Chapter 1
Efficient Learning of Sparse Ranking Functions

Mark Stevens, Samy Bengio, Yoram Singer

Abstract Algorithms for learning to rank can be inefficient when they employ risk
functions that use structural information. We describe and analyze a learning algo-
rithm that efficiently learns a ranking function using a domination loss. This loss is
designed for problems in which we need to rank a small number of positive exam-
ples over a vast number of negative examples. In that context, we propose an effi-
cient coordinate descent approach that scales linearly with the number of examples.
We then present an extension that incorporates regularization thus extending Vap-
nik’s notion of regularized empirical risk minimization to ranking learning. We also
discuss an extension to the case of multi-values feedback. Experiments performed
on several benchmark datasets and large scale Google internal dataset demonstrate
the effectiveness of learning algorithm in constructing compact models while retain-
ing the empirical performance accuracy.

1.1 Introduction

The past decade’s proliferation of search engines and online advertisements has un-
derscored the need for accurate yet efficiently computable ranking functions. More-
over, the emergence of personalized search and targeted advertisement further em-
phasizes the need for efficient algorithms that can generate a plethora of ranking
functions which are used in tandem at serving time. The focus of this paper is the
derivation of such an efficient learning algorithm that yields compact ranking func-
tions while achieving competitive accuracy. Before embarking with a description of
our approach we would like to make connections to existing methods that influenced
our line of research as well as briefly describe alternative methods for learning to
rank. Due to the space constraints and the voluminous amount of work on this sub-
ject, we clearly cannot give a comprehensive overview. The home pages of two
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recent workshops at NIPS’09, “Learning to Rank” and “Learning with Orderings”,
are good sources of information on different learning to rank methods and analyses.

The roots of learning to rank go back to the early days of information retrieval
(IR), such as the classical IR described by Gerard Salton [10]. One of the early pa-
pers to cast the ranking task as a learning problem is “Learning to Order Things” [2].
While the learning algorithm presented in this paper is rather naive as it encom-
passed the notion of near-perfect ranking “experts”, it laid some of the foundations
later used by more effective algorithms such as RankSVM [6], RankBoost [4], and
PAMIR [5]. These three algorithms, and many other algorithms, reduced the ranking
problem into preference learning over pairs. This reduction enabled the usage of ex-
isting learning tools with matching generalization analysis that stem from Valadimir
Vapnik’s work [13, 14, 15]. However, the reduction to pairs of instances may result
in poor ranking accuracy when the ranking objective is not closely related to the
pairs’ preference objective. Moreover, the usage of pairs of instances can impose
computational burdens in large ranking tasks. The deficiency of preference based
approaches sparked research that tackles non-linear and often non-convex ranking
loss functions, see for instance [16, 1, 7]. These more recent approaches resulted
in improved results. However, they are typically computationally expensive, may
converge to a local optimum [1], or are tailored for a specific setting [7]. Moreover,
most learning to rank algorithms do not include a natural mechanism for controlling
the compactness of the ranking function.

In this paper we use a loss function called the domination loss [3]. To make
this loss applicable to different settings, we extend and generalize the loss by in-
corporating the notion of margin [14, 15] over pairs of instances and enable the
usage of multi-valued feedback. We devise a simple yet effective coordinate de-
scent algorithm that is guaranteed to converge to the unique optimal solution, see
for instance [12, 8] for related convergence proofs. Although the domination loss is
expressed in terms of ordering relations over pairs, by using a bound optimization
technique we are able to decompose each coordinate descent step so that the result-
ing update scales linearly with the number of instances that we rank. Furthermore,
we show how to incorporate an ¢ regularization term into the objective and the de-
scent process. This term promotes sparse ranking functions. We present empirical
results which demonstrate the effectiveness of our approach in building compact
ranking functions whose performance matches the state-of-the-art results.

1.2 Problem Setting

We start by establishing the notation used throughout the paper. Vectors are denoted
in bold face, e.g, X, and are assumed to be in column orientation. The transpose of a
vector is denoted x. The (vector) expectation of a set of vectors {x;} with respect to
a discrete distribution p is denoted, Ep[x] = }; p;jx;. We observe a set of instances
(e.g. images) where each instance is represented as a vector in R”. The " instance,
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denoted x;, is associated with a quality feedback, denoted 7; € R. We describe our
derivation for a single query as the extension to multiple queries is straightforward.

Given the feedback set for instances observed for a query, we wish to learn a
ranking function for that query, f : R” — R, that is consistent with the feedback
as often as possible. Concretely, we would like the function f to induce an ordering
such that 7; > 7; = f(x;) > f(x;). We use the domination loss as a surrogate convex
loss function to promote the ordering requirements. For an instance x; we denote by
2(i) the set of instances that should be ranked below it according to the feedback,
2(i) = {j| % > t;}. The combinatorial domination loss is one if there exists j €
(i) such that f(x;) > f(x;). That s, the requirement that the i’ instance dominates
all the instances in 2(i) is violated. To alleviate the intractability problems that arise
when using a combinatorial loss, we use the following convex relaxation for a single
instance,

Lo(x;; f) = log (1 + Z ef(Xj)/'(Xi)JrA(iJ)) ) (1.1)

Jj€2(i)

Here, A(i, j) € R, denotes a margin requirement between the i’ and the ;" in-
stances. This function enables us to express richer relaxation requirements which are
often necessary in retrieval applications. For example, for the query dog we would
like an image with a single nicely captured dog to attain a large margin over irrel-
evant images. In contrast, an image with multiple animals, including dogs, should
attain only a modest margin over the irrelevant images.

1.3 An Efficient Coordinate Descent Algorithm

In this section we focus on a special case in which 7; € {—1,+1}. That is, each in-
stance is either positive (good, relevant) or negative (bad, irrelevant). In the next sec-
tion we discuss generalizations. In this restricted case, the set {j s.t. Ji: x; € Z(i)}
simply amounts to the set of negatively labeled instances and does not depend on
the index i. For brevity we drop the dependency on i and simply denote it 2. We
further simplify the learning setting and assume that A (i, j) = 0. Again, we discuss
relaxations of this assumption in the next section. The ranking function f is re-
stricted to the class of linear functions, f(x) = w-x. In this base ranking setting the
empirical loss with respect to w distills to, } ;log (1 +Yjeca o™ (X )) . For brevity
let us focus on a single domination-loss term, ¢4 (x;;w). Fixing the query ¢ and

. . . . . Z 9(i W
performing simple algebraic manipulations we get, {4 (x;; W) = log(%) =
log(¥jc ()€™ ™) — W-X;, where P(i) = 2 U {i} consists of all the negatively la-
beled instances and the i"” relevant instance.

There is no closed form solution for the optimum even when we restrict ourselves
to a single coordinate of w. We therefore use a bound optimization technique [9]
by constructing a quadratic upper bound on the domination loss. This technique
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initialize: Z=m, Vi:p;=0, Vr:B, = maxjxjr
while not converged do
for r € {1,...,n} do
V= 0; Hr = 0
for j € Z do
Hy < “r+epjxjr
end for
for each i ¢ D do
Vi = Vi + (Zip — ) [ (Z + €P1)
end for
O < Vp/(mBy) 5 Wy w.+ 6
for each j € D do
Z—Z—ePi 5 pj—pj+6xj, 3 ZZ+ePi
end for
for each i ¢ D do
pi < pi+ arxi,r
end for
end for
end while

Fig. 1.1 Coordinate descent algorithm for ranking-learning with the domination loss.

was used for instance in the context of boosting-style algorithms for regression. To
construct the upper bound we need to calculate the gradient and the Hessian of the
(simplified) domination loss. The gradient amounts to
Y comeVNx;
JED(i J
Vwlg(xi;w) = % -x; = Ep[x]—x; ,
Yjeoe

where p; is the distribution induced by w whose ' component is p, = ¢"*" /Z and
Z is a normalization constant Z =} ; 5,y € /. Using the above the Hessian is,

Hi(w) = Ep, [xx"] — Ep [x] (Ep, [x])’

i

Recalling the mean value theorem, the loss at w4+ & can now be written as,

g (x4 8) = L (x5 W) + Vo84 38" Hiw+ 016) &

1 1
= Lo W) + (B [x] —x) - 8+ B, [ (8-%)| = 5(8 - Ep [x])?
where P; is the distribution induced at w+ a0 for an unknown & € [0, 1]. We now
derive an update which minimizes the bound along a single coordinate, denoted 7,
of w. Let e, denote the vector whose components are 0 except for the 7" component
which is 1, then,

. 1 < <
Lo (xi;w+6e,) = k(i) +6 (E@(l) P, X/] _xi,r> + 562(E,@(1) [P’Xz] - Ez@(,’) D, %:])
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where Eg [P, x| = ¥c5(;) Pj),-- Where k(i) is a constant that does not depend
on 6. Since p; is not known we need to bound the loss further. Let B, denote the
maximum value of the square of the 7" feature over the instances retrieved, namely
B, = max jegxir. We now can bound the multiplier of %62 by Yicou P jxir <

B,. Let m denote the number of relevant training elements for the current query.
The bound of the domination loss restricted to coordinate r is, L(w + Je,) < K +

0Yi¢g (ng@(i) PiXjr— x,;y,) + 1B, 8%m. The last term is a simple quadratic term in
6 and thus the optimal step 6* along coordinate r can be trivially computed. Alas,
our derivation of an efficient coordinate descent update does not end here as the
term multiplying & in the bound above depends on the pairs i ¢ & and j € Z(i). We
now exploit the fact that the sole instance in Z(i) which depends on i is x; itself and
rewrite the gradient, v,, with respect to 7,

Vrt in,r = Z Z PjiXjr = Z (Z ijj,r+l7ixi,r>
i¢7 i€ je (i) it \je?

WX W-X;

e E e
LY gowtin t L gt

9 j€? 9

i) (£ 55
- Z+eWXi T Z+eWxi '

i€y €7 i€

where Z =} ;c  e"™/. The latter expression can be computed in time linear in the
size (number of instances) of each query, and not the number of comparable pairs
in each query. Finally, to alleviate the dependency in the dimension of the instances,
due to the products w - x;, on each iteration, we introduce the following variables
pi=w-X; and i, = Y jc» ePix; ;. Then, the change to the " coordinate of w is,

1
" mB

*

Z in,r — Hr (1.2)
rigy ZteP

To recap we provide the pseudo-code of the algorithm in Fig. 1.1.

1.4 Extensions

In this section we describe a few generalizations and extensions of the base coor-
dinate descent algorithm described in the previous section. Concretely, we show a
generalization of the algorithm to multi-valued feedback, we describe the addition
of margin values over pairs of elements, and we define the incorporation of regular-
ization throughout the course of the algorithm.

We start with the extension to multi-valued feedback. In the more general case,
the feedback can take one of K predefined values. We can assume without loss
of generality that the feedback set is {1,...,K}. We thus can divide the instances
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retrieved for a query into k disjoint sets denoted G(1),...,G(K). The set G(K) con-
sists of all the top ranked instances and analogously G(1) contains all the bottom
ranked elements. The set of instances dominated by any instance in G(r) is denoted
by 2(r) ={j € G(I)|l < r}. The form of the bound for ¢4 (x;; w) with multi-valued
feedback remains intact. When summing over all dominating x;, however, we break
down the summation by group %, yielding,

L(w+de,) < K+ Yi-1 Lieo(n) (Zjej( ) PiXjr — x,-,,) 8 + 3B Lis1m(k)8Y1.3)

where m(k) is the number of elements in group k. The quadratic term can still be
bounded by mB,/2, where we redefine m to be number of dominating elements,
Y i~1m(k). Again, efficient computation requires decomposing the linear multiplier.
Using the same argument as earlier we get,

xlr
Z Z Z p/x”_z Z Z;ﬁ-ewxr Z ewxjxjﬁ_Z Z Zk-ﬁ-e"”‘t7
€2

k>1ieG(k) je (i) k>1ieG(k k>1ieG(k
where Z; =} jc ()€™ ™. The gradient for the multi-valued feedback amounts to,
.uk r — ZiXir

Z Z Z PjXjr —Xir Z Z Z LeWx;

k>1ieG(k) je@(z‘) k>1ieG(k k
and Ly, =Y jeqgr)e" “x;,. Note that Z and {1 can be constructed recursively in
linear time as follows, Z; = ZjeG(k,UeW"‘f +Zy_1 and {y , = ZjeG(k,l)eW"‘ij, +
Mi—1 - To recap, each generalized update of 6 is computed as follows,

1 kai,r — Hic,r
mB Zy +eWXi

" k>1ieG(k)

Next we discuss the infusion of margin requirements which distills to using the
following loss, Y ;log (1 +Xje0) ew'<xf’xi)+A(i’~f)). When A is of general form,
the problem is no longer decomposable and we were not able to devise an efficient
extension. However, when the margin requirement can be expressed as a sum of
two functions, A(Z, j) = s(i) — s(j), it is possible to extend the efficient coordinate
descent procedure. Adding a separable margin, each term e“*/ is replaced with
eWXi#5U)  Concretely, we obtain the following gradient,

Zjef)ewxj s(j )X +ewx,+v() X;

Vwlg(xi;w) = Y jegp € %70 4 ewits(i)

—X; .

The rest of the derivation is identical to that for the zero-margin case, and yields

1 in,r — U
mB, - Z+ew~x,~+s(i)

0= where 1, =) "N sUly;, and Z = ) eV Xi—s()

Jj€a(k) j€2(k)
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We conclude this section by showing how to incorporate a regularization term
and perform feature selection. We use the ¢; norm of the weight vector w as the
means for regularizing the weights. We would like to note though that closed form
extensions can be derived for other £, norms, in particular the ¢3 norm. We focus on
the £; norm since it promotes sparse solutions. Adding an ¢; penalty to the quadratic
bound and performing a coordinate descent step on the penalized bound amounts to
the following (scalar) optimization problem,

min g,6+%52+/1\|w,+6||, 7 (1.4)

where g, and f, are the expressions appearing in Eq. (1.3). To find the optimal solu-
tion, denoted &*, of the above equation we need the following lemmas. The proofs
of the lemmas employ routine analysis tools. For brevity we omit the subscript r in
the following lemmas.

Lemma 1. If fw — g > 0 then w+ 0* > 0 and if Bw — g < 0 then w+ 6* <0.

Proof. Let us consider without loss of generality the case where Bw — g > 0. Sup-
pose that w + 6* < 0, then, Eq. (1.4) reduces to, 0 = g+ $6* — A. Combining the
above equation with the bound on Bw — g, and recalling that A > 0 and 8 > 0, we
obtain that f(w+ 6*) > A and thus w+ 6* > 0. We thus get a contradiction, hence
w+ 8* > 0. The symmetric case follows similarly. O

Lemma 2. The optimal solution 8* equals —w iff |g — Bw| < A.

Proof. Without loss of generality, let us consider the case where Bw — g > 0. We
can then use Lemma 1 to simplify Eq. (1.4). Substituting w+ & for ||w+ §||, and
adding the constraint w4+ 6 > 0 we then get, §* = argming g6 + g(;z +A(w+9)
s.t. w=+ 0 > 0. If the inequality constraint holds with a strict inequality, then 6* =
—(A +g)/B > —w. If, however, the minimum (A + g)/B > w then the optimum
must at the constraint boundary, namely 6* = —w. Therefore, if AL > Bw—g >0
then 6* = —w, whereas if fw— g > A, then 6* = —(A + g)/B. The symmetric case
where g — Bw < 0 follows similarly. O

Equipped with the above lemmas, the update amounts to the following two-step
procedure. Given the current value of w, and g, we check the condition stated in
Lemma 2. If it is satisfied we set the new value of w, to 0. Otherwise, we set 0* =
—(g+A)/B if Bw,—g,>0and 6*=(—g+A)/B if Bw,—g, <O.

As we discuss in the experiments, the combination of the robust loss, the coordi-
nate descent procedure, and the sparsity inducing regularization often yields com-
pact models consisting of about 700 non-zero weights out of ten thousand features
for representing images and even sparser models for documents.
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Algorithm Domination Rank AdaRank [RankBoost
Measure Multi-valued Base Margin| NDCG MAP

NDCG 10 3.62 338 275 | 412 3.62 3.38
Precision 10 3.25 312 238 | 400 4.38 3.12
NDCG 5 3.12 338 3.62 | 412 3.38 3.38

Table 1.1 Results for LETOR dataset. Average rank (lower is better) over eight datasets is shown.

Algorithm PAMIR Domination Rank

Base-(2 Base-¢; Multi-valued Margin
Avg. Precision 0.051 | 0.050 0.050 0.050 0.050
Precision @ 10 | 0.080 | 0.073 0.073 0.073 0.073
Domination Error| 0.964 | 0.964 0.963 0.964 0.964
All Pairs Error 0.234 | 0.213  0.237 0.235 0.236
% Zero Weights 3.4 1.4 94.3 93.4 93.2

Table 1.2 Results for the large image dataset.

1.5 Experiments

We evaluated and compared the algorithm and its extension on various datasets.
We first evaluated the algorithm on the Microsoft’s LETOR collection, which are
of modest size. On this dataset we compared the algorithm to RankSVM [6],
AdaRank [16], and RankBoost [4]. These algorithms take different approaches to
the ranking problem. To compare all algorithms we used three evaluation criteria:
NDCGS, NDCG10, and Precision at 10. The results are provided in Table 1.1. Note
that RankSVM is not presented in the table, since there are published results for
RankSVM on only a subset of the datasets, on which its performance was average.
We tested our algorithm with and without margin requirements using three tier feed-
back. While the performance of our algorithm was often better than AdaRank and
Rankboost, the results were not conclusive and all the versions we tested exhibited
similar performance. We believe that the lack of ability to discriminate between the
algorithms is largely due to the modest size of the LETOR collection and the tacit
overfitting of the test sets due to repeated experiments that have been conducted on
the LETOR collection. We therefore focused on experiments with larger datasets
and compared our approach to a fast online algorithm called PAMIR [5] which can
handle large ranking problems. One particular aspect that we tested is the ability of
our algorithm to yield compact yet accurate models.

Image Ranking Experiments. The first large ranking experiment we conducted
is an image ranking task. This image dataset consists of about 2.3 million train-
ing images and 0.4 million test images. The dataset is a subset of Google’s image
search repository and is not publicly available. The evaluation included 1,000 dif-
ferent queries and the results represent the average over these queries. The dataset
is similar to the Corel image dataset used in [5], albeit it is much larger. We used the
feature extraction scheme described in [5], which yielded a 10,000 dimension vec-
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PAMIR |Domination Rank
Avg. Precision 0.705 0.670
Precision @ 10 0.915 0918
Domination Error| 0.974 0.976
All Pairs Error 0.014 0.024
% Zero Weights | 78.1 98.8

Table 1.3 Results for the RCV1 collection.

tor representation for each image with an average density (non-zero features) of 2%.
The results are given in Table 1.2. We used both E% and ¢; regularization in order to
check the algorithm’s performance with compact models and handle the extremely
noisy labels. For each image in our dataset we have real-valued feedback which is
based on the number of times the image was selected by a user when returned as a
result for its associated query. As reported in Table 1.2 we used the user feedback in-
formation in two ways: first to construct three-valued feedback (relevant, somewhat
relevant, and irrelevant), and second as the means to impose margin constraints. We
defined the margin to be the scaled difference between the user counts of the two
images. The scaling factor was chosen using cross validation. It is apparent from the
table that all the variants attain comparable performance. However, the ¢; version
of the domination loss yielded vastly sparse models, which renders the algorithm
usable for very large ranking tasks. Disappointingly, despite our careful design, nei-
ther the multi-valued feedback nor the margin requirements resulted in improved
performance on the image dataset.

Document Ranking Experiments. The second large dataset we experimented
with is the Reuters RCV1 dataset. This dataset consists of roughly 800,000 news ar-
ticles spanning a one-year period. Each document is associated with one or more of
103 topics. Most documents are labeled with at least two topics and many by three
or more. We view each topic as a ranking task across the entire collection. From
each article, we extracted the raw text as input. We used unigram features as per-
formed in [11]. We randomly partitioned the dataset, placing half of the documents
in the training set and splitting the remainder evenly between a validation set and a
test set. Of the 103 topics in the dataset, two had too few topics to provide mean-
ingful results. We thus excluded these topics and report results averaged over the
remaining 101 topics. For each of the 101 topics, we learned a ranking function and
used it to score all the test instances. The results were averaged across topics and
are provided in Table 1.3. Here again we see that the ¢, penalized PAMIR, which
is a pure dual algorithm, and the ¢; penalized coordinate descent algorithm achieve
similar performance with the exception of the number of mis-ordered pairs, which is
closely related to the loss PAMIR employs. The main advantage again is the sparsity
of the resulting models. Our approach uses fewer than 2% of the original features
whereas PAMIR uses a large portion. (PAMIR does not use all of the features de-
spite the ¢, regularization since some topics consists of a small number of relevant
documents.)
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1.6 Conclusions

We derived in this paper an efficient coordinate descent algorithm for the task of
learning to rank. Our construction is tightly based on the domination loss first pro-
posed in [3]. We described a convex relaxation of that loss with an associated update
that scales linearly with the number of training instances. We also derived several
extensions of the basic algorithm, including the ability to handle multiple valued
feedback, margin requirements over pairs of instances, and ¢ regularization. Fur-
thermore, the algorithm’s efficiency is retained for these extensions. Experiments
with several datasets show that by using ¢; regularization, the resulting ranking
models are trained considerably faster and yield significantly more compact models,
yet they attain performance competitive with some of the state-of-the-art learning to
rank approaches.
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