
Fast, Accurate Detection of 100,000 Object Classes on a Single Machine:
Technical Supplement

Thomas Dean Mark A. Ruzon Mark Segal
Jonathon Shlens Sudheendra Vijayanarasimhan Jay Yagnik†

Google, Mountain View, CA
{tld,ruzon,segal,shlens,svnaras,jyagnik}@google.com

Abstract

In the paper [1] published in CVPR, we presented
a method that can directly use deformable part models
(DPMs) trained as in [3]. After training, HOG based part
filters are hashed, and, during inference, counts of hash-
ing collisions summed over all hash bands serve as a proxy
for part-filter / sliding-window dot products, i.e., filter re-
sponses. These counts are an approximation and so we take
the original HOG-based filters for the top hash counts and
calculate the exact dot products for scoring.

It is possible to train DPM models not on HOG data but
on a hashed WTA [4] version of this data. The resulting
part filters are sparse, real-valued vectors the size of WTA
vectors computed from sliding windows. Given the WTA
hash of a window, we exactly recover dot products of the top
responses using an extension of locality-sensitive hashing.
In this supplement, we sketch a method for training such
WTA-based models.

1. Introduction

By applying our hashing method to a familiar object de-
tector we demonstrated its utility and provided some indi-
cation of his general applicability. The WTA hash func-
tions serve as the basis for locality-sensitive hashing and
provide additional benefit due to their implementing a rank-
correlation similarity measure. The number of hash-band
matches is only a rough proxy for a dot product however
and so to compensate we take the part filters with the most
matches and compute the dot products exactly to come up
with the final scores for the associated object models.

A more efficient approach is to operate entirely within
the WTA space to reconstruct the dot product of a hashed
HOG pyramid subwindow and a vector of filter weights by
table lookup. In this supplement, we show how such an

† Corresponding author.

approach can be applied to improve both throughput and
detection performance. Once again we use the basic frame-
work in [3] to simplify the presentation but the method has
more general application.

1.1. Detecting Objects

Figure1 illustrates the basic detection and training archi-
tecture for the new method. Instead of a filter correspond-
ing to matrix of weights the size of a particular subwindow
of the HOG pyramid, our filters are in the same(N ∗ K)-
dimensional space as the descriptors produced by our WTA
hash function. However, they are real-valued, not binary,
and, while still sparse, they are not as sparse as the WTA
descriptors, which have exactlyN non-zero entries. During
training we will be taking dot products of these(N ∗ K)-
weight vectors with(N ∗ K)-hash vectors to compute gra-
dients and adjust the filter weights.

Consider the(N ∗ K)-dimensional binary vectors pro-
duced by the WTA hash function. AssumingW divides
N evenly, divide the vector into equal-sized bands of size
W ∗ K. For N = 2400 andK = 16, W = 4 produces
M = 600 bands, each taking 16 bits. Create one hash ta-
ble for each band to accommodate the hashed subvectors of
lengthW ∗ K. Let w be the vector of weight coefficients
for a part filter andv be the binary vector corresponding to
the WTA hash of a subwindow of the HOG pyramid.

As in the paper, letBm denote themth hash table,wm

themth (W ∗ K) span of weight coefficients inw, andvm

themth (W ∗ K) binary subvector ofv. Given a particular
v, we wish to (implicitly) compute

∑N∗K

k w(k) ∗ v(k) for
all part filters and select the filters above a threshold. We
do so using the decomposition of the dot product intoM

independent partial sums:
∑M

m

∑W∗K

k wm(k)∗vm(k). In-
stead of storing just the filter indices in the hash tables and
keeping track of the number hash-band matches, we store
the partial sums along with the filter indices.

Let Q be a queue used to keep track of the filters and
cumulative partial sums. InitializeQ to zero and setm to

1



Figure 1. The basic system architecture illustrating the key steps in detecting objects and training models. Unlike theversion in the
submitted paper in which training examples are comprised ofHOG features, training examples in this all-WTA architecture are comprised
of the WTA hash codes of HOG features, thus allowing us to takebetter advantage of the properties of WTA hash functions. Filter weight
vectors are real valued and made to be sparse by adding aL1 term to the loss function. Each such weight vector gives riseto one or more
WTA hash codes which are divided into sub codes associated with hash bands and inserted into the corresponding hash tables. The entry
in the hash table records the filter index and a scalar value equal to the contribution of that sub code to the dot product of the weight vector
and a hash code that matches on that band. During detection, instead of using a count of hash-band matches to generate candidate filters
and then computing exact dot products for the candidates with the highest number of matches, we exactly reconstruct the filter responses
by summing the previously computed component contributions stored in the hash tables.

1. The entry returned from hashingvm in Bm is a list of
pairs of the form(Ii, Si) such thatIi is a filter index and
Si =

∑W∗K

k wm(k) ∗ vm(k) wherew is the weight vec-
tor for theIith filter. We update all the respective cumula-
tive partial sums inQ, incrementm and iterate throughM .
The final cumulative partial sums exactly reconstruct the dot
products assuming perfect hashing. We can be clever about
keepingQ sorted and maintaining cache coherence, but the
more important performance issues involve ensuring that
the entries corresponding to most hash keys are empty or
reference only a small fraction of all filters. To understand
how we accomplish this, we now describe to our approach
to training object models.

1.2. Training Models

Training as described in [2] occurs in several phases,
each phase consisting of two stages. In the first stage in
all but the first, initialization phase, we start by collecting
sets of positive and negative examples. In the case of posi-
tive examples, we use the current model parameters to find
an optimal placement of the parts within the bounding box
supplied as annotation with the training example.

In the case of negative examples, we mine the train-
ing data to findhard negatives corresponding to windows
for which the current model parameters produce a false-
positive detection. Once the positive and negatives exam-
ples for a given phase are assembled, we package the ex-
amples in a compact representation suitable for the second
stage in which we adjust the model parameters.

In this stage, each training example is encoded as a
vector corresponding to a concatenation of the part-filter-
sized subwindows of the HOG pyramid where the location
of these subwindows were identified in the preceding data
mining stage using the current model parameters. The part
locations are also encoded in the example vector to be used
in adjusting the model deformation parameters.

We’re glossing over some details concerning the fact that
the models in [2] are mixtures consisting of components that
may use different filters of varying size. For simplicity, in
the sequel we assume that each model has a single compo-
nent and all training examples are the same size and that we
can encode the model as a concatenation of filter weights in
the same order as the examples and hence the same size.

The alignment between parameters and examples im-



plies we can take dot products of one with the other. We
now proceed in general agreement with [2] except that we
eliminate the root filter and apply the WTA hash function
to the HOG-pyramid subwindows and exploit the fact that
the WTA hash vectors are sparse to expedite the dot prod-
ucts performed during parameter adjustment. The score for
a training examplex is defined as follows:

fβ(x) = max
z∈Z(x)

β · Φ(x, z)

whereβ is the vector of model parameters,Z(x) is the set
of possible latent values corresponding to part positions,
z ∈ Z is an assignment of positions — one for each part,
andΦ(x, z) is the example vector with the substitution of
the position assignments. The objective function as defined
in [2] is the sum of anL2 regularizer and a hinge-loss:

LD(β) =
1

2
‖β‖2 + C

n∑

i=1

max(0, 1 − yifβ(xi))

whereD = {(x1, y1), (x2, y2), . . . , (xn, yn)} is the train-
ing data such thatxi is a positive or negative training exam-
ple andyi is 1 if the example is positive and−1 otherwise.

We modify the objective by adding anL1 term,λ‖β‖1 to
encourage sparsity in the weight vector. By adjustingλ, we
control the number of non-zero entries in the filter weights.
This has the usual benefits of sparsity plus it serves to re-
duce the size of theM hash tables and accelerate hashing.
If the number of non-zeros within eachK-length span is re-
duced toH , then for each filterf there are no more than
(H + 1)W hash keys for a given hash band whose contri-
bution to dot products involvingf is other than zero. This
property allows us to reduce the number of(I, S) pairs we
need to store in the hash tables. As illustrated on the right in
Figure1, after training the model we determine the(I, S)
pairs required to populate each hash band and update theM

hash tables accordingly.

References

[1] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijaya-
narasimhan, and J. Yagnik. Fast, accurate detection of
100,000 object classes on a single machine. InIEEE
Conference on Computer Vision and Pattern Recogni-
tion, Washington, DC, USA, 2013. IEEE Computer So-
ciety. 1

[2] P. Felzenszwalb, R. Girshick, D. McAllester, and
D. Ramanan. Object detection with discriminatively
trained part based models.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 32:1627–1645,
2010.2, 3

[3] P. F. Felzenszwalb, D. A. McAllester, and D. Ramanan.
A discriminatively trained, multiscale, deformable part

model. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8. IEEE, 2008.1

[4] J. Yagnik, D. Strelow, D. A. Ross, and R.-s. Lin. The
power of comparative reasoning. InIEEE International
Conference on Computer Vision. IEEE, 2011.1


