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Statistical Modeling in Automatic
Speech Recognition

————————————————————————————————————————————————————————————————

! ! | ! ' i
| | Speskers | ! | Speech || W ' | Acoustic | i Linguistic | !
Mind ' | Producer | i | Processor | | Decoder | ! a
W' Speech A LW
________________________________________________________________
Speaker ! _ e ______21 Speech Recognizer

Acoustic Channel

W = argmaxw P(W|A) = argmaxw P(A|W) - P(W)
P(A|W) acoustic model (Hidden Markov Model)
P(W) language model (Markov chain)

search for the most likely word string 1

due to the large vocabulary size—1M words—an
exhaustive search iIs intractable
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Language Model Evaluation (1)

Word Error Rate (WER)

TRN: UP UPSTATE NEW YORK SOVEVHERE UH OVER
HYP: UPSTATE NEW YORK SOVEVHERE UH ALL ALL
D O 0 0 0 0 | S

3 errors/7 words 1 n transcript; VWER = 43%

Perplexity(PPL)
PPL(M) = exp (—% >y I [Py (wifwy - .. wi—l)])

good models are smooth: Py, (w;|w; ... w;_1) > €

other metrics: out-of-vocabulary rate/n-gram hit ratios
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Language Model Evaluation (2)

Web Score (WebScore)

TRN:  TAI PAN RESTAURANT PALO ALTO
HYP: TAlI PAN RESTAURANTS PALO ALTO

produce the same search results

do not count as error if top search result is identical
with that for the manually transcribed query

Google

02/03/2012 Ciprian Chelba et al., Voice Search Language Modeling — p. 4



Language Model Smoothing

Markov assumption:
Pg(wi/wl “e wi_l),Q c @,wi c)
Smoothing using Deleted Interpolation:

Fo(wlh) = A(h) - Bya(w|h') + (1 = Ah)) - fr(w]h)
P (w) = uniform(V)

Parameters (smoothing weights A(h) must be estimated on
cross-validation data):

0 = {A(h); count(w|h),V(w|h) € T}

Google
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Voice Search LM Training Setup

correct® google.com queries, normalized for ASR, e.g.
5th -> fifth

vocabulary size: 1M words, OoV rate 0.57% (!),
excellent n-gram hit ratios

training data: 230B words

Order no. n-grams  pruning PPL n-gram hit-ratios

3 15M entropy 190 47/93/100
3 7.7B none 132 97/99/100
5 12.7B 1-1-2-2-2 108 77/88/97/99/100

a

Google
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Distributed LM Training

@@ Input: key=ID,

S a—— — value=sentence/doc

(ier) | a Intermediate:
key=word, value=1

Mot Output: key=word,
value=count
A

%ﬁéﬁ%iﬁiﬁ”ﬁfj ot M ap C h 0ooses re-
e 1 duce shard based

the: 1

on hash value (red
5 or bleu) a

Google
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Using Distributed LMs

load each shard into the memory of one machine

Bottleneck: in-memory/network access at X-hundred
nanoseconds/Y milliseconds (factor 10,000)

Example: translation of one sentence

approx. 100k n-grams; 100k * 7ms = 700 seconds per
sentence

Solution: batched processing

25 batches, 4k n-grams each: less than 1 second #

Google
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ASR Decoding Interface

First pass LM: finite state machine (FSM) API

Sstates: n-gram contexts

arcs: for each state/context, list each n-gram in the LM
+ back-off transition

trouble: need all n-grams in RAM (tens of billions)
Second pass LM: lattice rescoring

states: n-gram contexts, after expansion to rescoring
LM order

arcs: {new states} X {no. arcs in original lattice}

ot good: distributed LM and large batch RPC
=00QI€
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Language Model Pruning

Entropy pruning is required for use in 1st pass:

should one remove n-gram (h, w)?

Dlalh)pCIh) | a(h) (0] = alh) 3 plulh)log 500
 Dla(hpCIh) [ a(h)-#/(1h)] | < pruning threshold

lower order estimates: g(h) = p(hy) ... p(hy|h1...hp_1)
or relative frequency: q(h) = f(h)

very effective in reducing LM size at min cost in PPL

Google
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On Smoothing and Pruning (1)

4-gram model trained on 100Mwads, 100k vocabulary,

pruned to 1% of raw size using SRILM

tested on 690k wds

4-gram

Perplexity

LM smoothing raw pruned
Ney 120.5 197.3
Ney, Interpolated 119.8 198.1
Witten-Bell 118.8 196.3
Witten-Bell, Interpolated 121.6 202.3
Ristad 126.4  203.6
Katz (Good-Turing) 119.8 198.1
Kneser-Ney 1145  285.1
Kneser-Ney, Interpolated 115.8 274.3
Kneser-Ney (CG) 116.3 280.6

Kneser-Ney (CG, Interpolated) 115.8

274.3
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PPL (log2)

On Smoothing and Pruning (2)

Perplexity Increase with Pruned LM Size
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Model Size in Number of N-grams (log2)

baseline LM is pruned to 0.1% of raw size!

switch from KN to Katz smoothing: 10% WER gain
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Billion n-gram 1st Pass LM (1)

LM representation rate

Compression Block Rel. Rep. Rate
Technique Length Time (B/n-gram)
None — 1.0 13.2
8uantlzed _ 1.0 8.1
MU 24b, Quantized — 1.0 5.8
GroupVar 38 1.4 6.3
64 1.9 4.8

256 3.4 4.6

RandomAccess 8 1.5 6.2
64 1.8 4.6

256 3.0 4.6

CompressedArray 8 2.3 5.0
64 5.6 3.2

256 16.4 3.1

Google
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Billion n-gram 1st Pass LM (2)

Google Search by Voice LM
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Time, Relative to Uncompressed

1B 3-grams: 5GB of RAM @acceptable lookup speed?

4B. Harb, C. Chelba, J. Dean and S. Ghemawat, Back-Off Language Model

Google Compression, Interspeech 2009
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Is Bigger Better? YES!

Word Error Rate (left) and WebScore Error Rate (100%-WebScore, right) as a function of LM size

22 T T T 30

18- B : — : 26

15 —3 ‘-2 ‘—1 ‘o %4
10 10 10 10 10

LM size: # n—grams(B, log scale)

8%/10% relative gain in WER/WebScore?

With Cyril Allauzen, Johan Schalkwyk, Mike Riley, May reachable composi-

Google  tjion CL0G be with you!
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Is Bigger Better? YES!

Perplexity (left) and Word Error Rate (right) as a function of LM size

260 _— — — ————20.5
240 120
220} 195
200 |- 19
180 - 185
160 - 18
140 ~175
120—3 . . . ...“I—Z . . . .....I—l . . . ...“IO . . . .....%7
10 10 10 10 10

LM size: # n—grams(B, log scale)

PPL is really well correlated with WER!
Google
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Is Even Bigger Better? YES!

WER (left) and WebError (100-WebScore, right) as a function of 5—-gram LM size
20 T —— T —— T ———— 28

18 -126
16 -2 . . - l—1 . . — 0 . . . - %4
10 10 10 10

LM size: # 5—-grams(B)

ot 5-gram: 11% relative in WER/WebScore
-0uge
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Is Even Bigger Better? YES!

Perplexity (left) and WER (right) as a function of 5—gram LM size

200 19

180| 185

160{ 18

140 -117.5

120 17

100~ L — 165
10 10 10 10

LM size: # 5—-grams(B)

Again, PPL is really well correlated with WER!
Google

02/03/2012 Ciprian Chelba et al., Voice Search Language Modeling — p. 18



Detour: Search vs. Modeling error

AN

W = argmaxw P(A, W|0)
If correct W* # W we have an error:
P(A, W*|0) > P(A,W|6): search error
P(A, W*|0) < P(A,W|0): modeling error

wisdom has it that in ASR
search error < modeling error

Corollary: improvements come primarily from using

better models, integration in decoder/search is second
order!

Google
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Lattice LM Rescoring

Pass Language Model PPL WER WebScore

1st 15M 3¢ 191 18.7 (2.2
1st 1.6B 5g 112 16.9 /5.2
2nd  15M 3g 191 18.8 (2.6
2nd  1.6B 3g 112 16.9 75.3
2nd  12B 5¢ 108 16.8 /5.4

10% relative reduction in remaining WER, WebScore
error

1st pass gains matched in ProdLm lattice rescoring3 at
negligible impact in real-time factor

Google
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Lattice Depth Effect on LM Rescoring

Perplexity (left) and WER (right) as a function of lattice depth
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Lattice Density (# links per transcribed word)

LM becomes ineffective after a certain lattice depth

Google
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N-best Rescoring

N-best rescoring experimental setup

minimal coding effort for testing LMs: all you need to
do Is assign a score to a sentence

Experiment LM WER WebScore
SpokenLM baseline 13M3g 175 73.3
lattice rescoring 12B5g 16.1 76.3
10-best rescoring 1.6B5g 16.4 75.2

a good LM will immediately show its potential, even on
as little as 10-best alternates rescoring!

Google
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Query Stream Non-stationarity (1)

USA training data?:
XX months
X months

test data: 10k, Sept-Dec 2008"

very little impact in OoV rate for 1M wds vocabulary:
0.77% (X months vocabulary) vs. 0.73% (XX months
vocabulary)

Google
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Query Stream Non-stationarity (2)

3-gram LM Training Set Test Set PPL
unpruned X months 121
unpruned XX months 132
entropy pruned X months 205
entropy pruned XX months 209

bigger is not always better?

10% rel reduction in PPL when using the most recent
X months instead of XX months

no significant difference after pruning, in either PPL or
WER

Google
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More Locales

training data across 3 localesd: USA, GBR, AUS,
spanning same amount of time ending in Aug 2008

test data: 10k/locale, Sept-Dec 2008

Out of Vocabulary Rate:

Training Test Locale
Locale USA GBR AUS
USA 0.7 13 1.6
GBR 1.3 0.7 1.3
AUS 1.3 11 0.7

locale specific vocabulary halves the OoV rate

Google
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Locale Matters (2)

Perplexity of unpruned LM:

Training Test Locale
Locale USA GBR AUS
USA 132 234 251
GBR 260 110 224
AUS 276 210 124

locale specific LM halves the PPL of the unpruned LM

Google
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Locale Matters (3)

Perplexity of pruned LM:

Training Test Locale
Locale USA GBR AUS
USA 210 369 412
GBR 442 150 342
AUS 422 293 171

locale specific LM halves the PPL of the pruned LM as
well

Google
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Discriminative Language Modeling

ML estimate from correct text is of limited use in decoding:
back-off n-gram assigns —logP(“a navigate to”) = 0.266

need parallel data (A, W*)

significant amount can be mined from voice search
logs using confidence filtering

first-pass scores discriminate perfectly, nothing to
learn? A

Google
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Experimental Setup

confidence filtering on baseline AM/LM to give
reference transcriptions (=~ manually transcribed data)

weaker AM (ML-trained, single mixture gaussians) to
generate N-best and ensure sufficient errors to train
the DLMs

largest models are trained on ~80,000 hours of speech
(re-decoding is expensive!), ~350 million words

different from previous work [Roar k et al ., ACL
' 04] where they cross-validate the baseline LM
training to generalize better to unseen data

Google
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N-best Reranking Oracle Error Rates
on weakAM dev/T9b

Figure 1: Oracle error rates upto N=200
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DLM at Scale: Distributed Perceptron

Features: 1st pass lattice costs and ngram word features,

[Roark et al., ACL ' 04].
Rerankers: Parameter weights at iteration ¢ + 1, w; for

reranker models trained on N\ utterances.

Perceptron: w11 = wy + > A,
Z

DlstrlbutedPerceptron Wiy = Wy +
et al., ACL ’10]

C
Ac
AveragedPerceptron: wi, = ; +1 R %?(fm

[Col lins, EMNLP ' 02]
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SSTable
Utterances

SSTableService

MapReduce Implementation

Rerank-Mappers

SSTable
Feature-
Weights:
Epoch t

Cache
(per Map chunk)

|[dentity-Mappers

Reducers

:_I

SSTable
:l,:> Feature-
Weights:

B Epoch t+1|
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WERs on weak AM- dev

Model WER(%)

Basel | ne 32.5
DLM 1gram 29.5
DLM 2gr am 28.3
DLM 3gr am 217.8
M_- 3gr am 29.8

Our best DLM gives ~4.7% absolute (~15% relative)
Improvement over the 1-best baseline WER.

Our best ML LM trained on data 7 gives ~2%
absolute (~6% relative) improvement over an ngram
LM also trained on 7.

02/03/2012 Ciprian Chelba et al., Voice Search Language Modeling — p. 33



Results on T9b

Data set Baseline | Reranking, ML | Reranking,
LM DLM

weakAM t est | 39.1 36.7 34.2

T9b 14.9 14.6 14.33

5% rel gains in WER

Note: Improvements are cut in half when comparing
our models trained on data 7 with a reranker using an
ngram LM trained on 7.

AStatistically significant at p<<0.05

Google
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Open Problems in Language
Modeling for ASR and Beyond

LM adaptation: bigger is not always better. Making use
of related, yet not fully matched data, e.g.:

Web text should help query LM?

related locales—GBR, AUS should help USA?

discriminative LM: ML estimate from correct text is of
limited use in decoding, where the LM is presented
with atypical n-grams

can we sample from correct text instead of parallel
data (A, W*)?

LM smoothing, estimation: neural network LMs are
staging a comeback.

Google
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ASR Success Story: Google Search
by Voice

What contributed to success:

excellent language model built from query stream
clearly set user expectation by existing text app

clean speech:
users are motivated to articulate clearly

app phones (Android, iPhone) do high guality
speech capture

speech tranferred error free to ASR server over IP
Challenges:

Measuring progress: manually transcribing data is at
Google about same word error rate as system (15%)
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ASR Core Technology

Current state:

automatic speech recognition is incredibly complex
problem is fundamentally unsolved

data availability and computing have changed
significantly: 2-3 orders of magnitude more of each

Challenges and Directions:

re-visit (simplify!) modeling choices made on corpora
of modest size

multi-linguality built-in from start

ot better feature extraction, acoustic modeling
200gl1€
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