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Abstract
Visual scene understanding is a difficult problem inter-

leaving object detection, geometric reasoning and scene
classification. We present a hierarchical scene model for
learning and reasoning about complex indoor scenes which
is computationally tractable, can be learned from a reason-
able amount of training data, and avoids oversimplification.
At the core of this approach is the 3D Geometric Phrase
Model which captures the semantic and geometric relation-
ships between objects which frequently co-occur in the same
3D spatial configuration. Experiments show that this model
effectively explains scene semantics, geometry and object
groupings from a single image, while also improving indi-
vidual object detections.

1. Introduction
Consider the scene in Fig. 1.(a). A scene classifier will

tell you, with some uncertainty, that this is a dining room
[21, 23, 14, 5]. A layout estimator [12, 10, 16, 27] will tell
you, with different uncertainty, how to fit a box to the room.
An object detector [17, 2, 6, 29] will tell you, with large un-
certainty, that there is a dining table and four chairs. Each
algorithm provides important but uncertain and incomplete
information. This is because the scene is cluttered with ob-
jects which tend to occlude each other: the dining table oc-
cludes the chairs, the chairs occlude the dining table; all of
these occlude the room layout components (i.e. the walls).

It is clear that truly understanding a scene involves inte-
grating information at multiple levels as well as studying the
interactions between scene elements. A scene-object inter-
action describes the way a scene type (e.g. a dining room or
a bedroom) influences objects’ presence, and vice versa. An
object-layout interaction describes the way the layout (e.g.
the 3D configuration of walls, floor and observer’s pose) bi-
ases the placement of objects in the image, and vice versa.
An object-object interaction describes the way objects and
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Figure 1. Our unified model combines object detection, layout estimation
and scene classification. A single input image (a) is described by a scene
model (b), with the scene type and layout at the root, and objects as leaves.
The middle nodes are latent 3D Geometric Phrases, such as (c), describ-
ing the 3D relationships among objects (d). Scene understanding means
finding the correct parse graph, producing a final labeling (e) of the objects
in 3D (bounding cubes), the object groups (dashed white lines), the room
layout, and the scene type.

their pose affect each other (e.g. a dining table suggests
that a set of chairs are to be found around it). Combining
predictions at multiple levels into a global estimate can im-
prove each individual prediction. As part of a larger system,
understanding a scene semantically and functionally will al-
low us to make predictions about the presence and locations
of unseen objects within the space.

We propose a method that can automatically learn the
interactions among scene elements and apply them to the
holistic understanding of indoor scenes. This scene in-
terpretation is performed within a hierarchical interaction
model and derived from a single image. The model fuses
together object detection, layout estimation and scene clas-
sification to obtain a unified estimate of the scene com-
position. The problem is formulated as image parsing in
which a parse graph must be constructed for an image as in
Fig. 1.(b). At the root of the parse graph is the scene type
and layout while the leaves are the individual detections of
objects. In between is the core of the system, our novel 3D
Geometric Phrases (3DGP) (Fig. 1.(c)).

A 3DGP encodes geometric and semantic relationships
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between groups of objects which frequently co-occur in
spatially consistent configurations. As opposed to previous
approaches such as [3, 24], the 3DGP is defined using 3D
spatial information, making the model rotation and view-
point invariant. Grouping objects together provides contex-
tual support to boost weak object detections, such as the
chair that is occluded by the dining table.

Training this model involves both discovering a set of
3DGPs and estimating the parameters of the model. We
present a new learning scheme which discovers 3DGPs in
an unsupervised manner, avoiding expensive and ambigu-
ous manual annotation. This allows us to extract a few use-
ful sets of GPs among exponentially many possible config-
urations. Once a set of 3DGPs is selected, the model param-
eters can be learned in a max-margin framework. Given the
interdependency between the 3DGPs and the model param-
eters, the learning process is performed iteratively (Sec. 5).

To explain a new image, a parse graph must estimate the
scene semantics, layout, objects and 3DGPs, making the
space of possible graphs quite large and of variable dimen-
sion. To efficiently search this space during inference, we
present a novel combination of bottom-up clustering with
top-down Reversible Jump Markov Chain Monte Carlo (RJ-
MCMC) sampling (Sec. 4).

As a result of the rich contextual relationships captured
by our model, it can provide scene interpretations from a
single image in which i) objects and space interact in a phys-
ically valid way, ii) objects occur in an appropriate scene
type, iii) the object set is self-consistent and iv) configura-
tions of objects are automatically discovered (Fig. 1.(d,e)).
We quantitatively evaluate our model on a novel challeng-
ing dataset, the indoor-scene-object dataset. Experiments
show our hierarchical scene model constructed upon 3DGPs
improves object detection, layout estimation and semantic
classification accuracy in challenging scenarios which in-
clude occlusions, clutter and intra-class variation.

2. Related Work
Image understanding has been explored on many levels,

including object detection, scene classification and geome-
try estimation.

The performance of generic object recognition has im-
proved recently thanks to the introduction of more power-
ful feature representations [20, 2]. Felzenszwalb et al. pro-
posed a deformable part model (DPM) composed of multi-
ple HoG components [6] which showed promising perfor-
mance for single objects. To improve detection robustness,
the interactions between objects can be modeled. Category-
specific 2D spatial interactions have been modeled via con-
textual features by Desai et al. [3], whereas Sadeghi et
al. [24] modeled groups of objects as visual phrases in 2D
image space that were determined by a domain expert. Li et
al. [18] identified a set of useful visual phrases from a train-

ing set using only 2D spatial consistency. Improving upon
these, Desai et al. [3] proposed a method that can encode
detailed pose relationships between co-appearing objects
in 2D image space. In contrast to these approaches, our
3DGPs are capable of encoding both 3D geometric and con-
textual interactions among objects and can be automatically
learned from training data.

Researchers have also looked at the geometric configu-
ration of a scene. Hoiem et al. [12] proposed to classify
image segments into geometric categories using multiple
features. Geiger et al. [8] related traffic patterns and van-
ishing points in 3D. To obtain physically consistent rep-
resentations, Gupta et al. [9] incorporated the concept of
physical gravity and reasoned about object supports. Sev-
eral methods attempted to specifically solve indoor layout
estimation [10, 11, 27, 30, 22, 26, 25]. Hedau et al. pro-
posed a formulation using a cubic room representation [10]
and showed that layout estimation can improve object de-
tection [11]. This initial attempt demonstrated promising
results, however experiments were limited to a single ob-
ject type (bed) and a single room type (bedroom). Other
methods [15, 30] proposed to improve layout estimation by
analyzing the consistency between layout and the geomet-
ric properties of objects without accounting for the specific
categorical nature of such objects. Fouhey et al. [7] incor-
porated human pose estimation into indoor scene layout un-
derstanding. However, [7] does not capture relationships
between objects or between an object and the scene type.

A body of work has focused on classifying images into
semantic scene categories [5, 21, 23, 14]. Li et al. [19] pro-
posed an approach called object bank to model the corre-
lation between objects and scene by encoding object detec-
tion responses as features in a SPM and predicting the scene
type. They did not, however, explicitly reason about the
relationship between the scene and its constituent objects,
nor the geometric correlation among objects. Recently,
Pandey et al. [21] used a latent DPM model to capture the
spatial configuration of objects in a scene type. This spatial
representation is 2D image-based, which makes it sensitive
to viewpoint variations. In our approach, we instead define
the spatial relationships among objects in 3D, making them
invariant to viewpoint and scale transformation. Finally, the
latent DPM model assumes that the number of objects per
scene is fixed, whereas our scene model allows an arbitrary
number of 3DGPs per scene.

3. Scene Model using 3D Geometric Phrases
The high-level goal of our system is to take a single im-

age of an indoor scene and classify its scene semantics (such
as room type), spatial layout, constituent objects and object
relationships in a unified manner. We begin by describing
the unified scene model which facilitates this process.

Image parsing is formulated as an energy maximization
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Figure 2. Two possible parse graph hypotheses for an image - on the left an incomplete interpretation (where no 3DGP is used) and on
the right a complete interpretation (where a 3DGP is used). The root node S describes the scene type s1, s3 (bedroom or livingroom)
and layout hypothesis l3, l5 (red lines), while other white and skyblue round nodes represent objects and 3DGPs, respectively. The square
nodes (o1, ..., o10) are detection hypotheses obtained by object detectors such as [6] (black boxes). Weak detection hypotheses (dashed
boxes) may not be properly identified in isolation (left). A 3DGP, such that indicated by the skyblue node, can help transfer contextual
information from the left sofa (strong detections denoted by solid boxes) to the right sofa.

problem (Sec. 3.1), which attempts to identify the parse
graph that best fits the image observations. At the core of
this formulation is our novel 3D Geometric Phrase (3DGP),
which is the key ingredient in parse graph construction (Sec.
3.2). The 3DGP model facilitates the transfer of contex-
tual information from a strong object hypothesis to a weaker
one when the configuration of the two objects agrees with a
learned geometric phrase (Fig. 2 right).

Our scene model M = (Π, θ) contains two elements;
the 3DGPs Π = {π1, ..., πN} and the associated parame-
ters θ. A single 3DGP πi defines a group of object types
(e.g. sofa, chair, table, etc.) and their 3D spatial configura-
tion, as in Fig. 1(d). Unlike [30], which requires a training
set of hand crafted composition rules and learns only the
rule parameters, our method automatically learns the set of
3DGPs from training data via our novel training algorithm
(Sec. 5). The model parameter θ includes the observation
weights α, β, γ, the semantic and geometric context model
weights η, ν, the pair-wise interaction model µ, and the pa-
rameters λ associated with the 3DGP (see eq. 1).

We define a parse graph G = {S,V} as a collection of
nodes describing geometric and semantic properties of the
scene. S = (C,H) is the root node containing the scene se-
mantic class variable C and layout of the room H , and V=
{V1, ..., Vn} represents the set of non-root nodes. An indi-
vidual Vi specifies an object detection hypothesis or a 3DGP
hypothesis, as shown in Fig. 2. We represent an image ob-
servation I = {Os, Ol, Oo} as a set of hypotheses with as-
sociated confidence values as follows. Oo = {o1, ..., on}
are object detection hypotheses, Ol={l1, ..., lm} are layout
hypotheses and Os={s1, ..., sk} are scene types (Sec. 3.3).

Given an image I and scene model M, our goal is to
identify the parse graph G={S,V} that best fits the image.
A graph is selected by i) choosing a scene type among the
hypothesesOs, ii) choosing the scene layout from the layout
hypotheses Ol, iii) selecting positive detections (shown as
o1, o3, and o10 in Fig. 2) among the detection hypotheses
Oo, and iv) selecting compatible 3DGPs (Sec. 4).

3.1. Energy Model

Image parsing is formulated as an energy maximization
problem. Let VT be the set of nodes associated with a set

of detection hypotheses (objects) and VI be the set of nodes
corresponding to 3DGP hypotheses, with V = VT ∪ VI .
Then, the energy of parse graph G given an image I is:

EΠ,θ(G, I) = α
>
φ(C,Os)︸ ︷︷ ︸

scene observation

+ β
>
φ(H,Ol)︸ ︷︷ ︸

layout observation

+
∑
V∈VT

γ
>
φ(V,Oo)

︸ ︷︷ ︸
object observation

+
∑
V∈VT

η
>
ψ(V,C)

︸ ︷︷ ︸
object-scene

+
∑
V∈VT

ν
>
ψ(V,H)

︸ ︷︷ ︸
object-layout

+
∑

V,W∈VT

µ
>
ϕ(V,W )

︸ ︷︷ ︸
object overlap

+
∑
V∈VI

λ
>
ϕ(V,Ch(V ))

︸ ︷︷ ︸
3DGP

(1)

where φ(·) are unary observation features for semantic
scene type, layout estimation and object detection hypothe-
ses, ψ(·) are contextual features that encode the compati-
bility between semantic scene type and objects, and the ge-
ometric context between layout and objects, and ϕ(·) are
the interaction features that describe the pairwise interac-
tion between two objects and the compatibility of a 3DGP
hypothesis. Ch(V ) is the set of child nodes of V .
Observation Features: The observation features φ and cor-
responding model parameters α, β, γ capture the compat-
ibility of a scene type, layout and object hypothesis with
the image, respectively. For instance, one can use the spa-
tial pyramid matching (SPM) classifier [14] to estimate the
scene type, the indoor layout estimator [10] for determining
layout and Deformable Part Model (DPM) [6] for detect-
ing objects. In practice, rather than learning the parameters
for the feature vectors of the observation model, we use the
confidence values given by SPM [14] for scene classifica-
tion, from [10] for layout estimation, and from the DPM [6]
for object detection. To allow bias between different types
of objects, a constant 1 is appended to the detection confi-
dence, making the feature two-dimensional as in [3] 1.
Geometric and Semantic Context Features: The geomet-
ric and semantic context features ψ encode the compatibil-
ity between object and scene layout, and object and scene

1This representation ensures that all observation features associated
with a detection have values distributed from negative to positive, make
graphs with different numbers of objects are comparable.



type. As discussed in Sec. 3.3, a scene layout hypothesis
li is expressed using a 3D box representation and an ob-
ject detection hypothesis pi is expressed using a 3D cuboid
representation. The compatibility between an object and
the scene layout (ν>ψ(V,H)) is computed by measuring
to what degree an object penetrates into a wall. For each
wall, we measure the object-wall penetration by identify-
ing which (if any) of the object cuboid bottom corners in-
tersects with the wall and computing the (discretized) dis-
tance to the wall surface. The distance is 0 if none of the
corners penetrate a wall. The object-scene type compati-
bility, η>ψ(V,C), is defined by the object and scene-type
co-occurrence probability.
Interaction Features: The interaction features ϕ are com-
posed of an object overlap feature µ>ϕ(V,W ) and a 3DGP
feature λ>ϕ(V,Ch(V )). We encode the overlap feature
ϕ(V,W ) as the amount of object overlap. In the 2D im-
age plane, the overlap feature is A(V ∩W )/A(V )+A(V ∩
W )/A(W ) whereA(·) is the area function. This feature en-
ables the model to learn inhibitory overlapping constraints
similar to traditional non-maximum suppression [2].

3.2. The 3D Geometric Phrase Model

The 3DGP feature allows the model to favor a group of
objects that are commonly seen in a specific 3D spatial con-
figuration, e.g. a coffee table in front of a sofa. The prefer-
ence for these configurations is encoded in the 3DGP model
by a deformation cost and view-dependent biases (eq. 2).

Given a 3DGP node V , the spatial deformation
(dxi, dzi) of a constituent object is a function of the dif-
ference between the object instance location oi and the
learned expected location ci with respect to the centroid
of the 3DGP (the mean location of all constituent objects
mV ). Similarly, the angular deformation dai is computed
as the difference between the object instance orientation ai
and the learned expected orientation αi with respect to the
orientation of the 3DGP (the direction from the first to the
second object, aV ). Additionally, 8 view-point dependent
biases for each 3DGP encode the amount of occlusion ex-
pected from different view-points. Given a 3DGP node V
and the associated model πk, the potential function can be
written as follows:

λ
>
k ϕk(V,Ch(V )) =

∑
p∈P

b
p
k I(aV = p)−

∑
i∈Ch(V )

d
i>
k ϕ

d
k(dxi, dzi, dai)

(2)

where λk={bk, dk}, P is the space of discretized orienta-
tions of the 3DGP and ϕd(dxi, dzi, dai)={dx2

i , dz
2
i , da

2
i }.

The parameters dik for the deformation cost ϕik penalize
configurations in which an object is too far from the an-
chor. The view-dependent bias bpk “rewards” spatial con-
figurations and occlusions that are consistent with the cam-
era location. The amount of occlusion and overlap among
objects in a 3DGP depends on the view point; the view-

dependent bias encodes occlusion and overlap reasoning.
Notice that the spatial relationships among objects in a
3DGP encodes their relative positions in 3D space, so the
3DGP model is rotation and view-point invariant. Previous
work which encoded the 2D spatial relationships between
objects [24, 18, 3] required large numbers of training im-
ages to capture the appearance of co-occuring objects. On
the other hand, our 3DGP requires only a few training ex-
amples since it has only a few model parameters thanks to
the invariance property.2

3.3. Objects in 3D Space
We propose to represent objects in 3D space instead of

2D image space. The advantages of encoding objects in 3D
are numerous. In 3D, we can encode geometric relation-
ships between objects in a natural way (e.g. 3D euclidean
distance) as well as encode constraints between objects and
the space (e.g. objects cannot penetrate walls or floors).
To keep our model tractable, we represent an object by its
3D bounding cuboid, which requires only 7 parameters (3
centroid coordinates, 3 dimension sizes and 1 orientation.)
Each object class is associated to a different prototypical
bounding cuboid which we call the cuboid model (which
was acquired from the commercial website www.ikea.com
similarly to [22].) Unlike [11], we do not assume that ob-
jects’ faces are parallel to the wall orientation, making our
model more general.

Similarly to [10, 15, 27], we represent the indoor space
by the 3D layout of 5 orthogonal faces (floor, ceiling, left,
center, and right wall), as in Fig. 1(e). Given an image, the
intrinsic camera parameters and rotation with respect to the
room space (K,R) are estimated using the three orthogo-
nal vanishing points [10]. For each set of layout faces, we
obtain the corresponding 3D layout by back-projecting the
intersecting corners of walls.

An object’s cuboid can be estimated from a single image
given a set of known object cuboid models and an object
detector that estimates the 2D bounding box and pose (Sec.
6). From the cuboid model of the identified object, we can
uniquely identify the 3D cuboid centroid O that best fits the
2D bounding box detection o and pose p by solving for

Ô = argmin
O

||o− P (O, p,K,R)||22 (3)

where P (·) is a projection function that projects 3D cuboid
O and generates a bounding box in the image plane. The
above optimization is quickly solved with a simplex search
method [13]. In order to obtain robust 3D localization of
each object and disambiguate the size of the room space
given a layout hypothesis, we estimate the camera height
(ground plane location) by assuming all objects are lying
on a common ground plane. More details are discussed in
the supplementary material.

2Although the view-dependent biases are not view-point invariant,
there are still only a few parameters (8 views per 3DGP).



4. Inference
In our formulation, performing inference is equivalent to

finding the best parse graph specifying the scene type C,
layout estimation H , positive object hypotheses V ∈ VT
and 3DGP hypotheses V ∈ VI .

Ĝ = argmax
G

EΠ,θ(G, I) (4)

Finding the optimal configuration that maximizes the en-
ergy function is NP-hard. To make this problem tractable,
we introduce a novel bottom-up and top-down composi-
tional inference scheme. Inference is performed for each
scene type separately, so scene type is considered given in
the remainder of this section.
Bottom-up: During bottom-up clustering, the algorithm
finds all candidate 3DGP nodes Vcand = VT ∪ VI given
detection hypothesis Oo (Fig. 3 top). The procedure starts
by assigning one node Vt to each detection hypothesis ot,
creating a set of candidate terminal nodes (leaves) VT =
{V1

T , ...,V
Ko
T }, where Ko is the number of object cate-

gories. By searching over all combinations of objects in
VT , a set of 3DGP nodes, VI = {V1

I , ...,V
KGP
I }, is formed,

where KGP denotes the cardinality of the learned 3DGP
model Π given by the training procedure (Sec. 5). A 3DGP
node Vi is considered valid if it matches the spatial config-
uration of a learned 3DGP model πk. Regularization is per-
formed by measuring the energy gain obtained by including
Vi in the parse graph. To illustrate, suppose we have a parse
graphG that contains the constituent objects of Vi but not Vi
itself. If a new parse graph G′ ← G ∪ Vi has higher energy
0 < EΠ,θ(G

′, I)− EΠ,θ(G, I) = λ>k ϕk(Vi, Ch(Vi)), then
Vi is considered as a valid candidate. In other words, let πk
define the 3DGP model shown in Fig. 4(c). To find candi-
dates VkI for πk, we search over all possible configurations
of selecting one terminal node among the sofa hypotheses
VsofaT and one among the table hypotheses VtableT . Only
candidates that satisfy the regularity criteria are accepted as
valid. In practice, this bottom-up search can be performed
very efficiently (less than a minute per image) since there
are typically few detection hypotheses per object type.
Top-down: Given all possible sets of nodes Vcand, the op-
timal parse graph G is found via Reversible Jump Markov
Chain Monte Carlo (RJ-MCMC) sampling (Fig. 3 bottom).
To efficiently explore the space of parse graphs, we pro-
pose 4 reversible jump moves, layout selection, add, delete
and switch. Starting from an initial parse graph G0, the
RJ-MCMC sampling draws a new parse graph by sampling
a random jump move, and the new sample is either ac-
cepted or rejected following Metropolis-Hasting rule. Af-
ter N iterations, the graph that maximizes the energy func-
tion argmaxGE(G, I) is selected as the solution. The ini-
tial parse graph is obtained by 1) selecting the layout with
highest observation likelihood [10] and 2) greedily adding
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Figure 3. Bottom-up: Candidate objects VT and 3DGP nodes VI

are vetted by measuring spatial regularity. Red, green and blue
boxes indicate sofas, tables and chairs. Black boxes are candi-
date 3DGP nodes. Top-down: the Markov chain is defined by 3
RJ-MCMC moves on the parse graph Gk. Given Gk, a new G′

is proposed via one move and acceptance to become Gk+1 is de-
cided using the Metropolis-Hasting rule. Moves are shown in the
bottom-right subfigures. Red and white dotted boxes are new and
removed hypotheses, respectively.

object hypotheses that most improve the energy, similarly
to [3]. The RJ-MCMC jump moves used with a parse graph
at inference step k are defined as follows.
Layout selection: This move generates a new parse graph
Gk+1 by changing the layout hypothesis. Among |L| pos-
sible layout hypotheses (given by [10]), one is randomly
drawn with probability exp(lk)/

∑|L|
i exp(li), where lk is

the score of the kth hypothesis.
Add: This move adds a new 3DGP or object node from
Vi ∈ Vcand \Gk into Gk+1. To improve the odds of pick-
ing a valid detection, a node is sampled with probability
exp(si)/

∑|Vcand\Gk|
j exp(sj), where si is the aggregated

detection score of all children. For example, in Fig. 3(bot-
tom), si of Vc is the sum of the sofa and table scores.
Delete: This move removes an existing node Vi ∈ Gk to
generate a new graph Gk+1. Like the Add move, a node is
selected with probability exp(−si)/

∑|Gk|
j exp(−sj).

5. Training
Given input data x = (Os, Ol, Oo) with labels y =

(C,H, VT ) per image, we have two objectives during model
training: i) learn the set of 3DGP models Π and ii) learn the
corresponding model weights θ. Since the model param-
eters and 3DGPs are interdependent (e.g. the number of
model parameters increases with the number of GPs), we
propose an iterative learning procedure. In the first round, a
set of 3DGPs is generated by a propose-and-match scheme.
Given Π, the model parameters θ are learned using a latent
max-margin formulation. This formulation accommodates
the uncertainty in associating an image to a parse graph
G similarly to [6, 28]; i.e. given a label y, the root node
and terminal nodes of G can be uniquely identified, but the
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Figure 4. Examples of learned 3DGPs. The object class (in color) and the
position and orientation of each object is shown. Note that our learning
algorithm learns spatially meaningful structures without supervision.

3DGP nodes in the middle are hidden.
Generating Π: This step learns a set of 3DGPs, Π,

which captures object groups that commonly appear in the
training set in consistent 3D spatial configurations. Given
an image, we generate all possible 3DGPs from the ground
truth annotations {y}. The consistency of each 3DGP πk
is evaluated by matching it with ground truth object config-
urations in other training images. We say that a 3DGP is
matched if λ>k ϕk(V,Ch(V )) > th (see Sec. 4). A 3DGP
model πk is added to Π if it is matched more than K times.
This scheme is both simple and effective. To avoid redun-
dancy, agglomerative clustering is performed over the pro-
posed 3DGP candidates. Exploring all of the training im-
ages results in an over-complete set Π that is passed to the
parameter learning step.

Learning θ and pruning Π: Given a set of 3DGPs Π,
the model parameters are learned by iterative latent com-
pletion and max-margin learning. In latent completion, the
most compatible parse graph G is found for an image with
ground truth labels y by finding compatible 3DGP nodes
VI . This maximizes the energy over the latent variable (the
3DGP nodes), ĥi, given an image and label (xi, yi).

ĥi = argmax
h

EΠ,θ(xi, yi, h) (5)

After latent completion, the 3DGP models which are not
matched with a sufficient number (< 5) of training exam-
ples are removed, keeping the 3DGP set compact and ensur-
ing there are sufficient positive examples for max-margin
learning. Given all triplets of (xi, yi, ĥi), we use the cutting
plane method [3] to train the associated model parameter θ
by solving the following optimization problem.

min
θ,ξ

1

2
‖θ‖2 + C

∑
i

ξ
i

s.t. max
h

EΠ,θ(xi, y, h)− EΠ,θ(xi, yi, ĥi) ≤ ξi − δ(y, yi), ∀i, y (6)

where C is a hyper parameter in an SVM and ξi are slack
variables. The loss contains three components, δ(y, yi) =
δs(C,Ci) + δl(H,Hi) + δd(VT , VTi). The scene classifica-
tion δs(C,Ci) and detection δd(VT , VTi) losses are defined
using hinge loss. We use the layout estimation loss pro-
posed by [10] to model the layout estimation loss δl(H,Hi).
The process of generating Π and learning the associated
model parameters θ is repeated until convergence.

Using the learning set introduced in Sec. 6, the method
discovers 163 3DGPs after the initial generation of Π and

Obj. Bank [19] SDPM [21] SPM [14] W/o 3DGP 3DGP
Acc. 76.9 % 86.5 % 80.5 % 85.5 % 87.7 %

Table 1. Scene classification results using state-of-the-art methods (left-
two), the baseline [14] (center) and our model variants (right-two). Our
model outperforms all the other methods.

retains 30 after agglomerative clustering. After 4 iterations
of pruning and parameter learning, our method retains 10
3DGPs. Fig. 4 shows selected examples of learned 3DGPs
(the complete set is presented in supplementary material.)

6. Experimental Results
Datasets: To validate our proposed method, we collected
a new dataset that we call the indoor-scene-object dataset.3

The indoor-scene-object dataset includes 963 images. Al-
though there exist datasets for layout estimation evalua-
tion [10], object detection [4] and scene classification [23]
in isolation, there is no dataset on which we can evaluate
all the three problems simultaneously. The indoor-scene-
object dataset includes three scene types: living room, bed-
room, and dining room, with ∼300 images per room type.
Each image contains a variable number of objects. We de-
fine 6 categories of objects that appear frequently in indoor
scenes: sofa, table, chair, bed, dining table and side table.
In the following experiments, the dataset is divided into a
training set of 180 images per scene, and a test set of the
remaining images. Ground truth for the scene types, face
layouts, object locations and poses was manually annotated.
We usedC = 1 to train the system without tuning this hyper
parameter.
Scene Classifier: The SPM [14] is utilized as a baseline
scene classifier, trained via libSVM [1]. The baseline scene
classification accuracy is presented in Table 1. The score for
each scene type is the observation feature for scene type in
our model (φ(C,Os)). We also train two other state-of-the
art scene classifiers SDPM [21] and Object bank [19] and
report the accuracy in Table. 1.
Indoor layout estimation: The indoor layout estimator
as trained in [10] is used to generate layout hypotheses
with confidence scores for Ol and the associated feature
φ(H,Ol). As a sanity check, we also tested our trained
model on the indoor UIUC dataset [10]. Our model
with 3DGPs increased the original 78.8% pixel accuracy
rate [10] to 80.4%. Pixel accuracy is defined as the per-
centage of pixels on layout faces with correct labels.

To further analyze the layout estimation, we also evalu-
ated per-face estimation accuracy. The per-face accuracy is
defined as the intersection-over-union of the estimated and
ground-truth faces. Results are reported in Table. 2.
Object detection: The baseline object detector (DPM [6])
was trained using the PASCAL dataset [4] and a new dataset
we call the furniture dataset containing 3939 images with
5426 objects. The bounding box and azimuth angle (8 view

3The code and dataset are available at http://www.eecs.umich.
edu/vision/3DGP/

http://www.eecs.umich.edu/vision/3DGP/
http://www.eecs.umich.edu/vision/3DGP/
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Figure 5. Precision-recall curves for DPMs [6] (red), our model without
3DGP (green) and with 3DGP using M1 (black) and M2 (blue) marginal-
ization. Average Precision (AP) of each method is reported in Table.3.

points) of each object were hand labeled. The accuracy of
each baseline detector is presented in Fig. 5 and Table 3.
The detection bounding boxes and associated confidence
scores from the baseline detectors are used to generate a
discrete set of detection hypotheses Oo for our model. To
measure detection accuracy, we report the precision-recall
curves and average precision (AP) for each object type, with
the standard intersection-union criteria for detections [4].
The marginal detection score m(oi) of a detection hypoth-
esis is obtained by using the log-odds ratio that can be ap-
proximated by the following equation similarly to [3].

m(oi) =

{
EΠ(Ĝ, I)− EΠ(Ĝ\oi , I), oi ∈ Ĝ

EΠ(Ĝ+oi , I)− EΠ(Ĝ, I), oi /∈ Ĝ
(7)

where Ĝ is the solution of our inference, Ĝ\oi is the graph
without oi, and Ĝ+oi is the graph augmented with oi. If
there exists a parent 3DGP hypothesis for oi, we remove
the corresponding 3DGP as well when computing Ĝ\oi .

To better understand the effect of the 3DGP, we employ
two different strategies for building the augmented parse
graph Ĝ+oi . The first schemeM1 builds Ĝ+oi by adding oi
as an object hypothesis. The second scheme M2 attempts
to also add a parent 3DGP into Ĝ+oi if 1) the other con-
stituent objects in the 3DGP (other than oi) already exist in
Ĝ and 2) the score is higher than the first scheme (adding oi
as an individual object). The first scheme ignores possible
3DGPs when evaluating object hypotheses that are not in-
cluded in Ĝ due to low detection score, whereas the second
scheme also incorporates 3DGP contexts while measuring
the confidence of those object hypotheses.
Results: We ran experiments using the new indoor-scene-
object dataset. To evaluate the contribution of the 3DGP to
the scene model, we compared three versions algorithms:
1) the baseline methods, 2) our model without 3DGPs (in-

Method Pix. Acc Floor Center Right Left Ceiling
Hedau [10] 81.4 % 73.4 % 68.4 % 71.0 % 71.9 % 56.2 %
W/O 3DGP 82.8 % 76.9 % 69.3 % 71.8 % 72.5 % 56.3 %

3DGP 82.6 % 77.3 % 69.3 % 71.5 % 72.4 % 55.8 %

Table 2. Layout accuracy obtained by the baseline [10], our model without
3DGP and with 3DGP. Our model outperforms the baseline for all classes.

Figure 6. 2D and 3D (top-view) visualization of the results using our
3DGP model. Camera view point is shown as an arrow. This figure is
best viewed in color.

cluding geometric and semantic context features), and 3)
the full model with 3DGPs. In both 2) and 3), our model
was trained on the same data and with the same setup.

As seen in the Table 3, our model (without or with
3DGPs) improves the detection accuracy significantly (2−
16%) for all object classes. We observe significant improve-
ment using our model without 3DGPs for all objects ex-
cept tables. By using 3DGPs in the model, we further im-
prove the detection results, especially for side tables (+8%
in AP). This improvement can be explained by noting that
the 3DGP consisting of a bed and side-table boosts the de-
tection of side-tables, which tend to be severely occluded
by the bed itself (Fig. 4 (middle)). Fig. 7 provides qualita-
tive results. Notice that M2 marginalization provides higher
recall rates in lower precision areas for tables and side ta-
bles than M1 marginalization. This shows that the 3DGP
can transfer contextual information from strong object de-
tection hypotheses to weaker detection hypotheses.

The scene model (with or without 3DGPs) significantly
improves scene classification accuracy over the baseline
(+7.2%) by encoding the semantic relationship between
scene type and objects (Table. 1). The results suggest that
our contextual cues play a key role in the ability to clas-
sify the scene. Our model also outperforms state-of-the-art
scene classifiers [19, 21] trained on the same dataset.

Finally, we demonstrate that our model provides more
accurate layout estimation (Table. 2) by enforcing that all
objects lie inside of the free space (see Fig. 7). We ob-
serve that our model does equal or better than the base-
line [10] in 94.1%(396/421) of all test images. Although
the pixel label accuracy improvement is marginal compared
to the baseline method, it shows a significant improvement
in the floor estimation accuracy (Table. 2). We argue that
the floor is the most important layout component since its
extent directly provides information about the free space
in the scene; the intersection lines between floor and walls
uniquely specify the 3D extent of the free space.

Method Sofa Table Chair Bed D.Table S.Table
DPM [6] 42.4 % 27.4 % 45.5 % 91.5 % 85.5 % 48.8 %

W/O 3DGP 44.1 % 26.8 % 49.4 % 94.7 % 87.8 % 57.6 %
3DGP-M1 52.9 % 37.0 % 52.5 % 94.5 % 86.7 % 64.5 %
3DGP-M2 52.9 % 38.9 % 52.6 % 94.6 % 86.7 % 65.4 %

Table 3. Average Precision of the DPM [6], our model without 3DGP and
with 3DGP. Our model significantly outperforms DPM baseline in most of
the object categories.
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Figure 7. Example results. First row: the baseline layout estimator [10]. Second row: our model without 3DGPs. Third row: our model with 3DGPs.
Layout estimation is largely improved using the object-layout interaction. Notices that the 3DGP helps to detect challenging objects (severely occluded,
intra-class variation, etc.) by reasoning about object interactions. Right column: false-positive object detections caused by 3DGP-induced hallucination.
See supplementary material for more examples. This figure is best shown in color.

7. Conclusion
In this paper, we proposed a novel unified framework

that can reason about the semantic class of an indoor scene,
its spatial layout, and the identity and layout of objects
within the space. We demonstrated that our proposed object
3D Geometric Phrase is successful in identifying groups of
objects that commonly co-occur in the same 3D configu-
ration. As a result of our unified framework, we showed
that our model is capable of improving the accuracy of each
scene understanding component and provides a cohesive in-
terpretation of an indoor image.
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