
packetdrill: Scriptable Network Stack Testing, from Sockets to Packets

Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt Mathis, Barath Raghavan,

Nandita Dukkipati, Hsiao-keng Jerry Chu, Andreas Terzis, and Tom Herbert

Google

Abstract

Testing today’s increasingly complex network proto-

col implementations can be a painstaking process. To

help meet this challenge, we developed packetdrill, a

portable, open-source scripting tool that enables testing

the correctness and performance of entire TCP/UDP/IP

network stack implementations, from the system call

layer to the hardware network interface, for both IPv4

and IPv6. We describe the design and implementation

of the tool, and our experiences using it to execute 657

test cases. The tool was instrumental in our development

of three new features for Linux TCP—Early Retransmit,

Fast Open, and Loss Probes—and allowed us to find and

fix 10 bugs in Linux. Our team uses packetdrill in all

phases of the development process for the kernel used in

one of the world’s largest Linux installations.

1 Introduction

Despite their importance in modern computer systems,

network protocols often undergo only ad hoc testing be-

fore their deployment, and thus they often disappoint us.

In large part this is due to their complexity. For ex-

ample, the TCP roadmap RFC [19] from 2006 lists 32

RFCs. Linux implements many of these, along with a

few post-2006 Internet drafts, the sockets API, a dozen

congestion control modules, SYN cookies, numerous

software and hardware offload mechanisms, and socket

buffer management. Furthermore, new algorithms have

unforeseen interactionswith other features, so testing has

only become more daunting as TCP has evolved. In par-

ticular, we have made a number of changes to Linux

TCP [14, 15, 17, 20–22, 30] and have faced significant

difficulty in testing these features. The difficulties are

exacerbated by the number of components interacting,

including the application, kernel, driver, network inter-

face, and network. We found we needed a testing tool

for three reasons:

New feature development. Development testing of new

TCP features has often relied either on testing patches

on production machines or in emulated or simulated net-

work scenarios. Both approaches are time-consuming.

The former is risky and impossible to automate or repro-

duce; the latter is susceptible to unrealistic modeling.

Regression testing. While valuable for measuring over-

all performance, TCP regression testing with netperf,

application load tests [16], or production workloads can

fail to reveal significant functional bugs in congestion

control, loss recovery, flow control, security, DoS hard-

ening, and protocol state machines. Such approaches

suffer from noise due to variations in site/network con-

ditions or content, and a lack of precision and isola-

tion; thus bugs in these areas can go unnoticed (e.g. the

bugs discussed in Section 4.2 were only discovered with

packetdrill tests).

Troubleshooting. Reproducing TCP bugs is often chal-

lenging, and can require developers to instrument a pro-

duction kernel to collect clues and identify the culprit.

But production changes risk regressions, and it can take

many iterations to resolve the issue. Thus we need

a tool to replay traces to reproduce problems on non-

production machines.

To meet these challenges, we built packetdrill, a tool

that enables developers to easily write precise, repro-

ducible, automated test scripts for entire TCP/UDP/IP

network stacks. We find that it meets our design goals:

Convenient. Developers can quickly learn the syntax of

packetdrill and need not understand the internals of

protocols or packetdrill itself. The syntax also makes

it easy for the script writer to translate packet traces into

test scripts. The tool runs in real time so tests often com-

plete in under one second, enabling quick iteration.

Realistic. packetdrill works with packets and sys-

tem calls, testing precise sequences of real events.

packetdrill tests the exact kernel image used in pro-

duction, running in real time on a physical machine. It



can run with real drivers and a physical network inter-

face card (NIC), wire, and switch, or a TUN virtual NIC.

It does not rely on virtual machines, user-mode Linux,

emulated networks, or approximate models of TCP.

Reproducible. packetdrill can reliably reproduce

test script timing with less than one spurious failure per

2500 test runs (see Section 4.4).

General. packetdrill allows a script to run in IPv4,

IPv6, or IPv4-mapped IPv6 mode without modification.

It runs on Linux, FreeBSD, OpenBSD, and NetBSD,

and is portable across POSIX-compliant operating sys-

tems that support the libpcap packet capture/injection

library. Since it is open source, it can be extended by

protocol implementors to work with new algorithms, fea-

tures, and packet formats, including TCP options.

We find packetdrill useful in feature development, re-

gression testing, and production troubleshooting. Dur-

ing feature development, we use it to unit test imple-

mentations, thereby enabling test-driven development—

we have found it vital for incrementally testing complex

new TCP features on both the server and client side dur-

ing development. Then we use it for easy regression

testing. Finally, once code is in production, we use it

to isolate and reproduce bugs. Throughout the process,

packetdrill provides a succinct but precise language

for discussing TCP scenarios in bug reports and email

discussions.

In the rest of the paper, we discuss the design and im-

plementation of packetdrill, our experiences using it,

and related work.

2 Design

2.1 Scripting Language

packetdrill is entirely script-driven, to ease inter-

active use. packetdrill scripts use a language we de-

signed to closely mirror two syntaxes familiar to net-

working engineers: tcpdump and strace. The language

has four types of statements:

• Packets, using a tcpdump-like syntax, including

TCP, UDP, and ICMP packets, and common TCP

options: SACK, Timestamp, MSS, window scale,

and Fast Open.

• System calls, using an strace-like syntax.

• Shell commands enclosed in `` backticks, which

allow system configuration or assertions about net-

work stack state using commands like ss.

• Python scripts enclosed in %{}% braces, which en-

able output or assertions about the tcp_info state

that Linux and FreeBSD expose for TCP sockets.

2.2 Execution Model

packetdrill parses an entire test script, and then ex-

ecutes each timestamped line in real time—at the pace

described by the timestamps—to replay and verify the

scenario. For each system call line, packetdrill exe-

cutes the system call and verifies that it returns the ex-

pected result. For each command line, packetdrill

executes the shell command. For each incoming packet

(denoted by a leading < on the line), packetdrill con-

structs a packet and injects it into the kernel. For each

outgoing packet (denoted by a leading > on the line),

packetdrill sniffs the next outgoing packet and ver-

ifies that the packet’s timing and contents match the

script.

Consider the example script in Figure 1, which shows

a packetdrill script that tests TCP fast retransmit.

This test passes as-is on Linux, FreeBSD, OpenBSD, and

NetBSD, using a real NIC. As is typical, this script starts

by setting up a socket (lines 1–4) and establishing a con-

nection (lines 5–8). After writing data to a socket (line

9), the script expects the network stack under test to send

a data packet (line 10) and then directs packetdrill to

inject an acknowledgement (ACK) packet (line 11) that

the stack will process. The script ultimately verifies that

a fast retransmit occurs after three duplicate acknowl-

edgements arrive.

2.3 Local and Remote Testing

packetdrill enables two modes of testing: lo-

cal mode, using a TUN virtual network device, or in

remote mode, using a physical NIC. In local mode,

packetdrill uses a single machine and a TUN virtual

network device as a source and sink for packets. This

tests the system call, sockets, TCP, and IP layers, and is

easier to use since there is less timing variation, and users

need not coordinate access to multiple machines. In re-

mote mode, users run two packetdrill processes, one

of which is on a remote machine and speaks to the sys-

tem under test over a LAN. This approach tests the full

networking system: system calls, sockets, TCP, IP, soft-

ware and hardware offload mechanisms, the NIC driver,

NIC hardware, wire, and switch. However, due to the

inherent variability in the many components under test,

remote mode can result in larger timing variations, which

can cause spurious test failures.

3 Implementation

packetdrill is a user-level application written en-

tirely in C, adhering to Linux kernel code style to ease

use in kernel testing environments. In this section we

delve into the implementation of the tool.

2



0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 // Create a socket.

+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 // Avoid binding issues.

+0 bind(3, ..., ...) = 0 // Bind the socket.

+0 listen(3, 1) = 0 // Start listening.

+0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> // Inject a SYN.

+0 > S. 0:0(0) ack 1 <...> // Expect a SYN/ACK.

+.1 < . 1:1(0) ack 1 win 257 // Inject an ACK.

+0 accept(3, ..., ...) = 4 // Accept connection.

+0 write(4, ..., 1000) = 1000 // Write 1 MSS of data.

+0 > P. 1:1001(1000) ack 1 // Expect it to be sent immediately.

+.1 < . 1:1(0) ack 1001 win 257 // Inject an ACK after 100ms.

+0 write(4, ..., 4000) = 4000 // Write 4 MSS of data.

+0 > . 1001:2001(1000) ack 1 // Expect immediate transmission.

+0 > . 2001:3001(1000) ack 1

+0 > . 3001:4001(1000) ack 1

+0 > P. 4001:5001(1000) ack 1

+.1 < . 1:1(0) ack 1001 win 257 <sack 2001:3001,nop,nop> // Inject 3 ACKs with SACKs.

+0 < . 1:1(0) ack 1001 win 257 <sack 2001:4001,nop,nop>

+0 < . 1:1(0) ack 1001 win 257 <sack 2001:5001,nop,nop>

+0 > . 1001:2001(1000) ack 1 // Expect a fast retransmit.

+.1 < . 1:1(0) ack 6001 win 257 // Inject an ACK for all data.

Figure 1: A packetdrill script for TCP fast retransmit. Scripts use ... to omit irrelevancies.

3.1 Components

3.1.1 Lexer and Parser

For generality and extensibility, we use flex and

bison to generate packetdrill’s lexer and parser, re-

spectively. The structure of the script language is fairly

simple, and includes C/C++ style comments.

3.1.2 Interpreter

The packetdrill interpreter has one thread for the

main flow of events and another for executing any sys-

tem calls that the script expects to block (e.g. poll()).1

Packet events. For convenience, scripts use an ab-

stracted notation for packets. Internally, packetdrill

models aspects of TCP and UDP behavior; to do this,

it maintains mappings to translate between the values in

the script and those in the live packet. The translation

includes IP, UDP, and TCP header fields, including TCP

options such as SACK and timestamps. Thus we track

each socket and its IP addresses, port numbers, TCP se-

quence numbers, and TCP timestamps.

For outbound packet events we start sniffing immedi-

ately, in order to detect any packets that go out earlier

than the script specifies. When we sniff an outbound live

packet we find the socket that sent it, and verify that the

packet was sent at the expected time. Then we translate

1Currently, for simplicity of both understanding and implementa-

tion, we support only one blocking system call at a time.

the live packet to its script equivalent and verify that the

bits the kernel sent match what the script expected.

For inbound packet events we pause until the specified

time, then translate the script values to their live equiv-

alents so the network stack under test can process them,

and then inject the packet into the kernel.

To capture outgoing packets we use a packet socket

(on Linux) or libpcap (on BSD-derived OSes). To in-

ject packets locally we use a TUN device. To inject pack-

ets over the physical network in remote mode we use

libpcap. To consume test packets in local mode we use

a TUN device; remotely, packets go over the physical

network and the remote kernel drops them, since it has

no interface with the test’s remote IP address.

In packetdrill scripts, several aspects of outgoing

TCP packets are optional. This simplifies tests, allows

them to focus on a single area of behavior, eases mainte-

nance, and facilitates cross-platform testing by avoiding

test failures due to irrelevant differences in protocol stack

behavior over time or between different OSes. For exam-

ple, scripts may omit the TCP receive window, or use a

<...> notation for TCP options. If specified, they are

checked; otherwise they are ignored. For example, the

<...> on the SYN/ACK packet in Figure 1 ignores the

only difference between the four OSes in this test.

System calls. For non-blocking system call events, we

invoke the system call directly in the main thread. For

3



blocking calls, we enqueue the event on an event queue

and signal the system call thread. The main thread then

waits for the system call thread to block or finish the call.

When executing system calls we evaluate script sym-

bolic expressions and translate to live equivalents to get

inputs for the call. Then we invoke the system call;

when it returns we verify that the actual output, including

errno, matches the script’s expected output.

Shell commands. packetdrill executes command

strings with system().

Python scripts. packetdrill runs Python snippets by

recording the socket’s tcp_info struct at the time of the

script event, and then emitting Python code to export

the data, followed by the Python snippet itself, for the

Python interpreter to run after test execution completes.

3.2 Handling Variation

3.2.1 Network protocol features

packetdrill supports a wide array of protocol fea-

tures. Developers can use the same script unmodified

across IPv4, IPv6, and IPv4-mapped IPv6 modes by us-

ing command line flags to select the address mode and

MTU size. Beyond IPv4, IPv6, TCP, and UDP, we sup-

port ECN and inbound ICMP (for path MTU discovery).

It would be straightforward to add support for other IP-

based protocols, such as DCCP or SCTP.

3.2.2 Machine configuration

We have found that most scripts share machine set-

tings, and thus most scripts start by invoking a default

shell script to configure the machine. Also, since script

system calls do not specify aspects of the test machine’s

configuration, the interpreter substitutes these values in

during test execution. For example, we select a default

IP address that will be used for bind system calls based

upon the choice of IPv4, IPv6, or IPv4-mapped IPv6.

3.2.3 Timing Models

Since many protocols are very sensitive to timing,

we added support for significant timing flexibility in

scripts. Each statement has a timestamp, enforced by

packetdrill: if an event does not occur at the specified

time, packetdrill flags an error and reports the actual

time. Table 1 shows the packetdrill timing models.

3.2.4 Avoiding Spurious Failures

For over a year, we have used a --tolerance_usecs

value of 4 ms, so a test will pass as long as events happen

within 4 ms of the expected time. This allows the most

common variation: a 1-ms deviation in RTT leads to a

3-ms deviation in retransmission timeout (RTO), initial-

ized to 3 ·RTT per RFC 6298. We have found this to be

a practical trade-off between precision and maintenance

overhead, catching most significant timing bugs while

usually allowing a full run of all packetdrill scenarios

without a single spurious failure.

packetdrill also takes steps internally to reduce

timing variation and spurious failures, including align-

ing the start of test execution at a fixed phase offset rel-

ative to the kernel scheduler tick, leveraging sleep wake-

up events to obtain fresh tick values on “tick-less” Linux

kernels lacking a regular scheduler tick, using a real-time

scheduling priority, using mlockall() to attempt to pin

its memory pages into RAM, precomputing data where

possible, and automatically sending a TCP RST segment

to all test connections at the end of a test to avoid inter-

ference from retransmissions.

4 Experiences and results

For over 18monthswe have used packetdrill to test

the Linux kernel used on Google production machines.

Next we discuss how we’ve found it useful.

4.1 Features developed with packetdrill

Our team has used packetdrill to test the features

that we have implemented in Linux and have published.

We avoided pushing into production numerous bugs by

using packetdrill during development to test TCP

Early Retransmit [14], TCP Fast Open [30], TCP Loss

Probe [20], and a complete rewrite of the Linux F-RTO

implementation [15]; we also used it to test forward er-

ror correction for TCP [24]. The TCP features we devel-

oped before packetdrill, and thus for which we wrote

packetdrill tests afterward, include increasing TCP’s

initial congestion window to ten packets [22], reducing

TCP’s initial retransmission timeout to 1 second [17],

and Proportional Rate Reduction [21].

4.2 Linux bugs found with packetdrill

In the process of writing tests for the Linux TCP stack,

our team found and fixed 10 bugs in the official version

of Linux maintained by Linus Torvalds.

DSACK undo. Linux TCP can use duplicate se-

lective acknowledgements, or DSACKs, to undo con-

gestion window reductions. There was a bug where

DSACKs were ignored if there were no outstanding un-

acknowledged packets at the time the sender receives

the DSACK—this is actually the most common case [4].

Also, Linux was not allowing DSACK-based undo in

some cases where ACK reordering occurred [5].

CUBIC and BIC RTO undo. CUBIC, the default TCP

congestion control module for Linux, and the related

BIC module had bugs preventing them from undoing

a congestion window reduction that resulted from an

RTO [6, 7]; RTOs are the most common form of loss re-

covery in web sites with short flows [21].

4



Model Syntax Description

Absolute 0.750 Specifies the specific time at which an event should occur.

Relative +0.2 Specifies the interval after the last event at which an event should occur.

Wildcard * Allows an event to occur at any time.

Range 0.750~0.9 Requires the given event to occur within the time range.

Loose --tolerance_usecs=800 Allows all events to happen within a range (from the command line).

Blocking 0.750...0.9 Specifies a blocking system call that starts/returns at the given times.

Table 1: Timing models supported in packetdrill.

TCP Fast Open server. We used packetdrill to

find and fix several minor bugs in the TCP Fast Open

server code: the RTT sample taken using the server’s

TCP SYN/ACK packet was incorrect [8,9], TFO servers

failed to process the TCP timestamp value on the incom-

ing receiver ACK that completed the three-way hand-

shake [10], and TFO servers failed to count retransmits

that happened during the three-way handshake [11].

Receiver RTT estimation. We found and fixed a bug

in which receiver-side RTT estimates were broken due to

a path in which the code was directly comparing a raw

RTT sample with one that had already been shifted into

a fixed point representation [12].

Scheduler jiffies update. Jitter in packetdrill test

RTT estimates hinted at a Linux kernel code path in

which tick-less jiffies could be stale. Our audit of the

jiffies code revealed such a bug, which we fixed [13].

4.3 Catching external behavior changes
packetdrill scripts brought to our team’s attention

external Linux kernel changes that were not bugs, but

still had significant impacts in our environment, includ-

ing timer slack [32] and recent fixes in packet size ac-

counting [23]. For these changes we ended up adjusting

our production kernel’s behavior.

4.4 Test Suite
Coverage. Our team of nine developers has written

266 packetdrill scripts to test the Google production

Linux kernel and 92 scripts to test packetdrill itself.

Because packetdrill enables developers to run a given

test script in IPv4, IPv6, or IPv4-mapped IPv6 modes,

the number of total test case scenarios is even greater:

657. Table 2 summarizes the areas of TCP functionality

covered by our packetdrill scripts.

Reproducibility. To quantify the reproducibility of our

test results, we examined the spurious failure rate for two

days of recent test runs on a 2.2GHz 64-bit multiproces-

sor PC running a recent Google production Linux kernel.

We examined the most recent 54 complete runs of all 657

packetdrill test cases relevant for that release of the

kernel, and found 14 test case failures, all of which were

spurious. This implies an overall spurious test case fail-

ure rate of just under 0.0004, or 1 in 2500. Since fewer

Feature Description Tests

Socket API listen, connect, write, close, etc. 11

RFC 793 Core functionality 21

RFC 1122 Keep-alive 4

RFC 1191 Path MTU discovery 4

RFC 1323 Timestamps 1

RFC 2018 SACK (Selective Acknowledgement) 12

RFC 3168 Explicit Congestion Notification 3

RFC 3708 DSACK-based undo 10

RFC 5681 Congestion control 10

RFC 5827 Early retransmit 11

RFC 5682 F-RTO (Forward RTO-Recovery) 14

RFC 6298 Retransmission timer 13

RFC 6928 Initial congestion window 5

RFC 6937 Proportional rate reduction 10

IETF draft Fast open 44

IETF draft Loss probe 9

IETF draft CUBIC congestion control 1

n/a TSO (TCP segmentation offload) 3

n/a Receive buffer autotuning 2

n/a Linux inet_diag sockets 3

n/a Miscellaneous 75

Total test scripts 266

Table 2: Areas of TCP tested by packetdrill scripts.

than a quarter of full test runs suffer from spurious fail-

ures, we find this to be an acceptable overhead on our

kernel team. However, we continue to refine scripts to

further reduce the spurious failure rate.

Execution Time. packetdrill scripts execute quickly,

so we run all packetdrill scripts before sending for

review any commit that modifies the Google production

TCP code. For the 54 test runsmentioned above, the total

time to execute all 657 test cases was 25–26 minutes in

all 54 test runs, an average of 2.4 seconds per test case.

5 Related Work

There are many tools to debug and test protocol im-

plementations. RFC2398 [28] categorizes late-90s

tools. The Packet Shell [27] seems to be the closest

to packetdrill in design. It allowed scripts to send

and receive packets to test a TCP peer’s responses, but it

was developed specifically for Solaris, is no longer avail-

able publicly, was more labor-intensive (e.g. it took 8

5



lines of Tcl commands to inject a single TCP SYN), and

had no support for the sockets API, specifying packet ar-

rival times, or handling timers. Orchestra [18] is a fault-

injection library to check the conformance of TCP im-

plementations to basic TCP RFCs. It places a layer be-

low the X-kernel TCP stack and executes user-specified

actions to delay, drop, reorder, and modify packets. Re-

sults require manual inspection, and the tests are not au-

tomated to check newer TCP stacks. While not devel-

oped for testing, TCPanaly [29] analyzes TCP traces to

identify TCP implementations and diagnose RFC viola-

tions or performance issues. In packetdrill such do-

main knowledge is constructed through scripts; in TCP-

analy its built directly into the software itself, which is

harder to revise and expand.

The tools above were developed in the late 1990s, and

to our knowledge none of them is being actively used

to test modern TCP stacks. By contrast, IxANVL [1] is

a modern commercial protocol conformance testing tool

that covers core TCP RFCs and a few other networking

protocols, but unlike packetdrill it can not be eas-

ily extended or scripted to troubleshoot bugs or test new

changes, and is not open source.

Other research efforts test protocols by manually writ-

ing a model in a formal language, and then using auto-

mated tools to check for bugs [2, 3, 26, 31]. While these

models are rigorous, their high maintenance cost is un-

sustainable, since they diverge from the rapidly-evolving

code they try to model. Other tools automatically find

bugs, but only within narrow classes, or in user-level

code [25]. These approaches are complementary to ours.

6 Conclusion

packetdrill enables quick, precise, reproducible

scripts for testing entire TCP/UDP/IP network stacks.

We find packetdrill indispensable in verifying pro-

tocol correctness, performance, and security during de-

velopment, regression testing, and troubleshooting. We

have released packetdrill as open source in the hope

that sharing it with the community will make the process

of improving Internet protocols an easier one.

The source code and test scripts for packetdrill are

available at: http://code.google.com/p/packetdrill/.

Acknowledgements

We would like to thank Bill Sommerfeld, Mahesh

Bandewar, Chema Gonzalez, Laurent Chavey,Willem de

Bruijn, Eric Dumazet, Abhijit Vaidya, Cosmos Nicolaou,

and Michael F. Nowlan for their help and feedback.

References
[1] IxANVL. http://goo.gl/SV6ia.

[2] BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P.,

SMITH, M., AND WANSBROUGH, K. Rigorous specification and

conformance testing techniques for network protocols, as applied

to TCP, UDP, and sockets. In Proc. of SIGCOMM (2005), ACM.

[3] BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P.,

SMITH, M., AND WANSBROUGH, K. Engineering with logic:

HOL specification and symbolic-evaluation testing for TCP im-

plementations. In Proc. of ACM POPL (2006), ACM.

[4] CARDWELL, N. Linux commit 5628adf. http://goo.gl/Fnj46.

[5] CARDWELL, N. Linux commit e95ae2f. http://goo.gl/uyRUp.

[6] CARDWELL, N. Linux commit fc16dcd. http://goo.gl/xv6xB.

[7] CARDWELL, N. Linux commit 5a45f00. http://goo.gl/cHYiw.

[8] CARDWELL, N. Linux commit 0725398. http://goo.gl/jWu0S.

[9] CARDWELL, N. Linux commit 016818d. http://goo.gl/axR97.

[10] CARDWELL, N. Linux commit e69bebd. http://goo.gl/Rh2J1.

[11] CARDWELL, N. Linux commit 30099b2. http://goo.gl/BKZWH.

[12] CARDWELL, N. Linux commit 18a223e. http://goo.gl/BL4O5.

[13] CARDWELL, N. Linux commit 6f10392. http://goo.gl/IFQ4D.

[14] CHENG, Y. Linux commit eed530b. http://goo.gl/MPmF0.

[15] CHENG, Y. Linux commit e33099f. http://goo.gl/hhIfU.

[16] CHENG, Y., HÖLZLE, U., CARDWELL, N., SAVAGE, S., AND

VOELKER, G. Monkey see, monkey do: A tool for TCP tracing

and replaying. In Proc. of USENIX ATC (2004).

[17] CHU, J. Linux commit 9ad7c04. http://goo.gl/gxiFT.

[18] DAWSON, S., JAHANIAN, F., AND MITTON, T. Experiments

on six commercial TCP implementations using a software fault

injection tool. Software Practice and Experience 27, 12 (1997),

1385–1410.

[19] DUKE, M., BRADEN, R., EDDY, W., AND BLANTON, E. A

Roadmap for Transmission Control Protocol (TCP) Specification

Documents, September 2006. RFC 4614.

[20] DUKKIPATI, N., CARDWELL, N., CHENG, Y., AND MATHIS,

M. Tail Loss Probe (TLP): An Algorithm for Fast Recovery of

Tail Losses, Feb. 2013. IETF Draft, draft-dukkipati-tcpm-tcp-

loss-probe-01.

[21] DUKKIPATI, N., MATHIS, M., CHENG, Y., AND GHOBADI, M.

Proportional rate reduction for TCP. In Proc. of IMC (2011).

[22] DUKKIPATI, N., REFICE, T., CHENG, Y., CHU, J., HERBERT,

T., AGARWAL, A., JAIN, A., AND SUTIN, N. An Argument

for Increasing TCP’s Initial Congestion Window. ACM Comput.

Commun. Rev. 40 (2010).

[23] DUMAZET, E. Linux commit 87fb4b7. http://goo.gl/MgRWi.

[24] FLACH, T., DUKKIPATI, N., TERZIS, A., RAGHAVAN, B.,

CARDWELL, N., CHENG, Y., JAIN, A., HAO, S., KATZ-

BASSETT, E., AND GOVINDAN, R. Reducing Web Latency: the

Virtue of Gentle Aggression. In SIGCOMM (2013).

[25] KOTHARI, N., MAHAJAN, R., MILLSTEIN, T. D., GOVINDAN,

R., AND MUSUVATHI, M. Finding protocol manipulation at-

tacks. In SIGCOMM (2011), pp. 26–37.

[26] MUSUVATHI, M., ENGLER, D., ET AL. Model checking large

network protocol implementations. In Proc. of NSDI (2004).

[27] PARKER, S., AND SCHMECHEL, C. The packet shell protocol

testing tool. http://goo.gl/CS4kf.

[28] PARKER, S., AND SCHMECHEL, C. RFC2398: Some testing

tools for TCP implementors, August 1998.

[29] PAXSON, V. Automated packet trace analysis of TCP implemen-

tations. In Proc. of ACM SIGCOMM (1997), ACM.

[30] RADHAKRISHNAN, S., CHENG, Y., CHU, J., JAIN, A., AND

RAGHAVAN, B. TCP Fast Open. In Proc. of CoNEXT (2011).

[31] SMITH, M., AND RAMAKRISHNAN, K. Formal specification

and verification of safety and performance of TCP selective ac-

knowledgment. IEEE/ACM ToN 10, 2 (2002).

[32] VAN DE VEN, A. Linux commit 3bbb9ec. http://goo.gl/w18r6.

6


