%
K-0s k<2 | +119% +101% +14% | +6.5% | +12% | +3.5%
K-0s k<3 | +76% +84% +10% | +6.7% | +10% | +4.7%
K-0s k<4 | +39% +54% +6.1% | +5.6% | +6% | +5.1%
K-0s k<5 | +16% +24% +2.6% +1% +2.7% | +0.4%
K-0s k>1 -4.3% -5.8% -12% -10% -12% -9.9%
K-0s k>2 -6.4% -10% -28% -25% -28% -25%
K-0s k>3 -18% -26% -23% -23% -20% -20%
K-0s k>4 -14% -23.1% -36% -32% -34% -30%




values of k to show its effect. On YouTube and the Google
Music artist recommendation task we also compare to SVD
(factorization for the complete matrix with log-odds weight-
ing on the columns which downweights the popular features
as that worked better than uniform weights). Results on the
three datasets are given in Tables 2, 3, 4 and 5.

For the first dataset, Google Music artist recommenda-
tion, we report two sets of results. Table 2 gives performance
of K-0s using AUC (Algorithm 3) relative to standard AUC
training. Table 3 gives performance of K-0s using WARP
(Algorithm 2) relative to standard WARP training. We also
compare to SVD, which is outperformed by both AUC and
WARP ranking losses, presumably because they are better
at optimizing these ranking metrics as has been observed
before [9]. Note that a strongly performing model has a
small mean/max rank, and large values of precision/recall,
hence we are looking for negative percentage changes in rank
but positive changes in the other metrics. In both the AUC
and WARP cases the choice of k in K-0s gives clear control
over the loss function. Small values of k tend to optimize
precision and recall metrics as they focus on the top ranked
positives in the set. Larger values of k tend to optimize
mean maximum rank as they focus on the bottom ranked
positives in the set. For example, the choice of K = 5 in Ta-
ble 2 gives improved rank metrics over the AUC baseline, at
the expense of decreases in precision and recall. Conversely,
choices of k < 4 give improved precision and recall metrics
over the AUC baseline at the expense of larger rank metrics.
Note that £ = 1 does not give the best precision improve-
ments as you might at first expect (k = 2 is better). We
hypothesize that this is because concentrating too much on
only the top ranked positive makes the overall model suffer
from not seeing enough training data with varying labels.
(The same effect appears in the next dataset too.)

The second dataset, Google Music track recommendation,
is comprised of the same set of anonymized users, but with
items represented at the track rather than the artist level.
That means there are more items to rank (~=700k rather than
~75k) so one could expect bigger differences between the
methods as the task is more difficult. Table 4 shows larger
improvements over the WARP baseline both in rank metrics
(k > 4) and precision and recall metrics (k < 4). In this case
k = 4 is actually a sweet spot which gives improvements in
all metrics compared to the baseline.

The third dataset, YouTube video recommendation, also
shows improvements in metrics for various choices of k. Again,
we see smooth transitions from optimizing max or mean rank
metrics versus precision or recall at the top as we vary k.
In these experiments as well as showing results for single
values of k we also report distributions P where we sam-
ple uniformly at random different values of k. For example,
K-0s k < 4 in the table means that we select uniformly at
random one of the top 3 positives after ordering the 5 sam-
pled positives. The conclusions are similar to those of the
experiments in the previous datasets.

YouTube Live Experiment.

We next tried our method using the K-0s loss (using
WARP and k = 5, N = 5) in the live YouTube video rec-
ommendation system where we attempted to improve an
already strong baseline machine learning system [1]. In our
experiments above we measured rank, precision and recall.
However, all these metrics are merely a proxy for the online

metrics that matter more, such as video click through rate
and duration of watch. When evaluating our method in the
real-world system, it gave statistically signicant increases in
both click through rate and watch duration (approximately
1%) compared to using the standard WARP loss, which in
turn was superior to the AUC loss.

4. CONCLUSIONS

In this paper we have introduced a general class of ranking
loss functions for training large-scale factorized recommen-
dation models. This class generalizes several well known
loss functions such as AUC and WARP and also provides
new choices of objective function. In particular, by focus-
ing the training on more highly ranked items one can obtain
better precision and recall metrics compared to those exist-
ing approaches. Alternatively, by focusing the training on
lower ranked items one can obtain better mean or maximum
rank metrics. Depending on the overall goal, both of these
approaches may be useful. We hypothesize that the latter
improves the overall diversity of the recommendations which
in live YouTube experiments resulted in more engaged users.
Future work could try to understand further the impact of
these loss function choices on such end goals.
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