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ABSTRACT
This paper describes the Haptic Voice Recognition (HVR)
Grand Challenge 2012 and its datasets. The HVR Grand
Challenge 2012 is a research oriented competition designed
to bring together researchers across multiple disciplines to
work on novel multimodal text entry methods involving speech
and touch inputs. Annotated datasets were collected and
released for this grand challenge as well as future research
purposes. A simple recipe for building an HVR system using
the Hidden Markov Model Toolkit (HTK) was also provided.
In this paper, detailed analyses of the datasets will be given.
Experimental results obtained using these data will also be
presented.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Voice I/O, Natural language, User-centered de-
sign ; I.2.7 [Artificial Intelligence]: Natural Language
Processing—Speech recognition and synthesis

Keywords
mobile text input; multimodal interface; haptic voice recog-
nition

1. INTRODUCTION
Haptic Voice Recognition (HVR) Grand Challenge 2012 is

a research oriented competition designed to bring together
researchers across multiple disciplines to work on Haptic
Voice Recognition (HVR) [10], a novel multimodal text en-
try method for modern mobile devices. HVR combines both
voice and touch inputs to achieve better efficiency and ro-
bustness. Since modern portable devices are now commonly
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equipped with both microphones and a touchscreen display,
it will be interesting to explore possible ways of enhanc-
ing text entry on these devices by combining information
obtained from these sensors. The purpose of this grand
challenge is to define a set of common challenge tasks for re-
searchers to work on in order to address the challenges faced
and to bring the technology to the next frontier. Basic tools
and setups are also provided to lower the entry barrier so
that research teams can participate in this grand challenge
without having to work on all aspects of the system.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief introduction to Haptic Voice Recognition
(HVR). Section 3 describes the challenges to be addressed
by the grand challenge. Section 4 presents the datasets and
the data collection procedures. Section 5 gives a detailed ac-
count of the analyses performed on the datasets. Section 6
describe the HVR recipe provided for the challenge. Finally,
Section 7 reports some experimental results on the datasets.

2. HAPTIC VOICE RECOGNITION
Haptic Voice Recognition (HVR) is a multimodal inter-

face designed for efficient and robust text entry on modern
portable devices. Nowadays, modern portable devices such
as the smartphones and tablets are commonly equipped with
microphone and touchscreen display. Typing using an on-
screen keyboard is the most common way for users to enter
text on these portable devices. In many situations, users
can only type with one hand, while the other hand is hold-
ing the device. Furthermore, typing on smaller devices such
as smartphones can be quite challenging. As a result, typing
speed on portable devices is significantly slower compared to
that on desktop and laptop computers with full-sized key-
board [4]. Voice input offers a hands-free solution for text
entry. This is an attractive alternative to typing because
voice input completely eliminates the need for typing. How-
ever, voice input relies on Automatic Speech Recognition
(ASR) technology, which requires high computational re-
sources and is susceptible to performance degradation due
to acoustic interference. These are practical issues to be
addressed since portable devices typically have limited com-
putation and memory resources to accommodate state-of-
the-art ASR system. Moreover, ASR systems have to cope
with a wide range of acoustic conditions due to the mobility
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of these portable devices. In addition, ASR systems often do
not work as well for non-native speakers or speakers with a
heavy accent. Users often find that voice input is like a black
box that listens to the users voice and returns the recogni-
tion output without much flexibility for human intervention
in case of errors. Certain applications will return multiple
recognition hypotheses for the users to choose from. Any re-
maining unhandled errors are typically corrected manually.
Instead of accepting human inputs after the recognition pro-
cess, it may be more helpful to integrate additional human
input into the voice recognition process. This is the ba-
sis motivated the development of Haptic Voice Recognition
(HVR) [10].

Haptic Voice Recognition (HVR) is a multimodal inter-
face designed to offer users the opportunity to add his or
her ‘magic touch’ in order to improve the accuracy, efficiency
and robustness of voice input. HVR is designed for modern
mobile devices equipped with an embedded microphone to
capture speech signals and a touchscreen display to receive
touch events. The HVR interface aims to combine both
speech and touch modalities to enhance speech recognition.
When using an HVR interface, users will input text ver-
bally, at the same time provide additional cues in the form
of Partial Lexical Information (PLI) [11] to guide the recog-
nition search. PLIs are simplified lexical representation of
words that should be easy to enter whilst speaking (e.g. the
prefix and/or suffix letters). Preliminary simulated exper-
iments conducted by [10] show that potential performance
improvements both in terms of recognition speed and noise
robustness can be achieved using the initial letters as PLIs.
For example, to enter the text “Henry will be in Boston next
Friday”, the user will speak the sentence and enter the fol-
lowing letter sequence: ‘H’, ‘W’, ‘B’, ‘I’, ‘B’, ‘N’ and ‘F’.
These additional letter sequence is simple enough to be en-
tered whilst speaking; and yet they provide crucial infor-
mation that can significantly improve the efficiency and ro-
bustness of speech recognition. For instance, the number of
letters entered can be used to constrain the number of words
in the recognition output, thereby suppressing spurious in-
sertion and deletion errors, which are commonly observed
in noisy environment. Furthermore, the identity of the let-
ters themselves can be used to guide the search process so
that partial word sequences in the search graph that do not
conform to the PLIs provided by the users can be pruned
away.

3. THE HVR CHALLENGES
This section will present a detailed description of the HVR

Grand Challenge. The main objective of the HVR Grand
Challenge 2012 is to provide a common platform on which
competitive research work can be performed easily by re-
searchers across multiple disciplines. The HVR Grand Chal-
lenge is set to address two major challenges pertaining to
HVR: 1) What kind of haptic information can be provided
via touch input and how to provide them? and 2) What kind
of inference models to be used and how to combine multiple
inference models together?

In order to address the above two challenges, the grand
challenge consists of two challenge sub-tasks, which corre-
spond to one of the two components of the HVR system,
as depicted in Figure 1. The front-end of an HVR system
(HVR interface) captures the voice and touch inputs from
the user using a microphone and a touchscreen display. The

Figure 1: HVR System Architecture.

multiple streams of information captured by the front-end
component are then processed by the back-end component
(HVR recognition) to decipher the user intended input texts.
The details of the two challenge subtasks will be described
in the following.

3.1 T1 – The HVR Interface Challenge
The objective of this challenge subtask was to design in-

novative user interfaces for HVR. The core of this task was
to design appropriate haptic events for HVR and methods
for generating these events using touchscreen inputs. The
complexity of the haptic event will affect the quality of the
realized speech as well as the throughput using the overall
HVR interface. For example, the haptic events may repre-
sent partial lexical information [11] of the words in the utter-
ance, such as the initial and/or final letter of the words; and
these letters may be generated by tapping on the appropri-
ate keys on a soft keyboard or using more complex gesture
recognition approaches. Through this challenge subtask,
participants were given the freedom to propose innovative
haptic events for HVR. For this challenge subtask, a list of
text prompts were provided. Participants were asked to use
their respective HVR interfaces to generate the correspond-
ing speech data and haptic events. Systems were evaluated
in terms of the word accuracy of the final text output from
the overall HVR system. Participants in this challenge sub-
task may not need to build their own back-end recognition
systems. A baseline HVR recognition system was provided
to the participants to evaluate their HVR interfaces.

3.2 T2 – The HVR Recognition Challenge
This subtask was designed to challenge the research com-

munity to propose innovative recognition algorithms for HVR.
HVR is essentially an extension to the conventional ASR,
where haptic events are augmented as additional input. Par-
ticipants were encouraged to discover new ways of making
use of this additional information to improve the final recog-
nition performance. Previously, haptic pruning was pro-
posed in [10] to incorporate haptic inputs in order to con-
strain the decoding search space. A more generic proba-
bilistic framework of integrating the haptic inputs based on
Weighted Finite State Transducers (WFST) was introduced
in [11]. Participants were invited to explore other possibil-
ities, including but not limited to aspects such as acoustic
and language model adaptation using the additional hap-
tic events. For this subtask, participants were given a set
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Entry Method HVR Mode Haptic Input

Method 1 Synchronous Keyboard
Method 2 Synchronous Keystroke
Method 3 Asynchronous Keyboard
Method 4 Asynchronous Keystroke

Table 2: Four different entry modes for HVR data
collection.

of speech utterances along with the corresponding haptic
inputs. In HVR Grand Challenge 2012, the initial letter
sequences were generated using keyboard and keystroke in-
puts. Systems were evaluated based on the word accuracy
of the final text output.

4. DATASETS
This section will describe the datasets used for the HVR

Grand Challenge 2012. Three sets of data were made avail-
able to the challenge participants. A summary of these
datasets in terms of the number of subjects, number of ut-
terances and the amount of speech data is given in Table 1.
The pilot dataset contains data collected from one subject.
This subject has used the HVR interface for more than one
year and can be regarded as an experienced user. The devel-
opment and challenge datasets contains data collected from
4 and 15 subjects respectively. These subjects do not have
prior experience using the interface. They were given the
opportunity to practice with the HVR interface for several
sentences before the data collection. These subjects were
university students. Most of them were non-native English
speakers.

4.1 Data Collection Procedures
The challenge datasets were collected using an HVR inter-

face prototype implemented on iPad. The screenshots of the
interface using the keyboard and keystroke input modes are
depicted in Figures 2(a) and 2(b) respectively. Data collec-
tion was carried out with the HVR iPad interface operating
in the landscape mode. For keyboard input, an onscreen soft
keyboard with a standard QWERTY keyboard layout was
used to enter the initial letters. The size of the keyboard is
352 × 1024, which is the same size as the standard English
QWERTY keyboard provided by iOS. For keystroke input,
subjects are required to use a predefined set of single-stroke
handwriting gestures to enter the letters. These predefined
gestures are given in Figure 3. Most of these letters can
be represented by single-stroke gestures using the standard
handwritten lowercase form, except for the letters ‘F’, ‘I’,
‘L’, ‘T’ and ‘X’, whose keystrokes are slightly modified to
be single-stroke. Single-stroke handwriting input simplifies
the recognition process since the letter boundaries are explic-
itly provided. Therefore, the system only needs to handle
isolated handwritten letter recognition.

During data collection, each subject will enter a series
of prompted texts using the HVR iPad interface. Each sen-
tence was entered four times, each corresponds to a different
HVR mode and a different haptic input method, as shown
in Table 2. The synchronous HVR mode indicates that the
subjects will enter the texts verbally, at the same time pro-
vide the corresponding initial letter sequence using either the
keyboard or keystroke input method. On the other hand, for

(a) Keyboard Input Mode

(b) Keystoke Input Mode

Figure 2: Screenshots of HVR iPad interface used
for data collection.

asynchronous HVR mode, subjects will read the prompted
sentence first and then provide the initial letters afterwards.

For each text entry method, the speech utterances were
recorded and stored as single channel 16 bit linear pulse code
modulation (PCM) sampled at 16 kHz. For keyboard in-
put, the HVR interface also captured the corresponding let-
ter sequence as the subjects tap on the onscreen keyboard.
The timestamps of the key presses relative to the start of
the speech recording were also saved. For keystroke inputs,
the HVR interface captured a series of 2-dimensional coor-
dinates for each handwriting gesture. Likewise, the start
times of the keystrokes relative to the start of the speech
recording were also saved.

The data collected was conducted in a research labora-
tory where the recorded speech may be considered noise free.
Noisy speech data were then artificially created by corrupt-
ing the clean speech with additive noise. The noise samples
were collected from a school canteen where the primary noise
type is babble noise. Three sets of noisy data were created
at signal-to-noise ratios of 20dB, 15dB and 10dB.
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Datasets
No. of No. of Utterances Amount of Speech (mins)

Subjects Train Test Train Test

Pilot 1 164 20 12.0 1.5
Development 4 243 80 25.1 9.3

Challenge 15 977 180 94.3 20.8

Table 1: Number of subjects, number of utterances and amount of speech data in the pilot, development and
challenge datasets.

Figure 3: Single-stroke letter keystrokes used for data collection.

5. ANALYSES OF DATASETS
This section gives an account of the characteristics of the

datasets in various aspects. First of all, the effects of HVR
interface on the speech produced by the subjects were inves-
tigated. The durations of the speech and silence segments
of the resulting speech collected using the synchronous and
asynchronous modes were compared in Figure 4. Forced-
alignment [13] was used to obtain the phone boundaries.
The speech data produced by the subjects when using HVR
in asynchronous mode were considered to be normal speech
since their speech was not affected by any concurrent touch
inputs. Therefore, the durations of the phones and silences
for asynchronous mode were about the same for keyboard
and keystroke inputs, as show in Figures 4(b), 4(d) and 4(f).
Three types of silences were considered. A leading silence
means the portion of silence at the beginning of each ut-
terance. Likewise, a trailing silence denotes the portion of
silence at the end of each utterance. Inter-word silences are
the gaps in between successive words. These gaps are typi-
cally very small for fluent continuous speech.

In general, the average durations of phones and various
types of silences are longer for synchronous data compared
to asynchronous data. The average duration of the lead-
ing silence for synchronous mode is about 1 second for all
the datasets. This is consistently longer than the leading si-
lence durations for asynchronous data, which indicates that
there is a finite delay for the subjects to locate the key on
the soft keyboard or determine the appropriate keystroke
for the first letter of the first word of the sentence before
he or she began to speak. There seems to be no differ-
ence in the leading silence durations between keyboard and
keystroke inputs. On the other hand, the trailing silence
for the keyboard and keystroke inputs are quite different for
synchronous mode. For keyboard input, the trailing silence
durations are almost the same for both synchronous and
asynchronous cases. However, since the time taken to speak
a word may be shorter than the time needed to complete a
handwriting gesture for the corresponding initial letter, the
trailing silences for synchronous keystroke mode was found
to be more than 2 times longer than those for synchronous
keyboard mode.

Similarly, the silence durations in between successive words
were significantly longer for synchronous data. Beginners
(subjects for development and challenge data) were found
to spend on average 0.11s – 0.13s longer in between words
to locate the right keys for synchronous keyboard input and
0.30s – 0.34s longer to complete the handwriting gestures.
An experienced user, on the other hand, spent on average
0.06s and 0.07s longer in between words for keyboard and
keystroke inputs. This shows that, with sufficient practice,
potential speedup in HVR text entry can be achieved.

Besides, synchronous input also caused the average phone
durations to be longer. The average phone duration for be-
ginners increased by 0.02s –0.06s for synchronous keyboard
input and 0.04s – 0.10s for synchronous keystroke input. On
the other hand, the phones produced by an experienced user
lengthened by 0.03s for both keyboard and keystroke inputs.

Next, the characteristics of the touch inputs were ana-
lyzed. Table 3 shows the average durations between suc-
cessive haptic inputs. They were measured as the differ-
ence between the timestamps of the successive key presses
or the start times of the successive handwriting gestures.
The corresponding effective input speeds, measured in the
number of words per minute (WPM), were also reported
in the same table. For asynchronous mode, beginners’ key-
board and keystroke input speeds were 69 – 79 WPM and 44
WPM respectively. An experienced user can achieve much
higher input speeds, at 122 WPM and 95 WPM respectively.
However, despite the additional cognitive loads, the effec-
tive haptic input speeds increased slightly for synchronous
inputs. The input speeds for beginners increased to 73 – 87
WPM and 54 – 58 WPM for keyboard and keystroke inputs
respectively. The keystroke input speed for an experienced
user also increased to 102 WPM. This phenomenon may be
due to the fact that the subjects subconsciously increase the
haptic input speed to catch up with the faster speaking rate
in synchronous mode.

Given the timestamps of the haptic inputs and the time
boundaries of the phones obtained using forced-alignment,
it will be interesting to analyze the synchrony of these two
streams of inputs. Table 4 shows the average deviation of
the haptic inputs from the start of the corresponding words.
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(a) Synchronous – Pilot (b) Asynchronous – Pilot

(c) Synchronous – Development (d) Asynchronous – Developement

(e) Synchronous – Challenge (f) Asynchronous – Challenge

Figure 4: Durations between successive haptic events in the pilot, development and challenge datasets.
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Datasets
Average Input Duration (sec) Effective Input Speed (WPM)

Synchronous Asynchronous Synchronous Asynchronous
Keyboard Keystroke Keyboard Keystroke Keyboard Keystroke Keyboard Keystroke

Pilot 0.49 0.59 0.49 0.63 122 102 122 95
Development 0.82 1.04 0.87 1.36 73 58 69 44

Challenge 0.69 1.12 0.76 1.36 87 54 79 44

Table 3: Durations between successive haptic inputs and the effective input speed for the pilot, development
and challenge datasets.

Datasets
Average Deviation (sec)
Keyboard Keystroke

Pilot 0.10 0.36
Development 0.44 0.61

Challenge 0.22 0.62

Table 4: Deviation of haptic inputs from the start of
the corresponding words for the pilot, development
and challenge datasets.

Datasets
Input Occurrence (%)

Method Before Within After

Pilot
Keyboard 4 96 0
Keystroke 1 91 8

Development
Keyboard 8 80 12
Keystroke 2 83 15

Challenge
Keyboard 11 84 5
Keystroke 4 85 11

Table 5: Percentage of haptic inputs occurring be-
fore, within and after the corresponding words for
the pilot, development and challenge datasets.

Only sentences whose length matches the number of cor-
responding haptic inputs were considered1. For beginners,
key presses occurred about 0.22s – 0.44s after the start of
the corresponding words; keystrokes happened 0.61s – 0.62s
after the subjects started speaking the words. However, the
deviations for an experienced user were much shorter: 0.10s
and 0.36s for keyboard and keystroke inputs respectively.
Sometimes, subjects may also enter the haptic inputs before
they started speaking the word or after they have finished
the word. Table 5 shows the percentage of haptic inputs
occurring before, within and after the corresponding words.
For beginners, between 80% – 85% of the haptic input oc-
currences fall within the corresponding words. About 2% –
11% and 5% – 15% of them happened before and after the
words respectively. The haptic inputs for an experienced
user were more precise. About 91% – 96% of them occurred
within the words. Only 1% – 4% were before the words and
8% after the words.

6. HVR RECIPE
As part of this challenge, a simple recipe based on the

Hidden Markov Model Toolkit (HTK) [13] was also pro-
vided. This recipe adopts an offline implementation of HVR
where the recognition is performed after all the speech and
haptic inputs are captured (e.g. at the end of an utter-

1There were a small number of sentences where subjects
entered more or fewer letters than necessary by mistake.

ance). This allows the haptic inputs to be incorporated
as constraints to restrict the decoding network so that the
standard speech recognition algorithm can be used without
modification. This implementation uses regular expressions
to represent the Partial Lexical Information (PLI) for each
word. For example, for the sentence “My name is Peter”,
the initial letter sequence ‘M’, ‘N’, ‘I’ and ‘P’ is represented
as

^M, ^N, ^I, ^P

Likewise, the final letter sequence ‘Y’, ‘E’, ‘S’ and ‘R’ is
represented as

Y$, E$, S$, R$

Combining the above initial and final letter information yields
the following PLI representation:

^M.*Y$, ^N.*E$, ^I.*S$, ^P.*R$

Given the PLI information, a lexically constrained decoding
network will be constructed in the form of a confusion net-
work (see Figure 5). Each PLI is expanded into a set of
word alternatives by matching its regular expression against
all the words in the vocabulary. For example, the regular
expression ^M.*Y$ will expand to words including MACY,
MANY, MAY, MY and so on. This is a very simple imple-
mentation of HVR which does not support a tight integra-
tion of haptic inputs into the decoding process in an online
manner. It also does not support the incorporation of lan-
guage model scores which are typically used in speech recog-
nition. Furthermore, this implementation also assumes that
the PLI information provided are accurate since any hap-
tic input error will lead to the correct words being excluded
from the resulting lexically constrained decoding network.
A more advanced probabilistic integration framework based
on Weighted Finite State Transducer (WFST) has been pro-
posed in [11], which is able to incorporate language model
scores and handle uncertainties in haptic inputs.

7. EXPERIMENTAL RESULTS
This section presents the experimental results using the

HVR Grand Challenge 2012 datasets described in Section 4.
This section is divided into two parts. The first part de-
scribes the inference models for different haptic input meth-
ods and presents the letter recognition performance of these
inference models. The second part describes the HVR recog-
nition systems and their performances.

7.1 Haptic Input Performance
The datasets provided for the HVR Grand Challenge 2012

comprise the speech recording as well as the corresponding
initial letter sequences for the words in the utterances. These
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MACY NAME ICES PEAR
MANY NICE IONS PEER

<s> MAY NINE IS POOR </s>
· · · · · · · · · · · ·
MY NOTE ITS PETER

^M.*Y$ ^N.*E$ ^I.*S$ ^P.*R$

Figure 5: An example lexically-constrained decoding network based on the given initial and final letter Partial
Lexical Information (PLI) for the sentence “My name is Peter”. <s> and </s> denote the start and end of the
sentence respectively.

Input HVR LER (%)
Method Mode Pilot Dev. Challenge

Keyboard
Sync 0.0 2.3 0.7

Async 1.4 0.7 1.3

Keystroke
Sync 0.0 6.8 10.7

Async 0.0 9.5 11.6

Table 6: Letter error rate performance of hap-
tic inputs for the pilot, development and challenge
datasets.

initial letters were entered by users either using an onscreen
QWERTY keyboard or handwriting gestures (see Section 4.1
for more details on the data collection procedures). For the
keystroke input, a 3-state left-to-right Hidden Markov Model
(HMM) [9] was used to model the handwriting gesture for
each letter. The emission probability of each state was rep-
resented by a Gaussian distribution with a full covariance
matrix. The input features were 6-dimensional vectors given
by the two-dimensional normalized coordinates of the touch
points together with the first and second order differential
parameters representing the instantaneous gradient and cur-
vature of the keystroke. These differential parameters were
computed using HTK [13], similar to the way the dynamic
parameters were generated for speech recognition. Table 6
shows the Letter Error Rate (LER) performance of the hap-
tic inputs provided by the users. For keyboard input, the
LER indicates the error rate of the user tapping on the incor-
rect keys. Likewise, the LER indicates the performance of
the underlying handwriting recognition system for keystroke
input. One of the difficulties faced by the beginners is get-
ting accustomed to the handwriting gestures shown in Fig-
ure 3 for keystroke input. This results in much higher LERs
compared to keyboard inputs. Surprisingly, the LERs were
lower for synchronous mode despite the additional cognitive
loads involved. The LERs for keyboard inputs were 0.7%
– 2.3% for synchronous input and 0.7% – 1.3% for asyn-
chronous input. However, subjects in the development set
made more errors for synchronous input while those in the
challenge set made more errors for the asynchronous mode.
So, one can only say that the error patterns are user specific.
An experienced user, however, was able to provide a more
consistent haptic inputs. There were no errors in inferring
the letters in all cases, except for asynchronous keyboard in-
put. They were substitution and deletion errors indicating
that the user may have subconsciously replaced or skipped
certain words as the sentence was being recalled after it was
first spoken.

7.2 HVR Recognition Performance
Finally, we report the performance of the baseline HVR

system. The baseline system was provided together with the
HVR Grand Challenge 2012 datasets. In this baseline sys-
tem, triphone acoustic models were represented by 3-state
left-to-right Hidden Markov Model (HMM) [9]. Decision
tree state clustering [14] was used to control the model com-
plexity such that the final system comprised about 3000 dis-
tinct states. The emission probability of each HMM state
is represented by a Gaussian distribution. Although more
advanced configuration are used in state-of-the-art large vo-
cabulary continuous speech recognition (LVCSR) [12] sys-
tems (e.g. Gaussian Mixture Model (GMM) state emission
probability [7] and n-gram statistical language model [3]), a
much simpler baseline system was chosen for HVR so that
it is more practical for mobile devices with limited compu-
tation and memory resources. Mel Frequency Cepstral Co-
efficient (MFCC) [5] features were used for acoustic model
training. 12 static coefficients together with the C0 energy
term and the first two differential parameters were used to
form a 39 dimensional acoustic feature vector. Maximum
likelihood Baum-Welch training [2] was used to estimate the
HMM parameters. Maximum Likelihood Linear Regression
(MLLR) [8] was used to adapt the Gaussian mean and vari-
ance vectors to specific users and noise conditions2.

Figure 6 summarizes the Word Error Rate (WER) per-
formances of synchronous HVR in various noise conditions
for the pilot, development and challenge datasets. The ASR
performances were obtained using the speech data collected
in the asynchronous mode. In general, one observes a consis-
tent improvement of HVR (either using keyboard or keystroke
inputs) over ASR across different noise conditions. This
shows the effectiveness of using additional haptic inputs to
enhance the robustness of voice input in noisy environment.
Further, the WER results on the pilot dataset were much
better than those on the other datasets. This is because
the subject in the pilot dataset has a good English profi-
ciency while the subjects in the development and challenge
datasets were mostly non-native English speakers. In gen-
eral, HVR using keyboard input achieved better WER per-
formance compared to using keystroke input. This is ex-
pected since the letter recognition error for keystroke input
is much higher than keyboard input (see Table 6). Further-

2This work adopts MLLR as a simple approach to adapt the
acoustic models to different noise conditions since it is read-
ily supported by HTK. More advanced model-based noise
compensation techniques, such as Parallel Model Combina-
tion (PMC) [6] and Vector Taylor Series (VTS) [1] can also
be used.
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(a) Pilot (b) Development (c) Challenge

Figure 6: Word error rate performance of synchronous HVR for the pilot, development and challenge datasets.

more, it was also observed that the WER performance of
HVR still degrades significantly as the signal-to-noise ratio
(SNR) decreases. This shows that MLLR is not very effec-
tive for noise compensation. However, it was found in [11]
that the combination of VTS [1] noise compensation and
HVR can greatly enhance the noise robustness.

8. CONCLUSIONS
This paper has presented a detailed description of the

Haptic Voice recognition (HVR) Grand Challenge 2012 and
the datasets collected for this challenge. Various analyses
conducted on the datasets showed that synchronous input
has the effect of increasing the durations of the phones and
gaps in between words. The effect is smaller for a more
experienced user. Keyboard inputs were found to be much
quicker to input and had much lower inference error com-
pared to keystroke inputs. However, since this study in-
volved only one experienced user, more detailed studies are
needed to properly understand the full potential of HVR.
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