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Abstract
This paper describes a modified composition algorithm that is
used for combining two finite-state transducers, representing
the context-dependent lexicon and the language model respec-
tively, in large vocabulary speech recogntion. This algorithm is
a hybrid between the static and dynamic expansion of the re-
sultant transducer, which maps from context-dependent phones
to words and is searched during decoding. The approach is to
pre-compute part of the recognition transducer and leave the
balance to be expanded during decoding. This method allows
for a fine-grained trade-off between space and time in recogni-
tion. For example, the time overhead of purely dynamic expan-
sion can be reduced by over six-fold with only a 20% increase
in memory in a collection of large-vocabulary recognition tasks
available on the Google Android platform.
Index Terms: WFST, LVCSR

1. Introduction
Weighted finite-state transducers (WFST)s are a commonly
used representation in speech recognition [1]. They can rep-
resent a language modelG (an automaton over words), the pho-
netic lexicon (L) (a context-independent (CI) phone-to-word
transducer), and the context-dependency (CD) specification C
(a CD-phone to CI-phone transducer). These models can be op-
timized by determinization and combined by finite-state com-
position. For example,

CL = C ◦Det(L) (1)
T = CL ◦G (2)

builds an efficient recognition transducer, mapping from
context-dependent phones to words, that can be searched dur-
ing ASR decoding [2].

This construction has been used principally in two ways.
The recognition transducer can be fully constructed ahead of
time statically. This is very time-efficient in use, but requires
the most space. Alternatively, the composition in Equation 2
can be constructed dynamically (or on-the-fly or lazily). In this
way, only the relatively small part of the composition that is vis-
ited during the recognition of an utterance needs to be created.
This can save considerable space since often |CL| + |G| �
|CL ◦G| but uses more time during recognition. The dynamic
approach also permits G to be modified prior to recognition of
an utterance without requiring the time-consuming full recon-
struction of CL ◦G. For example, a grammar non-terminal for
personal contacts might be replaced with the current user’s ac-
tual contacts just before recognition. In this paper, we describe
an approach that is a hybrid between static and dynamic com-
position, which allows a finer trade-off between time and space.
Caseiro and Trancoso [3] used a specific hybrid composition
based on topological features on the recognition transducer in
earlier work.

2. Composition Algorithm
A detailed description of weighted finite-state transducers -
their theory, algorithms and applications to speech recognition
- is given in [1]. We present only those concepts here that are
needed to describe our algorithms.

2.1. Preliminaries

A semiring (K,⊕,⊗, 0, 1) is ring that may lack negation. If ⊗
is commutative, we say that the semiring is commutative.

The probability semiring (R+,+,×, 0, 1) is used when
the weights represent probabilities. The log semiring (R ∪
{−∞,+∞} ,⊕log,+,∞, 0), isomorphic to the probability
semiring via the negative-log mapping, is often used in prac-
tice for numerical stability. The tropical semiring (R ∪
{−∞,+∞} ,min,+,∞, 0), derived from the log semiring us-
ing the Viterbi approximation, is often used in shortest-path ap-
plications.

A weighted finite-state transducer T =
(A,B, Q, I, F,E, λ, ρ) over a semiring K is specified
by a finite input alphabet A, a finite output alphabet B,
a finite set of states Q, a set of initial states I ⊆ Q,
a set of final states F ⊆ Q, a finite set of transitions
E ⊆ Q × (A ∪ {ε}) × (B ∪ {ε}) × K × Q, an initial
state weight assignment λ : I → K, and a final state weight
assignment ρ : F → K. E[q] denotes the set of transitions
leaving state q ∈ Q.

Given a transition e ∈ E, p[e] denotes its origin or previ-
ous state, n[e] its destination or next state, i[e] its input label,
o[e] its output label, and w[e] its weight. A path π = e1 · · · ek
is a sequence of consecutive transitions: n[ei−1] = p[ei], i =
2, . . . , k. The functions n, p, and w on transitions can be ex-
tended to paths by setting: n[π] = n[ek] and p[π] = p[e1] and
by defining the weight of a path as the⊗-product of the weights
of its constituent transitions: w[π] = w[e1] ⊗ · · · ⊗ w[ek]. A
string is a sequence of labels; ε denotes the empty string.

The weight associated by T to any pair of input-output
strings (x, y) is defined as:

T (x, y) =
⊕

π∈∪q∈I, q′∈FP (q,x,y,q′)

λ[p[π]]⊗ w[π]⊗ ρ[n[π]], (3)

where P (q, x, y, q′) denotes the set of paths from q to q′ with
input label x ∈ A∗ and output label y ∈ B∗.

Let T|R = (A,B, QR, IR, FR, ER, λR, ρR) denote a re-
striction of the transducer T to R ⊆ Q with QR = R ∪
{n[e] | e ∈ E ∧ p[e] ∈ R}, IR = I ∩ R, FR = F ∩ R,
ER = {e ∈ E | p[e] ∈ R}, λR = λ : IR → K and ρR =
ρ : FR → K. Thus R restricts the states from which transitions
may exit.



2.2. Composition

Let K be a commutative semiring and let T1 and T2 be two
weighted transducers defined over K such that the input alpha-
bet B of T2 coincides with the output alphabet of T1. The result
of the composition of T1 and T2 is a weighted transducer de-
noted by T1 ◦ T2 and specified for all x, y by:

(T1 ◦ T2)(x, y) =
⊕
z∈B∗

T1(x, z)⊗ T2(z, y). (4)

Leaving aside transitions with ε inputs or outputs, the fol-
lowing rule specifies how to compute a transition of T1 ◦ T2

from appropriate transitions of T1 and T2: (q1, a, b, w1, q
′
1) and

(q2, b, c, w2, q
′
2) results in ((q1, q2), a, c, w1 ⊗ w2, (q

′
1, q
′
2)).

A simple algorithm to compute the composition of two ε-free
transducers, following the above rule, is given in [1].

2.3. Pre-Initialized Composition

Suppose we wish to compute the composition T = T1 ◦ T2

but already have T|R, a portion of that composition, in hand.
Under these circumstances, we can modify the simple compo-
sition algorithm so that it is pre-initialized by T|R, saving its
construction. Figure 1 gives this modified algorithm. It differs
from standard composition by initializing the set of states, the
initial state, the final states and transitions from those in T|R
at lines 1-4 and by skipping computing the transitions leaving a
state already in T|R at line 9 instead finding any successor states
that need to be enqueued directly from T|R at lines 20-22.

In the simplest implementationQ, F , andE are represented
as sets with INSERT(Q, q) defined as Q ← Q ∪ {q} and so
forth. However, we wish the initialization step in lines 1-3 to
be constant time in our implementation and we would like to
share T|R in parallel calls to the composition algorithm in mul-
tiple threads. Therefore we will representQ = (Qstatic, Qdyn)
as a pair of sets denoting a static and dynamic part. Then the
initialization on line 1, Q ← QR becomes Q ← (QR, φ),
INSERT(Q, q) is defined as Q ← (Qstatic, Qdyn ∪ {q}) and
q ∈ Q means q ∈ Qstatic ∨ q ∈ Qdyn. We use similar data
structures for F and E. In this way, the static part is set only
at initialization (and can be shared among parallel calls) while
the dynamic part is modified during the running of algorithm’s
iterations.

While we have presented pre-initialized composition for the
simple case with no composition filter, the algorithm extension
to allow for different filters that handle epsilon transitions and
various forms of lookahead can be similarly modified [4, 2].

This algorithm was implemented in OpenFst [5], a C++
library for weighted finite-state transducers. In that library the
composition algorithm is templated on the data structures that
represent Q, F , E and the composition filter. In the standard
case, simple set and filter representations are the default. For
the speech recognition version that implements the composition
in Equation 2, more complex set representions, with distinct
static and dynamic components as outlined above are used and
a lookahead filter ensuring efficient matching is also used [2].

In the speech recognition setting, T|R represents the pre-
built, static part of the recognition transducer that is shared
among all utterances that are decoded. The balance of the
recognition transducer needed for each utterance is built dynam-
ically and discarded at the end of each utterance. Since decod-
ing employs pruning (because of the very large search space),
only a portion of T is visited during each utterance. Which
states are visited in decoding and the order in which they are

WEIGHTED-COMPOSITION(T1, T2, T|R)

1 Q← QR
2 F ← FR
3 E ← ER
4 I ← IR
5 S ← I
6 while S 6= ∅ do
7 (q1, q2)← HEAD(S)
8 DEQUEUE(S)
9 if (q1, q2) /∈ R then

10 if (q1, q2) ∈ F1 × F2 then
11 INSERT(F, (q1, q2))
12 ρ(q1, q2)← ρ1(q1)⊗ ρ2(q2)
13 for each (e1, e2)∈E[q1]×E[q2] s. t. o[e1]= i[e2] do
14 if (n[e1], n[e2]) 6∈ Q then
15 INSERT(Q, (n[e1], n[e2]))
16 ENQUEUE(S, (n[e1], n[e2]))
17 w′ ← w[e1]⊗w[e2]
18 INSERT(E, ((q1, q2), i[e1], o[e2], w′, (n[e1], n[e2])))
19 else
20 for each e ∈ ER[(q1, q2)] do
21 if n[e] /∈ R then
22 ENQUEUE(S, n[e])
23 return T

Figure 1: Pseudocode of the composition algorithm with pre-
initialization.

visited specifies the queue discipline for a given input in the al-
gorithm in Figure 1 and if we allow the queue to discard states,
the pruning can be modeled as well.

3. Initialization Methods
Modifying composition to permit pre-initialization by a trans-
ducer T|R, as described above, is quite straight-forward. What
remains to decide is the initialization set R ⊆ Q. Two triv-
ial candidates are R = I , which uses fully-dynamic expansion,
and R = Q, which uses a fully-static T = TR. We now de-
scribe two other ways to select the initialization set R.

3.1. State Statistics

One natural candidate for the set R uses the state frequencies
observed during the decoding of utterances representative of
those expected in the future. Given an utterance µi, let Oi ⊆ Q
denote those states that are enqueued during the recognition of
µi in the fully-dynamic version (R = I) of the algorithm in
Figure 1. Given M utterances and a count threshold n, we can
choose the initialization set as:

N(q) =

M∑
i=1

1q∈Oi (5)

R = {q ∈ Q |N(q) ≥ n} (6)

N(q) counts the number of utterances in which state q was en-
queued and R contains all states whose count meets the thresh-
old. Various values of n can be used to trade-off time versus
space.

3.2. State Probabilities

Another natural approach for the set R uses the state probabili-
ties intrinsic to the lexical and language models. The language
model G is typically a stochastic n-gram model trained on text;
the lexical model, if it has alternative pronunciations, may also
be probabilistic.



0 1 2 3 4

0
5

10
15

20
25

30
parallelism =  1

memory (gbytes)

%
 ti

m
e 

ov
er

he
ad

●

●

dynamic
n=320
n=80
n=20
n=5
p=1e−6
p=1e−7
p=1e−7.25
p=1e−7.5
static

0 1 2 3 4

0
5

10
15

20
25

30

parallelism =  2

memory (gbytes)

%
 ti

m
e 

ov
er

he
ad

●

●

dynamic
n=320
n=80
n=20
n=5
p=1e−6
p=1e−7
p=1e−7.25
p=1e−7.5
static

0 1 2 3 4

0
5

10
15

20
25

30

parallelism =  4

memory (gbytes)

%
 ti

m
e 

ov
er

he
ad

●

●

dynamic
n=320
n=80
n=20
n=5
p=1e−6
p=1e−7
p=1e−7.25
p=1e−7.5
static

0 1 2 3 4

0
5

10
15

20
25

30

parallelism =  8

memory (gbytes)

%
 ti

m
e 

ov
er

he
ad

●

●

dynamic
n=320
n=80
n=20
n=5
p=1e−6
p=1e−7
p=1e−7.25
p=1e−7.5
static

Figure 2: Total CPU memory usage (RAM) versus percent total recognition time in excess of that with fully-static composition with the
same 1000 utterances served from one, two, four and eight threads for various recognition transducer expansion methods. The magenta
six-sided star shows fully static case, the red triangle shows the fully-dynamic case, the blue points show the statistics-based method
for various count cutoffs and the green points show the the probability-based method for various probability cutoffs.

First, assume that T is stochastic: K is the probability (or
log) semiring and ∀q ∈ Q,

⊕
e∈E[q] w[e]⊕ ρ(q) = 1. In other

words, the sum of all weights leaving a state sums to 1. In that
case, the shortest distance from I to q, defined as:

δ(q) =
⊕

π∈P (q)

w[π] (7)

where P (q) is the set of paths from I to q, is the probability (or
negative log probability) of reaching state q from I according to
the stochastic distribution [6]. Given a threshold p, we can the
choose the initialization set as:

R = {q ∈ Q | δ(q) ≥ p}. (8)

Various values of p can be used to trade-off time versus space.
In the case where T is not stochastic, it can be first pushed to

make it so [1]. Both shortest distance and weight pushing are
algorithms available in OpenFst.

4. Experiments
In this section, we report experimental results comparing the
different recognition transducer expansion strategies.

4.1. Data, Models, and Methods

Our approach is evaluated on a randomized, anonymized utter-
ance sampling of Voice tasks available on the Google Android
platform. Frequent tasks include SMS, Voice Search, Google
Maps, and Facebook. Recognition error rates are reported on a
test set that consists of 27,327 transcribed utterances of 153,796



words. The speed and memory tests are reported on a random
1000 utterance subset. The state frequency statistics collection,
described in Section 3.1, was performed on a separate 10,000
utterance subset.

The acoustic model used in our experiments is a
DNN/HMM hybrid model whose input features are the con-
catenation of 26 consecutive frames of 40-dimensional log fil-
terbank energies [7].

The language model is a 5-gram model obtained by interpo-
lating, using the bayesian method in [8], a dozen individually-
trained Katz-backoff n-gram language models from distinct
data sources [9]. The sources include typed data sources (such
as web search queries or SMS) and spoken data sources con-
sisting of ASR results from anonymized utterances which have
been filtered by their recognition confidence score. The data
sources used vary in size, from a few million to a few bil-
lion sentences, making a total of 7 billion sentences. The lan-
guage models are pruned using the relative entropy method of
[10]. The resulting baseline language model G has 22.5 mil-
lion n-grams (1.2 million unigrams, 10.1 million bigrams, 8.1
million 3-grams, 2.6 million 4-grams and 0.5 million 5-grams)
represented as an FST with 3.2 million states and 30 million
transitions. The context-dependent lexicon CL has 1.4 million
states and 3.4 million transitions; the fully-expanded recogni-
tion transducer T has 45 million states and 98 million transi-
tions.

Decoding was performed using a multi-threaded server that
allows processing of multiple utterances simultaneously and a
multi-threaded load tester that supplied the test utterances at a
specified parallelism.1 Dynamic expansion involves work that
cannot be shared, impacting both time and space with increas-
ing parallelism.2 Results are reported with a range of paral-
lelism since it is important factor to evaluate in practical systems
that must serve users at scale. The pruning beam was set so that
there are few search errors, comparable to our production sett-
tings. All timings were performed on an HP Z600 workstation
with 24 cores and 50 gbytes of RAM.

4.2. Results

Figure 2 shows the memory versus recognition time trade-offs
with the various methods of recognition transducer expansion
described above using the baseline language model. If tm is the
time taken to recognize the 1000 test utterances with method
m and tstatic is the time taken to recognize with the pre-built
CL ◦ G, the vertical axis is 100 ∗ (tm − tstatic)/tstatic, the
percent total recognition time in excess of that with the fully-
static composition.

This figure shows that the fully-dynamic approach uses
about one-third the memory of the fully-static approach but has
about 10% overhead relative to that with no parallelism and
about 27% overhead with a parallelism of four.

The composition pre-initialization using states frequently
seen in recognition on a held-out 10,000 utterance set, offers a
range of time-memory operating points depending on the utter-
ance count cutoff n. For example with n = 20 and a parallelism
of four, the excess recognition time is cut by over a factor of six
compared to fully dynamic expansion with only about a 20%

1The recognition server itself uses multiple threads per utterance
with the acoustic model and search in separate threads.

2This implies with a small R and multiple threads, the hybrid ap-
proach might use less memory than the fully dynamic one. With large
R, the hybrid approach might use more memory than the fully static
case due to storing CL,G and most of CL ◦G.

n-grams WER % time overhead |R|
fully-dynamic n = 20 n = 20

12,324,719 11.0% 26.4% 6.7% 1,017,531
22,329,335 10.7% 28.5% 4.3% 1,034,218
45,280,869 10.4% 31.8% 7.3% 1,027,841
70,594,261 10.4% 36.3% 6.5% 1,009,975

Table 1: Number of n-grams, word error rate and percent total
recognition time in excess of that with fully-static composition
with utterances served from four threads for various language
model sizes with fully-dynamic expansion and with an utter-
ance count cutoff of n = 20 for states in R. (Note the second
LM is quite similar but not identical in size or results to the
baseline model used for Figure 2 due to small differences in the
experimental setups.)

increase in RAM usage. With n = 20 about 1 million states
are present in the initialization set R or about 2% of the fully-
expanded T .

The pre-initialization approach using the probabilities in-
trinsic in the language model also provides a range of time-
memory operating points but in general performs worse than
the approach based on recognition state statistics.

Table 1 shows the affect of the language model size both
when the pre-initialization set is I and when it is chosen using
the frequently seen states method with a utterance count cut-
off of n = 20 using a parallelism of four in testing. The ex-
cess recognition time compared to the fully-static construction
grows with increasing language model size for the the fully-
dynamic case. Using the frequently seen states method with
n = 20, the number of states in R is roughly constant and the
time overhead varies between about 4-7% with no clear pattern
with respect to LM size. The smaller LMs are derived from the
largest through relative entropy pruning [10].

5. Discussion
Based on these results, the hybrid approach advocated here
clearly offers operating points with large reductions in decoder
overhead from fully-dynamic expansion with only modest in-
creases in memory especially with increasing parallelism. In
general, all the dynamic approaches show increasing overhead
with increasing parallelism up to four in our experiments; this
trend is expected due to thread contention in the transducer ex-
pansion. Expansion overhead decreases some with a parallelism
of eight; this is presumably because other contentions begin to
dominate.

It is not surprising that the state frequency initializaion
method is better than the intrinsic state probability method in
our experiments. The statistics were collected from utterances
that were well matched to the test set while the language model
is drawn from a wider range of sources. Further, the statisti-
cal method can take into account acoustic confusions unlike the
probabilistic method.

With the state frequency initialization method, the result
that the time overhead is a weak function of the language model
size suggests the overhead for a given initialization set size is
primarily determined by the underlying corpus on which the
LM was trained.

The fully-dynamic method can obviously be used when the
grammar G is modified just prior to recognition. The hybrid
composition expansion methods can also be used so long as the
initialization setR is restricted to states in the original grammar
(i.e. (q1, q2) such that q2 is in the unmodified portion of G).
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