
Journal of Machine Learning Research 13 (2012) xx-xx Submitted 6/10; Revised 9/11; Published xx/12

MedLDA: Maximum Margin Supervised Topic Models

Jun Zhu dcszj@mail.tsinghua.edu.cn

State Key Lab of Intelligent Technology and Systems

Tsinghua National Lab for Information Science and Technology

Department of Computer Science and Technology

Tsinghua University

Beijing, 100084, China

Amr Ahmed amahmed@cs.cmu.edu

Eric P. Xing epxing@cs.cmu.edu

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

Editor: David Blei

Abstract

A supervised topic model can utilize side information such as ratings or labels as-
sociated with documents or images to discover more predictive low dimensional topical
representations of the data. However, existing supervised topic models predominantly em-
ploy likelihood-driven objective functions for learning and inference, leaving the popular
and potentially powerful max-margin principle unexploited for seeking predictive repre-
sentations of data and more discriminative topic bases for the corpus. In this paper, we
propose the maximum entropy discrimination latent Dirichlet allocation (MedLDA) model,
which integrates the mechanism behind the max-margin prediction models (e.g., SVMs)
with the mechanism behind the hierarchical Bayesian topic models (e.g., LDA) under a uni-
fied constrained optimization framework, and yields latent topical representations that are
more discriminative and more suitable for prediction tasks such as document classification
or regression. The principle underlying the MedLDA formalism is quite general and can be
applied for jointly max-margin and maximum likelihood learning of directed or undirected
topic models when supervising side information is available. Efficient variational methods
for posterior inference and parameter estimation are derived and extensive empirical studies
on several real data sets are also provided. Our experimental results demonstrate qualita-
tively and quantitatively that MedLDA could: 1) discover sparse and highly discriminative
topical representations; 2) achieve state of the art prediction performance; and 3) be more
efficient than existing supervised topic models, especially for classification.

Keywords: supervised topic models, max-margin learning, maximum entropy discrimi-
nation, latent Dirichlet allocation, support vector machines.

1. Introduction

Probabilistic latent aspect models such as the latent Dirichlet allocation (LDA) model
(Blei et al., 2003) have recently gained much popularity for stratifying a large collection
of documents by projecting every document into a low dimensional space spanned by a
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set of bases that capture the semantic aspects, also known as topics, of the collection. An
LDA model posits that each document is an admixture of latent topics, of which each topic
is represented as a unique unigram distribution over a given vocabulary. The document-
specific admixture proportion vector θ, also known as the topic vector, is modeled as a
latent Dirichlet random variable, and can be regarded as a low dimensional representation
of the document in a topical space. This low dimensional representation can be used for
downstream tasks such as classification, clustering, or merely as a tool for structurally
visualizing the otherwise unstructured document collection.

The original LDA is an unsupervised model and is typically built on a discrete bag-of-
words representation of input contents, which can be text documents (Blei et al., 2003),
images (Fei-Fei and Perona, 2005), or even network entities (Airoldi et al., 2008). How-
ever, in many practical applications, we can easily obtain useful side information besides
the document or image contents. For example, when online users post their reviews for
products or restaurants, they usually associate each review with a rating score or a thumb-
up/thumb-down opinion; web sites or pages in the public Yahoo! Directory 1 can have their
categorical labels; and images in the LabelMe (Russell et al., 2008) database are organized
by a visual ontology and additionally each image is associated with a set of annotation tags.
Furthermore, there is an increasing trend towards using online crowdsourcing services (such
as Amazon Mechanical Turk 2) to collect large collections of labeled data with a reasonably
low price (Snow et al., 2008). Such side information often provides useful high-level or direct
summarization of the content, but it is not directly utilized in the original LDA or models
alike to influence topic inference. One would expect that incorporating such information
into latent aspect modeling could guide a topic model towards discovering secondary or
non-dominant, albeit semantically more salient statistical patterns (Chechik and Tishby,
2002) that may be more interesting or relevant to the user’s goal, such as prediction on
unlabeled data.

To explore this potential, developing new topic models that appropriately capture side
information mentioned above has recently gained increasing attention. Representative at-
tempts include supervised topic model (sLDA) (Blei and McAuliffe, 2007), which captures
real-valued document rating as a regression response; multi-class sLDA (Wang et al., 2009),
which directly captures discrete labels of documents as a classification response; and dis-
criminative LDA (DiscLDA) (Lacoste-Julien et al., 2008), which also performs classification,
but with a mechanism different from that of sLDA. All these models focus on the document-
level side information such as document categories or review rating scores to supervise model
learning. More variants of supervised topic models can be found in a number of applied
domains, such as the aspect rating model (Titov and McDonald, 2008) for predicting rat-
ings for each aspect of a hotel and the credit attribution model (Ramage et al., 2009) that
associates each word with a label. In computer vision, several supervised topic models have
been designed for understanding complex scene images (Sudderth et al., 2005; Fei-Fei and
Perona, 2005; Li et al., 2009). Mimno and McCallum (2008) also proposed a topic model
for considering document-level meta-data, e.g., publication date and venue of a paper.

It is worth pointing out that among existing supervised topic models for incorporating
side information, there are two classes of approaches, namely, downstream supervised topic

1. http://dir.yahoo.com/
2. https://www.mturk.com/
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model (DSTM) and upstream supervised topic model (USTM). In a DSTM the response
variable is predicted based on the latent representation of the document, whereas in an
USTM the response variable is being conditioned on to generate the latent representation
of the document. Examples of USTM 3 include DiscLDA and the scene understanding
models (Sudderth et al., 2005; Li et al., 2009), whereas sLDA is an example of DSTM. An-
other distinction between existing supervised topic models is the training criterion, or more
precisely, the choice of objective function in the optimization-based learning. The sLDA
model is trained by maximizing the joint likelihood of the content data (e.g., text or image)
and the responses (e.g., labeling or rating), whereas DiscLDA is trained by maximizing the
conditional likelihood of the responses given contents. To the best of our knowledge, all
the existing supervised topic models are trained by optimizing a likelihood-based objec-
tive; the highly successful margin-based objectives such as the hinge loss commonly used in
discriminative models such as SVMs have never been employed.

In this paper, we propose maximum entropy discrimination latent Dirichlet allocation
(MedLDA), a supervised topic model leveraging the maximum margin principle for making
more effective use of side information during estimation of latent topical representations.
Unlike existing supervised topic models mentioned above, MedLDA employs an arguably
more discriminative max-margin learning technique within a probabilistic framework; and
unlike the commonly adopted two-stage heuristic which first estimates a latent topic vec-
tor for each document using a topic model and then feeds them to another downstream
prediction model, MedLDA integrates the mechanism behind the max-margin prediction
models (e.g., SVMs) with the mechanism behind the hierarchical Bayesian topic models
(e.g., LDA) under a unified constrained optimization framework. It employs a composite
objective motivated by a tradeoff between two components – the negative log-likelihood
of an underlying topic model which measures the goodness of fit for document contents,
and a measure of prediction error on training data. It then seeks a regularized posterior
distribution of the predictive function in a feasible space defined by a set of expected mar-
gin constraints generalized from the SVM-style margin constraints. The resultant inference
problem is intractable; to circumvent this, we relax the original objective by using a varia-
tional upper bound of the negative log-likelihood and a surrogate convex loss function that
upper bounds the training error. Our proposed approach builds on earlier developments in
maximum entropy discrimination (MED) (Jaakkola et al., 1999; Jebara, 2001) and partially
observed maximum entropy discrimination Markov network (PoMEN) (Zhu et al., 2008),
but is significantly different and more powerful. In MedLDA, because of the influence of
both the likelihood function over content data (e.g., text or image) and margin constraints
induced by the side information, the discovery of latent topics is therefore coupled with
the max-margin estimation of model parameters. This interplay can yield latent topical
representations that are more discriminative and more suitable for supervised prediction
tasks, as we demonstrate in the experimental section.

In fact, the methodology we develop in this paper generalizes beyond learning topic
models; it can be applied to perform max-margin learning for various types of graphical
models, including directed Bayesian networks, e.g., LDA, sLDA and topic models with dif-
ferent priors such as the correlated topic models (Blei and Lafferty, 2005), and undirected

3. The model presented by (Mimno and McCallum, 2008) is also an upstream model for incorporating
document meta-features.
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Figure 1: Graphical illustration of (Left) unsupervised LDA (Blei et al., 2003); and (Right)
supervised LDA (Blei and McAuliffe, 2007).

Markov networks, e.g., exponential family harmoniums (Welling et al., 2004) and replicated
softmax (Salakhutdinov and Hinton, 2009) (See Section 4 for an extensive discussion). In
this paper, we focus on the scenario of downstream supervised topic models, and we present
several concrete examples of MedLDA that build on the original LDA to learn “discrim-
inative topics” that allow more salient topic proportion vector θ to be inferred for every
document, evidenced by a significant improvement of accuracy of both regression and clas-
sification of documents based on the θ resulted from MedLDA, over the θ resulted from
either the vanilla unsupervised LDA or even sLDA and alike. We also present an efficient
and easy-to-implement variational approach for inference under MedLDA, with a running
time comparable to that of an unsupervised LDA and lower than other likelihood-based
supervised LDAs. This advantage stems from the fact that MedLDA can directly optimize
a margin-based loss instead of a likelihood-based one, and thereby avoids dealing with the
normalization factor resultant from a full probabilistic generative formulation (e.g., sLDA),
which generally makes learning harder.

The rest of this paper is structured as follows. Section 2 introduces the preliminaries
that are needed to present MedLDA. Section 3 presents MedLDA models for both regression
and classification, together with efficient variational algorithms. Section 4 discusses the
generalization of MedLDA to other topic models. Section 5 presents empirical studies of
MedLDA. Finally, Section 6 concludes this paper with future research directions discussed.
Part of the materials of this paper build on conference proceedings presented earlier in (Zhu
et al., 2009; Zhu and Xing, 2010).

2. Preliminaries

We begin with a brief overview of the fundamentals of topic models, support vector ma-
chines, and the maximum entropy discrimination formulism (Jaakkola et al., 1999), which
constitute the major building blocks of the proposed MedLDA model.

2.1 Unsupervised and Supervised Topic Models

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is a hierarchical Bayesian model that
projects a text document into a latent low dimensional space spanned by a set of automat-
ically learned topical bases. Each topic is a multinomial distribution over M words in a
given vocabulary. Let w = (w1, . . . , wN ) denote the vector of words appearing in a docu-
ment (for notation simplicity, we suppress the indexing subscript of N and assume that all
documents have the same length N); assume the number of topics to be an integer K, where
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K can be manually specified by a user or via cross-validation; and let β = [β1, . . . ,βK ] de-
note the M ×K matrix of topic distribution parameters, of which each βk parameterizes a
topic-specific multinomial word distribution. Under an LDA, the likelihood of a document
d corresponds to the following generative process:

1. Draw a topic mixing proportion vector θd according to a K-dimensional Dirichlet
prior: θd|α ∼ Dir(α);

2. For the n-th word in document d, where 1 ≤ n ≤ N ,

(a) draw a topic assignment zdn according to θd: zdn|θd ∼ Mult(θd);

(b) draw the word instance wdn according to zdn: wdn|zdn,β ∼ Mult(βzdn),

where zdn is a K-dimensional indicator vector (i.e., only one element is 1; all others are 0),
an instance of the topic assignment random variable Zdn. With a little abuse of notations,
we use βzdn to denote the topic that is selected by the non-zero element of zdn.

According to the above generative process, an unsupervised LDA defines the following
joint distribution for a corpus D that contains D documents:

p({θd, zd},W|α,β) =
D∏

d=1

p(θd|α)
( N∏

n=1

p(zdn|θd)p(wdn|zdn,β)
)
,

where W , {w1; · · · ;wD} denotes all the words in D, and zd , {zd1; · · · ; zdN}. To es-
timate the unknown parameters (α,β), and to infer the posterior distributions of latent
variables {θd, zd}, an EM procedure is developed to maximize the marginal data likelihood
p(W|α,β) 4. As we have stated, θd represents the mixing proportion over K topics for
document d, which can be treated as a low-dimensional representation of the document.
Moreover, since the posterior of zdn represents the probability distribution that word n is
assigned to one of the K topics; the average topic assignment z̄d , 1

N

∑
n zdn can also be

treated as a representation of the document, as commonly done in downstream supervised
topic models (Blei and McAuliffe, 2007; Wang et al., 2009).

Due to intractability of the likelihood p(W|α,β), approximate inference algorithms
based on variational (Blei et al., 2003) or Markov Chain Monte Carlo (MCMC) (Griffiths
and Steyvers, 2004) methods have been widely used for parameter estimation and poste-
rior inference under LDA. We focus on variational inference in this paper. The following
variational bound for unsupervised LDA will be used later. Let q({θd, zd}) represent a vari-
ational distribution that approximates the true model posterior p({θd, zd}|α,β,W), one
can derive a variational bound Lu(q;α,β) for the likelihood under unsupervised LDA:

Lu(q;α,β) , −Eq[log p({θd, zd},W|α,β)]−H(q({θd, zd})) (1)

≥ − log p(W|α,β),

4. We restrict ourselves to treat β as unknown parameters, as done in (Blei and McAuliffe, 2007; Wang
et al., 2009). Extension to a Bayesian treatment of β (i.e., by putting a prior over β and inferring
its posterior) can be easily done both in LDA as shown in the literature (Blei et al., 2003) and in the
MedLDA proposed here based on the regularized Bayesian inference framework (Zhu et al., 2011a). But
a systematical discussion is beyond the scope of this paper.
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where H(q) , −Eq[log q] is the entropy of q. By making some independence assumption
(e.g., mean field) about q, Lu(q) can be efficiently optimized (Blei et al., 2003).

As we have stated, the unsupervised LDA described above does not utilize side informa-
tion for learning topics and inferring topic vectors θ. In order to consider side information
appropriately for discovering more predictive representations, supervised topic models (sL-
DA) (Blei and McAuliffe, 2007) introduce a response variable Y to LDA for each document,
as shown in Figure 1. For regression, where y ∈ R, the generative process of sLDA is similar
to LDA, but with an additional step – draw a response variable: y|zd,η, δ2 ∼ N (η⊤z̄d, δ

2)
for each document d, where η is the regression weight vector and δ2 is a noise variance
parameter. Then, the joint distribution of sLDA is:

p({θd, zd},y,W|α,β,η, δ2) =
D∏

d=1

p(θd|α)
( N∏

n=1

p(zdn|θd)p(wdn|zdn,β)
)
p(yd|η⊤z̄d, δ

2),(2)

where y , {y1; · · · ; yD}. In this case, the joint likelihood is p(y,W|α,β,η, δ2). Given a
new document, the prediction is the expected response value

ŷ , E[Y |w,α,β,η, δ2] = η⊤E[Z̄|w,α,β, δ2], (3)

where the average topic assignment random variable Z̄ , 1
N

∑
n Zn (z̄ is an instance of Z̄),

and the expectation is taken with respect to the posterior distribution of Z , {Z1; · · · ;ZN}.
However, exact inference is again intractable, and one can use the following variational upper
bound Ls(q;α,β,η, δ2) for supervised sLDA for approximate inference:

Ls(q;α,β,η, δ2) , −Eq[log p({θd, zd},y,W|α,β,η, δ2)]−H(q({θd, zd})) (4)

≥ − log p(y,W|α,β,η, δ2).

By changing the model of generating Y , sLDA can deal with other types of response
variables, such as discrete ones for classification (Wang et al., 2009) using the multi-class
logistic regression

p(y|η, z) =
exp(η⊤

y z̄)∑
y′ exp(η

⊤
y′ z̄)

, (5)

where ηy is the parameter vector associated with class label y. However, posterior inference
in an sLDA classification model can be more challenging than that in the sLDA regression
model. This is because the non-Gaussian probability distribution in Eq. (5) is highly
nonlinear of η and z and its normalization factor can make the topic assignments of different
words in the same document strongly coupled. Variational methods were successfully used to
approximate the normalization factor (Wang et al., 2009), but they can be computationally
expensive as we shall demonstrate in the experimental section.

DiscLDA (Lacoste-Julien et al., 2008) is yet another supervised topic model for classifi-
cation. DiscLDA is an upstream supervised topic model and as such the unknown parameter
is the transformation matrix that is used to generate the document latent representations
conditioned on the class label; and this transformation matrix is learned by maximizing the
conditional marginal likelihood of the text given class labels.
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This progress notwithstanding, to the best of our knowledge, current developments of
supervised topic models have been solely built on a likelihood-driven probabilistic inference
paradigm. The arguably sometimes more powerful max-margin based techniques widely
used in learning discriminative models have not been exploited to learn supervised topic
models. The main goal of this paper is to systematically investigate how the max-margin
principe can be exploited inside a topic model to learn topics that are better at discrimi-
nating documents than current likelihood-driven learning achieves while retaining semantic
interpretability as the later allows. For this purpose, below we briefly review the max-
margin principle underlying a major technique built on this principle, the support vector
machines.

2.2 Support Vector Machines

Max-margin methods, such as support vector machines (SVMs) (Vapnik, 1998) and max-
margin Markov networks (M3N) (Taskar et al., 2003), have been successfully applied to a
wide range of discriminative problems such as document categorization and handwritten
character recognition. It has been shown that such methods enjoy strong generalization
guarantees (Vapnik, 1998; Taskar et al., 2003). Depending on the nature of the response
variable, the max-margin principle can be exploited in both classification and regression.
Below we use document rating prediction as an example to recapitulate the ideas behind
support vector regression (SVR) (Smola and Schölkopf, 2003), which we will shortly leverage
to build our first instance of max-margin topic model.

Let D = {(x1, y1), · · · , (xD, yD)} be a training set, where x ∈ X are inputs such as
document-feature vectors, and y ∈ R are response values such as user ratings. Using
SVR, one obtains a function h(x) ∈ F that makes at most ϵ deviation from the true
response value y for each training example, and at the same time is as flat as possible. One
common choice of the function family F is linear functions, that is, h(x;η) = η⊤f(x), where
f = {f1, · · · , fI} is a vector of feature functions fi : X → R, and η is the corresponding
weight vector. Formally, the linear SVR finds an optimal linear function by solving the
following constrained optimization problem:

P0(SVR) : min
η,ξ,ξ∗

1

2
∥η∥22 + C

D∑
d=1

(ξd + ξ∗d) (6)

∀d, s.t. :


yd − η⊤f(xd) ≤ ϵ+ ξd

−yd + η⊤f(xd) ≤ ϵ+ ξ∗d
ξd, ξ

∗
d ≥ 0

,

where ∥η∥2 ,
√

η⊤η is the ℓ2-norm; ξ and ξ∗ are slack variables that tolerate some errors
in the training data; ϵ is a precision parameter; and C is a positive regularization constant.
Problem P0 can be equivalently formulated as a regularized empirical loss minimization,
where the loss is the so-called ϵ-insensitive loss (Smola and Schölkopf, 2003).

Under a standard SVR, P0 is a quadratic programming (QP) problem and can be easily
solved in a Lagrangian dual formulation. Samples with non-zero lagrange multipliers are
called support vectors, as in the SVM classification model. There exist several free packages
for solving standard SVR, such as SVM-light (Joachims, 1999). We will use these methods
as a sub-routine in our proposed approach, as we will detail in the sequel.
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2.3 Maximum Entropy Discrimination

To unite the principles behind topic models and SVR, namely, Bayesian inference and
max-margin learning, we employ a formalism known as maximum entropy discrimination
(MED) (Jaakkola et al., 1999; Jebara, 2001), which learns a distribution of all possible
regression/classification models that belong to a particular parametric family, subject to a
set of margin-based constraints. For instance, the MED regression model, or simply MEDr,
learns a distribution q(η) through solving the following optimization problem:

P1(MEDr) : min
q(η),ξ,ξ∗

KL(q(η)∥p0(η)) + C
D∑

d=1

(ξd + ξ∗d) (7)

∀d, s.t. :


yd − E[η]⊤f(xd) ≤ ϵ+ ξd

−yd + E[η]⊤f(xd) ≤ ϵ+ ξ∗d
ξd, ξ

∗
d ≥ 0

,

where p0(η) is a prior distribution over the parameters and KL(p∥q) , Ep[log(p/q)] is the
Kullback-Leibler (KL) divergence.

As studied in (Jebara, 2001), this MED problem leads to an entropic-regularized poste-
rior distribution of the SVR coefficients, q(η); and the resultant predictor ŷ = Eq(η)[h(x;η)]
enjoys several nice properties and subsumes the standard SVR as special cases when the
prior p0(η) is standard normal (Jebara, 2001). Moreover, as shown in (Zhu and Xing, 2009;
Zhu et al., 2011b), with different choices of the prior over η, such as a sparsity-inducing
Laplace or a nonparametric Dirichlet process, the resultant q(η) can exhibit a wide variety
of characteristics and are suitable for diverse utilities such as feature selection or learning
complex non-linear discriminating functions. Finally, the recent developments of the max-
imum entropy discrimination Markov network (MaxEnDNet) (Zhu and Xing, 2009) and
partially observed MaxEnDNet (PoMEN) (Zhu et al., 2008) have extended the basic MED
to the much broader scenarios of learning structured prediction functions with or without
latent variables.

To apply the MED idea to learn a supervised topic model, a major difficulty is the
presence of heterogeneous latent variables in the topic models, such as the topic vector θ
and topic indicator Z. In the sequel, we present a novel formalism called maximum entropy
discrimination LDA (MedLDA) that extends the basic MED to make this possible, and at
the same time discovers latent discriminating topics present in the study corpus based on
available discriminant side information.

3. MedLDA: Maximum Margin Supervised Topic Models

Now we present a new class of supervised topic models that explicitly employ labeling
information in the context of document classification or regression, under a unified statistical
framework that jointly optimizes over the cross entropy between a user supplied model prior
and the aimed model posterior, and over the margin of ensuing predictive tasks based on
the learned model. This is to contrast conventional heuristics that first learn a topic model,
and then independently train a classifier such as SVM using the per-document topic vectors
resultant from the first step as inputs. In such a heuristic, the document labels are never

8



MedLDA: Maximum Margin Supervised Topic Models

able to influence the way topics can be learned, and the per-document topic vectors are
often found to be not strongly predictive (Xing et al., 2005).

3.1 Regressional MedLDA

We first consider the scenario where the numerical-valued rating of documents in the corpus
is available, and our goal is to learn a supervised topic model specialized at predicting the
rating of new documents through a regression function. We call this model a Regressional
MedLDA, or simply, MedLDAr.

Instead of learning a point estimate of regression coefficient η as in sLDA or SVR, we take
the more general Bayesian-style (i.e., an averaging model) approach as in MED and learn
a joint distribution 5 q(η, z) in a max-margin manner. For prediction, we take a weighted
average over all the possible models (represented by η) and latent topical representations
z, or more precisely, an expectation of the prediction over q(η, z), which is similar to that
in Eq. (3), but now over both η and Z, rather than only over Z:

ŷ , E[Y |w,α,β, δ2] = E[η⊤Z̄|w,α,β, δ2]. (8)

Now, the question underlying the prediction rule (8) is how we can devise an appropriate
objective function as well as constraints to learn a q(·) that leverages both the max-margin
principle (for strong predictivity) and the topic model architecture (for topic discovery).
Below we begin with a simple reformulation of the sLDA that makes this possible.

3.1.1 Max-Margin Training of sLDA

Without loss of generality, we let q(η, z) =
∫
θ q(η)q(z,θ|η), where q(η) is the learned dis-

tribution of the predictive regression coefficient, and q(z,θ|η) is the learned distribution of
the topic elements of the documents analogous to an sLDA-style topic model, but estimat-
ed from a different learning paradigm that leverages margin-based supervised training. As
reviewed in Section 2.1, two good templates for q(z,θ|η) can be the original LDA or sLDA.
For brevity, here we present a regressional MedLDA that uses the supervised sLDA as the
underlying topic model. As we shall see in Section 3.2 and Appendix B, the underlying
topic model can also be an unsupervised LDA.

Let p0(η) denote a prior distribution of η, then MedLDAr defines a joint distribution

p(η, {θd, zd},y,W|α,β, δ2) = p0(η)p({θd, zd},y,W|α,β,η, δ2),

where the second factor has the same form as Eq. (2) for sLDA, except that now η is a
random variable and follows a prior p0(η). Accordingly, the likelihood p(y,W|α,β, δ2) is
an expectation of the likelihood of sLDA under p0(η), which makes it even harder than in
sLDA to directly optimize. Therefore, we choose to optimize a variational upper bound of
the log-likelihood. We will discuss other approximation methods in Section 4.

Let q(η, {θd, zd}) be a variational approximation to the posterior p(η, {θd, zd}|α,β, δ2,y,W).
Then, an upper bound Lbs(q;α,β, δ2) 6 of the negative log-likelihood is

Lbs(q;α,β, δ2) , −Eq[log p(η, {θd, zd},y,W|α,β, δ2)]−H(q(η, {θd, zd}))

5. In principle, we can perform Bayesian-style estimation for other parameters, like δ2. For simplicity, we
only consider η as a random variable in this paper.

6. “bs” stands for “Bayesian Supervised”.
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= KL(q(η)∥p0(η)) + Eq(η)[Ls]. (9)

We can see that the bound is also an expectation of sLDA’s variational bound Ls in Eq. (4).
To derive Eq. (9), we should note that the variational distribution for sLDA is “conditioned
on” its model parameters, which include η. Similarly, the distribution q in Lbs depends on
the parameters (α,β, δ2). For notation clarity, we have omitted the explicit dependence on
parameters in variational distributions.

Based on the MED principle and the variational bound in Eq. (9), we define the learning
problem of MedLDAr as follows:

P2(MedLDAr) : min
q,α,β,δ2,ξ,ξ∗

Eq(η)[Ls(q;α,β, δ2)] +KL(q(η)∥p0(η)) + C

D∑
d=1

(ξd + ξ∗d) (10)

∀d, s.t. :


yd − E[η⊤Z̄d]≤ ϵ+ ξd

−yd + E[η⊤Z̄d]≤ ϵ+ ξ∗d
ξd, ξ

∗
d ≥ 0,

where ξ, ξ∗ are slack variables, and ϵ is a precision parameter as in SVR. The margin
constraints in P2 are of the same form as those in P0, but in an expectation version because
both the topic assignments Z and parameters η are latent random variables in MedLDAr.

It is easy to verify that at the optimum, at most one of ξd and ξ∗d can be non-zero
and ξd + ξ∗d = max(0, |yd − E[η⊤Z̄d]| − ϵ), which is known as ϵ-insensitive loss (Smola and
Schölkopf, 2003), that is, if the current prediction ŷ as in Eq. (8) does not deviate from
the true response value too much (i.e., less than ϵ), there is no loss; otherwise, a linear
loss will be penalized. Mathematically, problem P2 can be equivalently written as a loss
minimization problem without using slack variables:

min
q,α,β,δ2

Lbs(q;α,β, δ2) + C
D∑

d=1

max(0, |yd − E[η⊤Z̄d]| − ϵ), (11)

where the variational bound Lbs plays two roles – regularization and maximum likelihood es-
timation. Specifically, as shown in Eq. (9), Lbs decomposes into two parts. The first part of
KL-divergence is an entropic regularizer for q(η); and the second term is an expected bound
of the data likelihood, as we have discussed. Therefore, problem P2 is a joint maximum
margin learning and maximum likelihood estimation (with appropriate regularization), and
the two components are coupled by sharing latent topic assignments Z and parameters η.

The rationale underlying MedLDAr is that: by minimizing an integrated objective func-
tion, we aim to find a latent topical representation and a document-rating prediction func-
tion which, on one hand, can predict accurately on unseen data with a sufficient margin,
and on the other hand, can explain the data well (i.e., minimizing a variational bound of the
negative log-likelihood). The max-margin learning and topic discovery procedure are cou-
pled together via the constraints, which are defined on the expectations of model parameters
η and latent topical assignments Z. This interplay will yield a topical representation that
could be more suitable for prediction tasks, as explained below and verified in experiments.

3.1.2 Variational Approximation Algorithm for MedLDAr

Minimizing Lbs is intractable. Here, we use mean field methods (Jordan et al., 1999) widely
employed in fitting LDA and sLDA to efficiently obtain an approximate q for problem P2.
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Algorithm 1 Variational MedLDAr

1: Input: corpus D = {(y,W)}, constants C and ϵ, and topic number K.
2: Output: Dirichlet parameters γ, posterior distribution q(η), parameters α, β and δ2.
3: repeat
4: for d = 1 to D do
5: Update γd as in Eq. (18).
6: for n = 1 to N do
7: Update ϕdn as in Eq. (19).
8: end for
9: end for

10: Solve the dual problem D2 to get q(η), µ̂ and µ̂∗.
11: Update β using Eq. (15), and update δ2 using Eq. (16). Optimize α with gradient

descent or fix α as 1/K times the ones vector.
12: until convergence

Specifically, we assume that q is a fully factorized mean-field approximation to p:

q(η, {θd, zd}) = q(η)

D∏
d=1

q(θd|γd)

N∏
n=1

q(zdn|ϕdn), (12)

where γd is a K-dimensional vector of Dirichlet parameters and each ϕdn parameterizes a
multinomial distribution over K topics. It is easy to verify that:

E[Zdn] = ϕdn, and E[η⊤Z̄d] = E[η]⊤(
1

N

N∑
n=1

ϕdn). (13)

Now, we develop a coordinate descent algorithm to solve the equivalent “unconstrained”
formulation (11). The algorithm is outlined in Alg. 1 and detailed below.

(1) Solve for (α,β, δ2) and q(η): When q({θd, zd}) is fixed, this substep (in an equivalent
constrained form) is to solve

min
q(η),α,β,δ2,ξ,ξ∗

Eq(η)[Ls(q;α,β, δ2)] +KL(q(η)∥p0(η)) + C

D∑
d=1

(ξd + ξ∗d) (14)

∀d, s.t. :


yd − E[η⊤Z̄d]≤ ϵ+ ξd, (µd)

−yd + E[η⊤Z̄d]≤ ϵ+ ξ∗d, (µ∗
d)

ξd ≥ 0, (vd)
ξ∗d ≥ 0, (v∗d),

where {µd, µ
∗
d, vd, v

∗
d} are lagrange multipliers. Since the margin constraints are not

dependent on (α,β, δ2), we can solve for them using the same procedure as in sLDA,
when q(η) and q({θd, zd}) are given. Specifically, for α, the same gradient descent
method as in (Blei et al., 2003) can be applied; for β, the update equations are the
same as for sLDA:

βkw ∝
D∑

d=1

N∑
n=1

I(wdn = w)ϕk
dn, (15)

11
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where I(·) is an indicator function that equals to 1 if the condition holds; otherwise
0; and for δ2, the update rule is similar as that of sLDA but in an expected version,
because η is a random variable:

δ2 =
1

D

(
y⊤y − 2y⊤E[A]E[η] + E[η⊤E[A⊤A]η]

)
, (16)

where E[η⊤E[A⊤A]η] = tr(E[A⊤A]E[ηη⊤]), and A is a D ×K matrix whose rows are
the vectors Z̄⊤

d .

Solving for q(η) can be done using Lagrangian methods, but it is a bit more delicate.
For brevity, we postpone the details of this step after we have finished presenting the
overall procedure. We denote the optimum lagrange multipliers by (µ̂, µ̂∗) and the
optimum slack variables by (ξ̂, ξ̂∗).

(2) Solve for q({θd, zd}): By fixing q(η) and (α,β, δ2), this substep (in an equivalent
constrained form) is to solve

min
q({θd,zd}),ξ,ξ∗

Eq(η)[Ls(q;α,β, δ2)] + C

D∑
d=1

(ξd + ξ∗d) (17)

∀d, s.t. :


yd − E[η⊤Z̄d]≤ ϵ+ ξd

−yd + E[η⊤Z̄d]≤ ϵ+ ξ∗d
ξd, ξ

∗
d ≥ 0,

Since the constraints are not dependent on γd and q(η) is also not directly connected
with θd, we get the same update rule for γd as in sLDA:

γd = α+

N∑
n=1

ϕdn. (18)

For q(zd), in theory, we can do the optimization to get the optimal solution of ϕ and
the corresponding optimal lagrange multipliers. But the full optimization would be
expensive, especially considering that this sub-step is within the most inner iteration
loop and it would be performed for many times. Here, we adopt an approximation
strategy, which performs a single step update of ϕ, rather than a full optimization.
Note that this one-step approximation could lead to a slight increase of the objective
function during the iterations. Our empirical studies show that this increase is usually
within an acceptable range. More specifically, we fix (ξ, ξ∗) at (ξ̂, ξ̂∗) (the optimum
solution of the previous step) and set the lagrange multipliers to be (µ̂, µ̂∗) 7. Then,
we have the closed-form update equation

ϕdn ∝ exp
(
E[log θd|γd] + log p(wdn|β) +

yd
Nδ2

E[η]−
2E[η⊤ϕd,−nη] + E[η ◦ η]

2N2δ2

+
E[η]
N

(µ̂d − µ̂∗
d)
)
, (19)

7. Before we update ϕ, (µ̂, µ̂∗) and (ξ̂, ξ̂∗) satisfy the optimal conditions (e.g., KKT conditions) of prob-
lem (17). So, they are the initially optimal solutions. But after we have updated ϕ, the KKT conditions
do not hold. This is the reason why our strategy of not updating (µ,µ∗) and (ξ, ξ∗) could lead to a
slight increase of the objective function.
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where ϕd,−n ,
∑

i̸=nϕdi; η ◦ η is the element-wise product; and the result of exponen-
tiating a vector is a vector of the exponentials of its corresponding components. Note
that the first two terms in the exponential are the same as those in LDA.

Remark 1 From the update rule of ϕ in Eq. (19), we can see that the essential differences
between MedLDAr and sLDA lie in the last three terms in the exponential of ϕdn. Firstly,
the third and fourth terms are similar to those of sLDA, but in an expected version since
we are learning the distribution q(η) instead of a point estimate of η. The second-order
expectations E[η⊤ϕd,−nη] and E[η ◦ η] mean that the co-variances of η (See Corollary 3
for an example) affect the distribution over topics. This makes our approach significantly
different from a point estimation method, like sLDA, where no expectations or co-variances
are involved in updating ϕdn. Secondly, the last term is from the max-margin regression
formulation. For a document d, which lies on the decision boundary, i.e., a support vector,
either µd or µ∗

d is non-zero, and the last term biases ϕdn towards a distribution that favors
a more accurate prediction on the document. Moreover, the last term is fixed for words in
the document and thus will directly affect the latent representation of the document, i.e.,
γd. Therefore, the latent representation θd inferred under MedLDAr can be more suitable
for supervised prediction tasks. Our empirical studies further verify this, as we shall see in
Section 5.

Now, we turn to the sub-step of solving for q(η), as well as the slack variables and
lagrange multipliers. Specifically, we have the following result.

Proposition 2 For MedLDAr, the optimum solution of q(η) has the form:

q(η) =
p0(η)

Z
exp

(
η⊤

D∑
d=1

(µ̂d − µ̂∗
d +

yd
δ2

)E[Z̄d]− η⊤E[A⊤A]

2δ2
η
)
, (20)

where E[A⊤A] =
∑D

d=1 E[Z̄dZ̄
⊤
d ], and E[Z̄dZ̄

⊤
d ] = 1

N2 (
∑N

n=1

∑
m̸=nϕdnϕ

⊤
dm+

∑N
n=1 diag{ϕdn}).

The lagrange multipliers (µ̂, µ̂∗) are the solution of the dual problem of (14):

D2 : max
µ,µ∗

− logZ − ϵ

D∑
d=1

(µd + µ∗
d) +

D∑
d=1

yd(µd − µ∗
d) (21)

∀d, s.t. : µd, µ
∗
d ∈ [0, C].

Proof (sketch) By setting the partial derivative of the Lagrangian functional over q(η)
equal to zero, we can get the solution of q(η). Plugging q(η) into the Lagrangian functional
and solving for the optimal (vd, v

∗
d) and (ξd, ξ

∗
d) as in the standard SVR to get the box

constraints, we get the dual problem.

In MedLDAr, we can choose different priors to introduce some regularization effects.
For the standard normal prior, we have the following corollary:

Corollary 3 Assume the prior p0(η) = N (0, I), where I is the identity matrix, then the
optimum solution of q(η) is

q(η) = N (λ,Σ), (22)
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where λ = Σ(
∑D

d=1(µ̂d − µ̂∗
d + yd

δ2
)E[Z̄d]) is the mean and Σ = (I + 1/δ2E[A⊤A])−1 is a

K ×K co-variance matrix. The dual problem D2 is now:

max
µ,µ∗

− 1

2
ω⊤Σω − ϵ

D∑
d=1

(µd + µ∗
d) +

D∑
d=1

yd(µd − µ∗
d) (23)

∀d, s.t. : µd, µ
∗
d ∈ [0, C],

where ω =
∑D

d=1(µd − µ∗
d +

yd
δ2
)E[Z̄d].

In the above Corollary, computation of Σ can be done robustly through Cholesky de-
composition of δ2I + E[A⊤A], an O(K3) procedure. Another example is the Laplace prior,
which can lead to a shrinkage effect (Zhu and Xing, 2009) that is useful in sparse problems.
In this paper, we focus on the normal prior and extension to the Laplace prior can be done
similarly as in (Zhu and Xing, 2009). For the standard normal prior, the dual optimiza-
tion problem is a QP problem and can be solved with any standard QP solvers, although
they may not be so efficient. To leverage recent developments in learning support vector
regression models, we first prove the following corollary:

Corollary 4 Assume the prior p0(η) = N (0, I), then the mean λ of q(η) in problem (14)
is the optimum solution of the following problem:

min
λ,ξ,ξ∗

1

2
λ⊤Σ−1λ− λ⊤(

D∑
d=1

yd
δ2

E[Z̄d]) + C

D∑
d=1

(ξd + ξ∗d) (24)

∀d, s.t. :


yd − λ⊤E[Z̄d]≤ ϵ+ ξd

−yd + λ⊤E[Z̄d]≤ ϵ+ ξ∗d
ξd, ξ

∗
d ≥ 0

Proof See Appendix A for details.

The above primal form can be re-formulated as a standard SVR problem. Specifically,
we do Cholesky decomposition Σ−1 = U⊤U , where U is an upper triangular matrix with
strict positive diagonal entries. Let ν =

∑D
d=1

yd
δ2
E[Z̄d], and we define λ′ = U(λ − Σν);

y′d = yd − ν⊤ΣE[Z̄d]; and xd = (U−1)⊤E[Z̄d]. Then, the above primal problem in Corollary
4 can be re-formulated as the following standard form:

min
λ′,ξ,ξ∗

1

2
∥λ′∥22 + C

D∑
d=1

(ξd + ξ∗d) (25)

∀d, s.t. :


y′d − (λ′)⊤xd ≤ ϵ+ ξd

−y′d + (λ′)⊤xd ≤ ϵ+ ξ∗d
ξd, ξ

∗
d ≥ 0

.

Then, we can solve the standard SVR problem using existing algorithms, such as the
working set selection algorithm implemented in SVM-light (Joachims, 1999), to get the
dual parameters 8 µ̂ and µ̂∗ (as well as slack variables ξ̂ and ξ̂∗), which are needed to

8. Not all existing solvers return the dual parameters µ̂ and µ̂∗. SVM-light is one nice package that provides
both primal parameters λ′ and the dual parameters. Note that the above transformation from (24) to
(25) is done in the primal form and does not affect the solution of dual parameters of (23).

14



MedLDA: Maximum Margin Supervised Topic Models

infer ϕ as defined in (19), and the primal parameters λ′ which we use to get λ by doing
a reverse transformation since λ′ = U(λ − Σν) as defined above. The other lagrange
multipliers, which are not explicitly involved in topic inference and estimation of q(η), are
solved according to KKT conditions.

3.2 Classificational MedLDA

Now, we present the MedLDA classification model, of which the discrete labels of the
documents are available, and our goal is to learn a supervised topic model specialized at
predicting the labels of new documents through a discriminant function. We call this model
a Classificational MedLDA, or simply, MedLDAc.

Denoting the discrete response variable by Y , for brevity, we only consider the multi-class
classification, where y takes values from a finite set C , {1, 2, · · · , J}. The binary case, where
C , {+1,−1}, can be easily defined based on a binary SVM and the optimization problem
can be solved similarly. For classification, if the latent topic assignments z , {z1; · · · ; zN}
of all the words in a document are given, we define the latent linear discriminant function

F (y, z,η;w) = η⊤
y z̄, (26)

where z̄ , 1/N
∑

n zn, the same as in the case of MedLDA regression model; ηy is a class-
specificK-dimensional parameter vector associated with class y; and η is a |C|K-dimensional
vector by stacking the elements of ηy. Equivalently, F can be written as F (y, z,η;w) =
η⊤f(y, z̄), where f(y, z̄) is a feature vector whose components from (y− 1)K +1 to yK are
those of the vector z̄ and all the others are 0.

However, we cannot directly use the latent function F (y, z,η;w) to make prediction for
an observed input w of a document because the topic assignments z are hidden variables.
Here, we also treat η as a random vector and consider the general case to learn a distribution
of q(η). In order to deal with the uncertainty of z and η, similar to MedLDAr, we take the
expectation over q(η, z) and define the effective discriminant function

F (y;w) = E[F (y,Z,η;w)] = E[η⊤f(y, Z̄)|α,β,w], (27)

where Z , {Z1; · · · ;ZN} is the set of topic assignment random variables and Z̄ , 1/N
∑

n Zn

is the average topic assignment random variable as defined before. Then, the prediction
rule for multi-class classification is naturally

ŷ = argmax
y∈C

F (y;w) = argmax
y∈C

E[η⊤f(y, Z̄)|α,β,w]. (28)

Our goal here is to learn an optimal set of parameters (α,β) and distribution q(η).
As in MedLDAr, we have the option of using either a supervised sLDA (Wang et al.,
2009) or an unsupervised LDA as a building block of MedLDAc to discover latent topical
representations. However, as we have discussed in Section 2.1 and shown in (Wang et al.,
2009) as well as Section 5.3.1, inference under sLDA can be harder and slower because
the probability model of discrete Y in Eq. (5) is highly nonlinear over η and Z, both of
which are latent variables in our case, and its normalization factor strongly couples the
topic assignments of different words in the same document. Therefore, in this paper we
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focus on the case of using an LDA that only models the likelihood of document contents W
but not document label Y as the underlying topic model to discover latent representations
Z. Even with this likelihood model, document labels can still influence topic learning and
inference because they induce margin constraints pertinent to the topical distributions. As
we shall see, the resultant MedLDA classification model can be easily and efficiently learned
by utilizing existing high-performance SVM solvers. Moreover, since the goal of max-margin
learning is to directly minimize a hinge loss (i.e., an upper bound of the empirical loss), we
do not need a normalized distribution model for response variables Y .

3.2.1 Max-Margin Learning of LDA for Classification

The LDA component inside the MedLDAc defines a likelihood function p(W|α,β) over the
corpus D, which is known to be intractable. Therefore, we choose to optimize its variation-
al bound Lu(q;α,β) in Eq. (1), which facilitates efficient approximation algorithms. The
integrated problem of discovering latent topical representations and learning a distribution
of classifiers is defined as follows:

P3(MedLDAc) : min
q,q(η),α,β,ξ

Lu(q;α,β) +KL(q(η)||p0(η)) +
C

D

D∑
d=1

ξd (29)

∀d, y ∈ C, s.t. :

{
E[η⊤∆fd(y)]≥ ∆ℓd(y)− ξd

ξd ≥ 0,

where q denotes the variational distribution q({θd, zd}); ∆ℓd(y) is a non-negative cost func-
tion (e.g., 0/1 cost as typically used in SVMs) that measures how different the prediction
y is from the true class label yd; ∆fd(y) , f(yd, Z̄d)− f(y, Z̄d)

9; and ξ are slack variables.
It is typically assumed that ∆ℓd(yd) = 0, i.e., no cost for a correct prediction. Finally,

E[η⊤∆fd(y)] = F (yd;wd)− F (y;wd) (30)

is the “expected margin” by which the true label yd is favored over a prediction y.
Note that we have taken a full expectation to define F (y;w), instead of taking the

mode as done in latent SVMs (Felzenszwalb et al., 2010; Yu and Joachims, 2009), because
expectation is a nice linear functional of the distributions under which it is taken, whereas
taking the mode involves the highly nonlinear argmax function for discrete Z, which could
lead to a harder inference task. Furthermore, due to the same reason to avoid dealing with
a highly nonlinear discriminant function, we did not adopt the method in (Jebara, 2001)
either, which uses log-likelihood ratio to define the discriminant function when consider-
ing latent variables in MED. Specifically, in our case, the max-margin constraints of the
standard MED would be

∀d, ∀y ∈ C, log
p(yd|wd,α,β)

p(y|wd,α,β)
≥ ∆ℓd(y)− ξd, (31)

which are highly nonlinear due to the complex form of the marginal likelihood p(y|wd,α,β) =∫
θd

∑
zd

p(y,θd, zd|wd,α,β). Our linear expectation operator is an effective tool to deal with

9. Since multi-class SVM is a special case of max-margin Markov networks, we follow the common conven-
tions and use the same notations as in structured max-margin methods (Taskar et al., 2003; Joachims
et al., 2009).
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latent variables in the context of maximum margin learning. In fact, besides the present
work, we have successfully applied this operator to other challenging settings of learning
latent variable structured prediction models with nontrivial dependence structures among
output variables (Zhu et al., 2008) and learning nonparametric Bayesian models (Zhu et al.,
2011a,b). These expected margin constraints also make MedLDAc fundamentally different
from the mixture of conditional max-entropy models (Pavlov et al., 2003), where constraints
are based on moment matching, i.e., empirical expectations of features equal to their model
expectations.

By setting ξ to their optimum solutions, i.e., ξd = maxy(∆ℓd(y)−E[η⊤∆fd(y)]), we can
rewrite problem P3 in the form of regularized empirical loss minimization

min
q,q(η),α,β

Lu(q;α,β) +KL(q(η)||p0(η)) + CR(q, q(η)), (32)

where

R(q, q(η)) , 1

D

D∑
d=1

max
y∈C

(∆ℓd(y)− E[η⊤∆fd(y)]) (33)

is an upper bound of the training error of the prediction rule in Eq. (28) and C is again
the regularization constant. However, different from MedLDAr, which uses a Bayesian
supervised sLDA as the underlying likelihood model, here the variational bound Lu does
not contain a cross-entropy term on q(η) for its regularization (as in Lbs in Eq. (9)).
Therefore, we include the KL-divergence in problem P3 as an explicit entropic regularizer
for the distribution q(η).

The rationale underlying MedLDAc is similar to that of MedLDAr, that is, we want
to find latent topical representations q({θd, zd}) and a model parameter distribution q(η)
which on one hand tend to predict as accurate as possible on training data, while on the
other hand tend to explain the data well. The two parts are closely coupled by the expected
margin constraints.

3.2.2 Variational Algorithm for MedLDAc

As in MedLDAr, we make the fully-factorized mean field assumption that

q({θd, zd}) =
D∏

d=1

q(θd|γd)

N∏
n=1

q(zdn|ϕdn), (34)

where γd and ϕdn are variational parameters, having the same meaning as in MedLDAr.
Then, we have E[η⊤f(y, Z̄d)] = E[η]⊤f(y, 1/N

∑N
n=1ϕdn). We develop a similar coordinate

descent algorithm to solve the “unconstrained” formulation in (32). Since the constraints
in P3 are not on γ, α or β, their update rules are the same as in the case of MedLDAr and
we omit the details here. Below, we explain the optimization over q({zd}) and q(η) and
show the insights of the max-margin topic model.

Optimize over q(η): As in the case of regression, we have the following solution:
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Corollary 5 When (α,β) and q({θd, zd}) are fixed, the optimum solution q(η) of MedLDAc

in problem P3 has the form:

q(η) =
1

Z
p0(η) exp

(
η⊤(

D∑
d=1

∑
y∈C

µ̂y
dE[∆fd(y)])

)
, (35)

where the lagrange multipliers µ̂ are the optimum solution of the dual problem:

D3 : max
µ

− logZ +
D∑

d=1

∑
y∈C

µy
d∆ℓd(y) (36)

∀d, s.t. :
∑
y∈C

µy
d ∈ [0,

C

D
],

Again, we can choose different priors in MedLDAc for different regularization effects. We
consider the normal prior in this paper. For the standard normal prior p0(η) = N (0, I),
we can get: q(η) is a normal with a shifted mean, i.e., q(η) = N (λ, I), where λ =∑D

d=1

∑
y∈C µ

y
dE[∆fd(y)], and the dual problem D3 thus becomes the same as the dual

problem of a standard multi-class SVM (Crammer and Singer, 2001):

max
µ

− 1

2
∥

D∑
d=1

∑
y∈C

µy
dE[∆fd(y)]∥22 +

D∑
d=1

∑
y∈C

µy
d∆ℓd(y) (37)

∀d, s.t. :
∑
y∈C

µy
d ∈ [0,

C

D
].

The primal form of problem (37) is

min
λ,ξ

1

2
∥λ∥22 +

C

D

D∑
d=1

ξd (38)

∀d, ∀y ∈ C, s.t. :

{
λ⊤E[∆fd(y)]≥ ∆ℓd(y)− ξd

ξd ≥ 0.

Optimize over q({zd}): again, since q is fully factorized, we can perform the optimiza-
tion on each document separately. We have

ϕdn ∝ exp
(
E[log θd|γd] + log p(wdn|β) +

1

N

∑
y∈C

µ̂y
dE[ηyd − ηy]

)
, (39)

where we can see that the first two terms in Eq. (39) are the same as in unsupervised
LDA (Blei et al., 2003), and the last term is due to the max-margin formulation of P3 and
reflects our intuition that the discovered latent topical representation is influenced by the
margin constraints. For those examples that are on the decision boundary, i.e., support
vectors, their associated lagrange multipliers are non-zero and thus the last term acts as
a regularizer that biases the model towards discovering latent representations that tend to
make more accurate prediction on these difficult examples. Moreover, this term is fixed

18



MedLDA: Maximum Margin Supervised Topic Models

for words in the document and thus will directly affect the latent representation of the
document (i.e., γd) and therefore leads to a discriminative latent representation. As we
shall see in Section 5, such an estimate is more suitable for the classification task: for
instance, MedLDAc needs much fewer support vectors than the max-margin classifiers that
are built on raw text or the topical representations discovered by LDA.

The above formulation of MedLDAc has a slack variable associated with each documen-
t. This is known as the n-slack formulation (Joachims et al., 2009). Another equivalent
formulation, which can be more efficiently solved, is the so called 1-slack formulation. The
1-slack MedLDAc can be written as follows

P4(1-slack MedLDAc) : min
q,q(η),α,β,ξ

Lu(q) +KL(q(η)||p0(η)) + Cξ (40)

∀(ȳ1, · · · , ȳD), s.t. :

{
1
D

∑D
d=1 E[η⊤∆fd(ȳd)] ≥ 1

D

∑D
d=1∆ℓd(ȳd)− ξ

ξ ≥ 0.

By using the above developed variational algorithm and the cutting plane algorithm for
solving the 1-slack as well as n-slack multi-class SVMs (Joachims et al., 2009), which is
implemented in the SVMstruct package 10, we can solve the 1-slack or n-slack MedLDAc

model efficiently, as we shall see in Section 5.3.1. SVMstruct provides the solutions of the
primal parameters λ as well as the dual parameters µ, which are needed to do inference.

4. MedTM: a general framework

We have presented two variants of MedLDA for discovering predictive latent topical rep-
resentations of documents, as well as learning discriminating topics from the corpus; and
we have shown that the underlying topic model that defines data likelihood can be either
a supervised or an unsupervised LDA. In fact, the likelihood component of MedLDA can
be any other form of generative topic model, such as correlated topic models (Blei and Laf-
ferty, 2005), or latent space Markov random fields, such as exponential family harmoniums
(Welling et al., 2004; Xing et al., 2005; Chen et al., 2010). The same principle can also be
applied to upstream latent topic models, which have been widely used in computer vision
applications (Sudderth et al., 2005; Fei-Fei and Perona, 2005; Zhu et al., 2010). In this
section, we formulate a general framework of applying the max-margin principle to learn
discriminative latent topic models when supervising side information is available, and we
discuss more insights on developing approximate inference algorithms.

Formally, a maximum entropy discrimination topic model (MedTM) consists of two
components – an underlying topic model that fits observed data and a MED max-margin
model that performs prediction. In an MedTM, we distinguish two types of latent variables
– we use Υ to denote the parameters of the model pertaining to the prediction task (e.g.,
η in sLDA), and H to denote the topic assignment and mixing variables (e.g., z and θ).
Let Ψ denote the parameters of the underlying topic model (e.g., the Dirichlet parameter
α and topics β). Then, p(D|Ψ) is the marginal data likelihood of the corpus D, which may
or may not include the supervising side information depending on choice of specific form of
the underlying topic model.

10. http://svmlight.joachims.org/svm multiclass.html
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As discussed before, for a general topic model, p(D|Ψ) is intractable, therefore a generic
variational method can be employed. Let q(Υ,H) be a variational distribution to approxi-
mate the posterior p(Υ,H|D,Ψ). By the properties of KL-divergence, the following equality
holds if we do not make any restricting assumption of q(Υ,H)

− log p(D|Ψ)= min
q(Υ,H)

(
− Eq(Υ,H)[log p(Υ,H,D|Ψ)]−H(q(Υ,H))

)
(41)

= min
q(Υ,H)

(
Eq(Υ)

[
− Eq(H|Υ)[log p(H,D|Ψ,Υ)]−H(q(H|Υ))

]
+KL(q(Υ)∥p0(Υ))

)
,

where p0(Υ) is the prior distribution of Υ. Let us define

Lt(q(H|Υ);Ψ,Υ) , −Eq(H|Υ)[log p(H,D|Ψ,Υ)]−H(q(H|Υ)).

Then, Lt(q(H|Υ);Ψ,Υ) is the variational bound of the data likelihood associated with
the underlying topic model. For instance, when the underlying topic model is supervised
sLDA, Lt reduces to Ls, as we discussed in Eq. (9). When the underlying topic model is
unsupervised LDA, the corpus D only contains document contents, and p(H,D|Ψ,Υ) =
p(H,D|Ψ). The reduction of Lt to Lu needs a simplifying assumption that q(Υ,H) =
q(Υ)q(H) (in fact, much stricter assumptions on q are usually needed to make the learning
of MedLDAc tractable).

Mathematically, we define MedTM as solving the following entropic-regularized prob-
lem:

P5(MedTM) : min
q(Υ,H),Ψ,ξ

Eq(Υ)

[
Lt(q(H|Υ);Ψ,Υ)

]
+KL(q(Υ)∥p0(Υ)) + U(ξ) (42)

s.t. : q(Υ,H) satisfies the expected margin constraints.

where U is a convex function over slack variables, such as U(ξ) = C
D

∑
d ξd in MedLDAc. As

we have discussed in Section 3.2.1, by using the linear expectation operator, our expected
margin constraints are different from and simpler than those derived using a log-likelihood
ratio function in the standard MED with latent variables (Jebara, 2001).

This formulation allows efficient approximate inference to be developed. In general,
the difficulty of solving the optimization problem of MedTM lies in two aspects. First,
the data likelihood or its equivalent variational form as involved in the objective function
is generally intractable to compute if we do not make any restricting assumption about
q(Υ,H). Second, the posterior inference (e.g., in LDA) as required in evaluating the margin
constraints is generally intractable. Based on recent developments on learning latent topic
models, two commonly used approaches can be applied to get an approximate solution to
P5(MedTM), namely, Markov Chain Monte Carlo (MCMC) (Griffiths and Steyvers, 2004)
and variational (Blei et al., 2003; Teh et al., 2006) methods. For variational methods, which
are our focus in this paper, we need to make some additional restricting assumptions, such
as the commonly used mean field assumption, about the distribution q(Υ,H). Then, P5
can be efficiently solved with a coordinate descent procedure, similar to what we have done
for MedLDAr and MedLDAc. For MCMC methods, the difference lies in sampling from the
distribution q(Υ,H) under margin constraints – evaluating the expected margin constraints
is easy once we obtain samples from the posterior. Several approaches were proposed to deal
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with the problem of sampling from a distribution under some constraints such as (Schofield,
2007; Griffiths, 2002; Rodriguez-Yam et al., 2004; Damien and Walker, 2001) to name a few,
and we plan to investigate their suitability to our case in the future.

Finally, based on the recent extensions of MED to the structured prediction setting
(Zhu and Xing, 2009; Zhu et al., 2008), the basic principle of MedLDA can be similarly
extended to perform structured prediction, where multiple response variables are predicted
simultaneously and thus their mutual dependencies can be exploited to achieve globally
consistent and optimal predictions. Likelihood based structured prediction latent topic
models have been developed in different scenarios, such as image annotation (He and Zemel,
2008) and statistical machine translation (Zhao and Xing, 2006). Extension of MedLDA to
the structured prediction setting could provide a promising alternative for such problems.

5. Experiments

In this section, we provide qualitative as well as quantitative evaluation of MedLDA on top-
ic estimation, document classification and regression. For MedLDA and other topic models
(except DiscLDA whose implementation details are explained in footnote 14), we optimize
the K-dimensional Dirichlet parameters α using the Newton-Raphson method (Blei et al.,
2003). For initialization, we set ϕ to be uniform and each topic βk to be a uniform distri-
bution plus a very small random noise, and the posterior mean of η to be zero. We have
published our implementation on the website: http://www.ml-thu.net/∼jun/software.html.
In all the experimental results, by default, we also report the standard deviation for a topic
model with five randomly initialized runs.

5.1 Topic Estimation

We begin with an empirical assessment of topic estimation by MedLDA on the 20 News-
groups data set with a standard list of stop words 11 removed. The data set contains
about 20,000 postings in 20 related categories. We compare with unsupervised LDA 12. We
fit the data set to a 110-topic MedLDAc model, which exploits the supervising category
information, and a 110-topic unsupervised LDA, which ignores category information.

Figure 2 shows the 2D embedding of the inferred topic proportions θ (approximated by
the inferred variational posterior means) by MedLDAc and LDA using the t-SNE stochastic
neighborhood embedding (van der Maaten and Hinton, 2008) method, where each dot
represents a document and each color-shape pair represents a category. Visually, the max-
margin based MedLDAc produces a better grouping and separation of the documents in
different categories. In contrast, unsupervised LDA does not produce a well separated
embedding, and documents in different categories tend to mix together. Intuitively, a
well-separated representation is more discriminative for document categorization. This is
further empirically supported in Section 5.2. Note that a similar embedding was presented
in (Lacoste-Julien et al., 2008), where the transformation matrix in their model is pre-
designed. The results of MedLDAc in Figure 2 are automatically learned.

11. http://mallet.cs.umass.edu/
12. We implemented LDA based on the public variational inference code by Dr. David Blei, using same data

structures as MedLDA for fair comparison.
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Figure 2: t-SNE 2D embedding of the topical representation by: MedLDAc (above) and
unsupervised LDA (below). The mapping between each index and category name
can be found in: http://people.csail.mit.edu/jrennie/20Newsgroups/.
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Class MedLDA LDA Average θ per class

comp.graphics

T 69 T 11 T 80 T 59 T 104 T 31
image graphics db image ftp card
jpeg image key jpeg pub monitor
gif data chip color graphics dos
file ftp encryption file mail video
color software clipper gif version apple
files pub system images tar windows
bit mail government format file drivers

images package keys bit information vga
format fax law files send cards
program images escrow display server graphics

sci.electronics

T 32 T 95 T 46 T 30 T 84 T 44
ground audio source power water sale
wire output rs ground energy price
power input time wire air offer
wiring signal john circuit nuclear shipping
don chip cycle supply loop sell

current high low voltage hot interested
circuit data dixie current cold mail
neutral mhz dog wiring cooling condition
writes time weeks signal heat email
work good face cable temperature cd

politics.mideast

T 30 T 40 T 51 T 42 T 78 T 47
israel turkish israel israel jews armenian
israeli armenian lebanese israeli jewish turkish
jews armenians israeli peace israel armenians
arab armenia lebanon writes israeli armenia
writes people people article arab turks
people turks attacks arab people genocide
article greek soldiers war arabs russian
jewish turkey villages lebanese center soviet
state government peace lebanon jew people
rights soviet writes people nazi muslim

misc.forsale

T 109 T 110 T 84 T 44 T 94 T 49
sale drive mac sale don drive
price scsi apple price mail scsi

shipping mb monitor offer call disk
offer drives bit shipping package hard
mail controller mhz sell writes mb

condition disk card interested send drives
interested ide video mail number ide

sell hard speed condition ve controller
email bus memory email hotel floppy
dos system system cd credit system

Figure 3: Top topics under each class as discovered by the MedLDA and LDA models.

It is also interesting to examine the discovered topics and their relevance to class la-
bels. In Figure 3 we show the top topics in four example categories as discovered by both
MedLDAc and LDA. Here, the semantic meaning of each topic is represented by the first
10 high probability words.

To visually illustrate the discriminative power of the latent representations, i.e., the top-
ic proportion vector θ of documents, we illustrate and compare the per-class distribution
over topics for each model at the right side of Figure 3. This distribution is computed by av-
eraging the expected topic vector of the documents in each class. We can see that MedLDAc

yields sharper, sparser and fast decaying per-class distributions over topics. For the doc-
uments in different categories, we can see that their per-class average distributions over
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Figure 4: The average entropy of θ over documents of different topic models on 20 News-
groups data.

topics are very different, which suggests that the topical representations by MedLDAc have
a good discrimination power. Also, the sharper and sparser representations by MedLDAc

can result in a simpler max-margin classifier (e.g., with fewer support vectors), as we shall
see in Section 5.2.1. All these observations suggest that the topical representations discov-
ered by MedLDAc have a better discriminative power and are more suitable for prediction
tasks (Please see Section 5.2 for prediction performance). This behavior of MedLDAc is in
fact due to the regularization effect enforced over ϕ as shown in Eq. (39). On the other
hand, LDA seems to discover topics that model the fine details of documents, possibly at
the cost of achieving weaker discrimination power (i.e., it discovers different variations of
the same topic which results in a flat per-class distribution over topics). For instance, in
the class comp.graphics, MedLDAc mainly models documents in this class using two salient,
discriminative topics (T69 and T11) whereas LDA results in a much flatter distribution.
Moreover, in the cases where LDA and MedLDAc discover comparably the same set of top-
ics in a given class (like politics.mideast and misc.forsale), MedLDAc results in a sharper
low dimensional representation.

A quantitative measure for the sparsity or sharpness of the distributions over topics is
the entropy. We compute the entropy of the inferred topic proportion for each document
and take the average over the corpus. Here, we compare MedLDAc with unsupervised
LDA, supervised sLDA for multi-class classification (multi-sLDA) 13 (Wang et al., 2009),
and DiscLDA 14 (Lacoste-Julien et al., 2008). For DiscLDA, as in the original paper, we

13. We thank the authors for providing their implementation, on which we made necessary slight modifica-
tions, e.g., improving the time efficiency and optimizing α.

14. DiscLDA is a conditional model that uses class-specific topics and shared topics. Since the code is not
publicly available, we implemented an in-house version by following the same strategy in the original
paper and share K1 topics across classes and allocate K0 topics to each class, where K1 = 2K0, and
we varied K0 = {1, 2, · · ·}. We should note here that (Lacoste-Julien et al., 2008; Lacoste-Julien, 2009)
gave an optimization algorithm for learning the topic structure (i.e., a transformation matrix), however
since the code is not available, we resorted to one of the fixed splitting strategies mentioned in the paper.
Moreover, for the multi-class case, the authors only reported results using the same fixed splitting strategy
we mentioned above. For the number of iterations for training and inference, we followed (Lacoste-Julien,
2009). Moreover, following (Lacoste-Julien, 2009) and personal communication with the first author, we
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fix the transformation matrix and set it to be diagonally sparse. We use the standard
training/testing split 15 to fit the models on training data and infer the topic distributions
on testing documents. Figure 4 shows the average entropy of different models on testing
documents when different topic numbers are chosen. For DiscLDA, we set the class-specific
topic number K0 = 1, 2, 3, 4, 5 and correspondingly K = 22, 44, 66, 88, 110. We can see
that MedLDAc yields the smallest entropy, which indicates that the probability mass is
concentrated on quite a few topics, consistent with the observations in Figure 3. In contrast,
for unsupervised LDA, the probability mass is more uniformly distributed on many topics
(again consistent with Figure 3), which results in a higher entropy. For DiscLDA, although
the transformation matrix is designed to be diagonally sparse, the distributions over the
class-specific topics and shared topics are flat. Therefore, the entropy is also high. Using
automatically learned transition matrices might improve the sparsity of DiscLDA.

5.2 Prediction Accuracy

In this subsection, we provide a quantitative evaluation of MedLDA on prediction perfor-
mance for both document classification and regression.

5.2.1 Classification

We perform binary and multi-class classification on the 20 Newsgroup data set. To obtain
a baseline, we first fit all the data to an LDA model, and then use the latent representation
of the training 16 documents as features to build a binary or multi-class SVM classifier. We
denote this baseline by LDA+SVM.

Binary Classification: As in (Lacoste-Julien et al., 2008), the binary classification
is to distinguish postings of the newsgroup alt.atheism and the postings of the group
talk.religion.misc. The training set contains 856 documents with a split of 480/376 over
the two categories, and the test set contains 569 documents with a split of 318/251 over the
two categories. Therefore, the näıve baseline that predicts the most frequent category for
all test documents has accuracy 0.672.

We compare the binary MedLDAc with supervised LDA, DiscLDA, LDA+SVM, and
the standard binary SVM built on raw text features. For supervised LDA, we use both
the regression model (sLDA) (Blei and McAuliffe, 2007) and the multi-class classification
model (multi-sLDA) (Wang et al., 2009). For the sLDA regression model, we fit it using
the binary representation (0/1) of the classes, and use a threshold 0.5 to make prediction.
For MedLDAc, to see whether a second-stage max-margin classifier can improve the perfor-
mance, we also build a method of MedLDAc+SVM, similar to LDA+SVM. For DiscLDA,
we fix the transition matrix. Automatically learning the transition matrix can yield slightly
better results, as reported in (Lacoste-Julien, 2009). For all the above methods that utilize
the class label information, they are fit ONLY on the training data.

We use the SVM-light (Joachims, 1999), which provides both primal and dual param-
eters, to build SVM classifiers and to estimate the posterior mean of η in MedLDAc. The

used symmetric Dirichlet priors on β and θ, and set the Dirichlet parameters at 0.01 and 0.1/(K0+K1),
respectively.

15. http://people.csail.mit.edu/jrennie/20Newsgroups/
16. We use the training/testing split in: http://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 5: Classification accuracy of different models for: (a) binary and (b) multi-class
classification on the 20 Newsgroup data.

parameter C is chosen via 5 fold cross-validation during training from {k2 : k = 1, · · · , 8}.
For each model, we run the experiments for 5 times and take the average as the final results.
The prediction accuracy of different models with respect to the number of topics is shown
in Figure 5(a). For DiscLDA, we follow (Lacoste-Julien et al., 2008) to set K = 2K0 +K1,
where K0 is the number of class-specific topics and K1 is the number of shared topics, and
K1 = 2K0. Here, we set K0 = 1, · · · , 8, 10.

We can see that the max-margin MedLDAc performs better than the likelihood-based
downstream models, include multi-sLDA, sLDA, and the baseline LDA+SVM. The best
performances of the two discriminative models (i.e., MedLDAc and DiscLDA) are com-
parable. However, MedLDAc is easier to learn and faster in testing, as we shall see in
Section 5.3.2. Moreover, the different approximate inference algorithms used in MedLDAc

(i.e., variational approximation) and DiscLDA (i.e., Monte Carlo sampling methods) can
also make the performance different. In our alternative implementation using collapsed vari-
ational inference (Teh et al., 2006) method for MedLDAc (preliminary results in preparation
for submission), we were able to achieve slightly better results. However, the collapsed vari-
ational method is much more expensive. Finally, since MedLDAc already integrates the
max-margin principle into its training, our conjecture is that the combination of MedLDAc

and SVM does not further improve the performance much on this task. We believe that the
slight differences between MedLDAc and MedLDAc+SVM are due to the tuning of regular-
ization parameters. For efficiency, we do not change the regularization constant C during
training MedLDAc. The performance of MedLDAc would be improved if we select a good
C in different iterations because the data representation is changing.

Multi-class Classification: We perform multi-class classification on 20 Newsgroups
with all the 20 categories. The data set has a balanced distribution over the categories.
For the test set, which contains 7505 documents in total, the smallest category has 251
documents and the largest category has 399 documents. For the training set, which contains
11269 documents, the smallest and the largest categories contain 376 and 599 documents,

26



MedLDA: Maximum Margin Supervised Topic Models

respectively. Therefore, the näıve baseline that predicts the most frequent category for all
the test documents has the classification accuracy 0.0532.

We compare MedLDAc with LDA+SVM, multi-sLDA, DiscLDA, and the standard
multi-class SVM built on raw text. We use the SVMstruct package with a cost function
as ∆ℓd(y) , ℓI(y ̸= yd) to solve the sub-step of learning q(η) and build the SVM classifiers
for LDA+SVM. The parameter ℓ is selected with 5 fold cross-validation 17. The average
results as well as standard deviations over 5 randomly initialized runs are shown in Fig-
ure 5(b). For DiscLDA, we use the same equation as in (Lacoste-Julien et al., 2008) to
set the number of topics and set K0 = 1, · · · , 5. We can see that all the supervised topic
models discover more predictive topical representations for classification, and the discrim-
inative max-margin MedLDAc and DiscLDA perform comparably, slightly better than the
standard multi-class SVM (about 0.013± 0.003 improvement in accuracy). However, as we
have stated and will show in Section 5.3.2, MedLDAc is faster in testing than DiscLDA. As
we shall see shortly, MedLDAc needs much fewer support vectors than standard SVM.

Figure 6(a) shows the multi-class classification accuracy on the 20 Newsgroups data set
for MedLDAc with 70 topics. We show the results with ℓ manually set at 1, 4, 8, 12, · · · , 32.
We can see that although the default 0/1-cost works well for MedLDAc, we can get better
accuracy if we use a larger cost for penalizing wrong predictions. The performance is quite
stable when ℓ is set to be larger than 8. The reason why ℓ affects the performance is
that ℓ as well as C control: 1) the scale of the posterior mean of η and the Lagrangian
multipliers µ, whose dot-product regularizes the topic mixing proportions in Eq. (39); and
2) the goodness of fit of the MED large-margin classifier on the data (Please see (Joachims
et al., 2009) for another practical example that uses 0/ℓ-cost, where ℓ is set at 100). For
practical reasons, we only try a small subset of candidate C values in parameter search,
which can also influence the difference on performance in Figure 6(a). Performing very
careful parameter search on C could possibly shrink the difference. Finally, for a small
ℓ (e.g., 1 for the standard 0/1-cost), we usually need a large C in order to obtain good
performance. But our empirical experience with SVMstruct shows that the multi-class SVM
with a larger C (and smaller ℓ) is typically more expensive to train than the SVM with a
larger ℓ (and smaller C). That is one reason why we choose to use a large ℓ.

Figure 6(b) shows the number of support vectors for MedLDAc, LDA+SVM, and the
multi-class SVM built on raw text features, which are high-dimensional (∼60,000 dimension
for 20 Newsgroup data) and sparse. Here we consider the traditional n-slack formulation of
multi-class SVM and n-slack MedLDAc using the SVMstruct package, where a support vector
corresponds to a document-label pair. For MedLDAc and LDA+SVM, we set K = 70. For
MedLDAc, we report both the number of support vectors at the final iteration and the
average number of support vectors over all iterations. We can see that both MedLDAc and
LDA+SVM generally need much fewer support vectors than the standard SVM on raw text.
The major reason is that both MedLDAc and LDA+SVM uses a much lower dimensional
and more compact representation for each document. Moreover, MedLDAc needs (about
4 times) fewer support vectors than LDA+SVM. This could be because MedLDAc make
use of both text contents and the supervising class labels in the training data and its
estimated topics tend to be more discriminative when being used to infer the latent topical

17. The traditional 0/1 cost does not yield the best results. In most cases, the selected ℓ’s are around 16.
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Figure 6: (a) Sensitivity to the cost parameter ℓ for the MedLDAc; and (b) the number of
support vectors for n-slack multi-class SVM, LDA+SVM, and n-slack MedLDAc.
For MedLDAc, we show both the number of support vectors at the final iteration
and the average number during training.

representations of documents, that is, using these latent representations by MedLDAc, the
documents in different categories are more likely to be well-separated, and therefore the max-
margin classifier is simpler (i.e., needs fewer support vectors). This observation is consistent
with what we have observed on the per-class distributions over topics in Figure 3. Finally,
we observed that about 32% of the support vectors in MedLDAc are also the support vectors
in multi-class SVM on the raw features.

5.2.2 Regression

We first evaluate MedLDAr on the movie review data set used in (Blei and McAuliffe, 2007),
which contains 5006 documents and comprises 1.6M words, with a 5000-term vocabulary
chosen by tf-idf. The data set was compiled from the one provided in (Pang and Lee,
2005). As in (Blei and McAuliffe, 2007), we take logs of the response values to make them
approximately normal. We compare MedLDAr with unsupervised LDA, supervised sLDA,
MedLDAr

p – a MedLDA regression model which uses unsupervised LDA as the underlying
topic model (Please see Appendix B for details), and the linear SVR that uses the empirical
word frequency as input features. For LDA, we use its low dimensional representation of
documents as input features to a linear SVR and denote this method by LDA+SVR. The
evaluation criterion is predictive R2 (pR2), which is defined as one minus the mean squared
error divided by the data variance (Blei and McAuliffe, 2007), specificlly,

pR2 = 1−
∑D

d=1(yd − ŷd)
2∑D

d=1(yd − ȳ)2
,

where yd and ŷd are the true and estimated response values of document d, respectively;
and ȳ is the mean of true response values on the whole data set. When we report pR2, by
default it is computed on the testing data set. Note that the näıve baseline that predicts the
mean response value for all documents (i.e., ∀d, ŷd = ȳ) will have 0 on pR2. Any method
that have a positive pR2 performs better than the näıve baseline.
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Figure 7: Predictive R2 (left) and per-word likelihood (right) of different models on the
movie review data set.

Figure 7 shows the average results as well as standard deviations over 5 randomly
initialized runs, together with the per-word likelihood. For MedLDA and SVR, we fix
the precision ϵ = 1e−3 and select C via cross-validation during training. We can see that
the supervised MedLDA and sLDA can get better results than unsupervised LDA, which
ignores supervised responses during discovering topical representations, and the linear SVR
regression model. By using max-margin learning, MedLDAr can get slightly better results
than the likelihood-based sLDA, especially when the number of topics is small (e.g., ≤ 15).
Indeed, when the number of topics is small, the latent representation of sLDA alone does not
result in a highly separable problem, thus the integration of max-margin training helps in
discovering a more discriminative latent representation using the same number of topics. In
fact, the number of support vectors (i.e., documents that have at least one non-zero lagrange
multiplier) decreases dramatically at T = 15 and stays nearly the same for T > 15, which
with reference to Eq. (19) explains why the relative improvement over sLDA decreased
as T increases. This behavior suggests that MedLDAr can discover more predictive latent
structures for difficult, non-separable regression problems.

For the two variants of MedLDA regression models, we can see an obvious improvement
of MedLDAr over MedLDAr

p. This is because for MedLDAr
p, the update rule of ϕ does not

have the third and fourth terms of Eq. (19). Those terms make the max-margin estimation
and latent topic discovery attached more tightly.

We also build another real data set of hotel review rating 18 by randomly crawling hotel
reviews from TripAdvisor 19, where each review is associated with a global rating score
and five aspect rating scores for the aspects 20–Value, Rooms, Location, Cleanliness, and
Service. This data set is very interesting and can be used for many data mining tasks,
for example, extracting the textual mentions of each aspect. Also, the rich features in
reviews can be exploited to discover interesting latent structures with a conditional topic
model (Zhu and Xing, 2010). In these experiments, we focus on predicting the global rating

18. The data set is available at: http://www.cs.cmu.edu/∼junzhu/ReviewData.htm.
19. http://www.tripadvisor.com/
20. The website is subject to change. Our data set was built in December, 2009.
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Figure 8: (a) Predictive R2 of different models on the hotel review data set; and (b) the
number of support vectors for SVR, LDA+SVR, and MedLDAr. For MedLDAr,
we show both the number of support vectors at the final iteration and the average
number during training.

scores for reviews. To avoid too short and too long reviews, we only keep those reviews
whose character length is between 1500 and 6000. On TripAdvisor, the global ratings rank
from 1 to 5. We randomly select 1000 reviews for each rating and the data set consists
of 5000 reviews in total. We uniformly partition it into training and testing sets. By
removing a standard list of stopping words and those terms whose count frequency is less
than 5, we build a dictionary with 12000 terms. Similarly, we take logarithm to make the
response approximately normal. Figure 8(a) shows the predictive R2 of different methods.
Here, we also compare with the hidden topic Markov model (HTMM) (Gruber et al., 2007),
which assumes the words in the same sentence have the same topic assignment. We use
HTMM to discover latent representations of documents and use SVR to do regression.
On this data set, we see a clear improvement of the supervised MedLDAr compared to
sLDA. The performance of unsupervised LDA (with a combination with SVR) is generally
very unstable. The HTMM is more robust but its performance is worse than those of the
supervised topic models. Finally, a linear SVR on empirical word frequency achieves a pR2

of about 0.56, comparable to the best performance that can be achieved by MedLDAr.

Figure 8(b) shows the number of support vectors for MedLDAr, the standard SVR built
on empirical word frequency, and the two-stage approach LDA+SVR. For MedLDAr, we
report both the number of support vectors at the last iteration and the average number of
support vectors during training. Here, we set K = 10 for LDA and MedLDAr. Again, we
can see that MedLDAr needs fewer support vectors than SVR and LDA+SVR. In contrast,
LDA+SVR needs about the same number of support vectors as SVR. This observation
suggests that the topical representations by the supervised MedLDAr are more suitable for
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learning a simple max-margin predictor, which is consistent with what we have observed in
the classification case.

5.2.3 When and Why Should MedLDA be Preferred to SVM? A Discussion
and Simulation Study

The above results show that the MedLDA classification model works comparably or slightly
better than the SVM classifiers built on raw input features; and for the two regression
problems, MedLDA outperforms the support vector regression model (i.e., SVR) on one
data set while they are comparable on the other data set. These results raise the question
“when should we choose MedLDA?” Our answers are as follows.

First of all, MedLDA is a topic model. Besides making prediction on unseen data, one
major function of MedLDA is that it can discover semantic patterns underlying complex
data, and facilitate dimensionality reduction (and compression) of data. In contrast, SVM
models are more like black box machines which take raw input features and find good
decision boundaries or regression curves; but they are incapable of discovering or consid-
ering hidden structures of complex data, and performing dimensionality reduction 21. Our
main goal of including SVM/SVR into our comparison of predictive accuracy is indeed to
demonstrate that dimensionality reduction and information extraction from raw data via
MedLDA does not cause serious loss (if at all) predictive information, which is not the case
for many alternative probabilistic or non-probabilistic information extractors (e.g., LDA
or LSI). As an integration of SVM with LDA, MedLDA performs both predictive and ex-
ploratory tasks simultaneously. So, the first selection rule is: if we want to disclose some
underlying patterns and extract a lower dimensional semantic-preserving representation of
raw data besides doing prediction, MedLDA should be preferred to SVM.

Second, even if our goal is focusing on prediction performance, MedLDA should also
be considered as one competitive alternative. As shown in the above experiments, our
simulation experiments below, as well as the follow-up works (Yang et al., 2010; Wang and
Mori, 2011; Li et al., 2011), depending on the data and problems, max-margin supervised
topic models can outperform SVM models, or they are comparable if no gains on predictive
performance are obtained. There are several possible reasons for the comparable (not
dramatically superior) classification performance we obtained on the 20 Newsgroups data:

(1) The fully factorized mean field inference method could potentially lead to inaccurate
estimates. We have tried more sophisticated inference methods such as collapsed vari-
ational inference and collapsed Gibbs sampling 22, both of which could lead to superior
prediction performance (e.g., about 4 percent improvement over SVM on multi-class
classification accuracy);

(2) The much lower dimensional topical representations could be too compact, compared
to the original high-dimensional inputs. A clever combination (e.g., concatenation with
appropriate re-scaling of different features) of the discovered latent topical represen-

21. Some strategies like sparse feature selection can be incorporated to make an SVM more interpretable in
the original feature space. But this is beyond the scope of this paper.

22. Sampling methods for MedLDA can be developed by using Lagrangian dual methods. But a full discus-
sion on this topic is beyond the scope.
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tations and the original input features could potentially improve the performance, as
demonstrated in (Wang and Mori, 2011) for image classification.

To further substantiate the claimed advantages of MedLDA over SVM for admixed (i.e.,
multi-topical) data such as text and image, we conduct some simulation experiments to
empirically study when MedLDA can perform well. We generate the observed word counts
from an LDA model with K topics. The Dirichlet parameters are α = (1, . . . , 1). For the
topics, we randomly draw βkn ∝ Beta(1, 1), where ∝ means that we need to normalize
βk to be a distribution over the terms in a given vocabulary. We consider three different
settings of binary classification with a vocabulary of 500 terms. The document lengths for
each setting are randomly draw from a Poisson distribution, whose mean parameter is L,
that is,

∀d, Nd ∼ Poisson(L).

(1) Setting 1: We set K = 40. We randomly draw the class label for document d from a
distribution model

p(yd = 1|θd) =
1

1 + exp{−η⊤θd}
, where ηk ∼ N (0, 0.1).

In other words, the class labels are solely influenced by the latent topic representations.
Therefore, the true model that generates the labeled data follows the assumptions of
sLDA and MedLDA. We set L = 25, 50, 150, 300, 500.

(2) Setting 2: We set K = 150. We randomly draw the class label for document d from
a distribution model

p(yd = 1|θd) =
1

1 + exp{−(η⊤
1 θd + η⊤

2 wd)}
, where ηij ∼ N (0, 0.1), i = 1, 2.

In other words, the true model that generates the labeled data does not follow the
assumptions of sLDA. The class labels are influenced by the observed word counts.
In fact, due to the law of conservation of belief (i.e., the total probability mass of a
distribution must sum to one), the influence of θ would be generally weaker than that
of w in determining the true class labels. We set L = 50, 100, 150, 200, 250.

(3) Setting 3: Similar as in setting 2, but we improve the influence of θ on class labels by
using larger weights η1. Specifically, we sample the weights

η1j ∼ K ×N (0, 0.1) and η2j ∼ N (0, 0.1).

We set L = 50, 100, 150, 200, 250, 300, 350.

In summary, the first two settings generally represent two extremes where the true model
matches the assumptions of MedLDA or SVM, while Setting 3 is somewhat in the middle
place between Setting 1 and Setting 2. Since the synthetic words do not have real mean-
ings, below we focus on presenting the prediction performance, rather than visualizing the
discovered topic representations.
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Figure 9: Classification accuracy of different methods in (a) Setting 1; (b) Setting 2; and
(c) Setting 3.

Figure 9 shows the classification accuracy of MedLDAc, the SVM classifiers built on
word counts, and the MedLDAc models using both θ and word counts to learn classifiers 23

at each iteration step of solving for q(η). We can see that for Setting 1, where the true
model that generates the data matches the assumptions of MedLDA (and sLDA models
too) well, we can achieve significant improvements compared to the SVM classifiers built on
raw input word counts for all settings with various average document lengths. In contrast,
for Setting 2, where the true model largely violates the assumptions of MedLDA (in fact,
it matches the assumptions of SVM well), we generally do not have much improvements.
But still, we can have comparable performance. For the middle ground in Setting 3, we
have mixed results. When the average document length is small (e.g., ≤ 250), which

23. We simply concatenate the two types of features without considering the scale difference.
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means the influence of word counts on class labels is weak, MedLDAc can improve a lot
over SVM. But when the influence of word counts gets bigger (e.g., L ≥ 300), using the
low dimensional topic representations tends to be insufficient to get good performance.
Translating to empirical text analysis, MedLDA will be particularly helpful when analyzing
short texts, such as abstracts, reviews, users comments, and user status updates, which are
nowadays the dominant forms of user texts on social media.

In all the three settings, we can see that a näıve combination of both latent topic
representations and input word counts could improve the performance in some cases, or
at least it will produce comparable performance with the better model between MedLDAc

and SVM. Finally, comparing the three settings, we can see that for Setting 2, since the
true class labels heavily depend on the input word counts, increasing the average document
length L generally improves the classification performance of all models. In other words, the
classification problems become easier because of more discriminant information is provided
as L increases. In contrast, we do not have the similar observations in the other two
settings because the true labels are heavily (or solely in Setting 1) determined by θ, whose
dimensionality is fixed.

The last reason that we think MedLDA should be considered as an important novel
development with one root being from SVM because it presents one of the first successful
attempts, in the particular context of Bayesian topic models, towards pushing forward
the interface between max-margin learning and Bayesian generative modeling. As further
demonstrated in others’ work (Yang et al., 2010; Wang and Mori, 2011; Li et al., 2011) as
well as our recent work on regularized Bayesian inference (Zhu et al., 2011a,b), the max-
margin principle can be a fruitful addition to “regularize” the desired posterior distributions
of Bayesian models for performing better prediction in a broad range of scenarios, such as
image annotation, classification, multi-task learning, etc.

5.3 Time Efficiency

In this section, we report empirical results on time efficiency in training and testing. All the
following results are achieved on a standard desktop with a 2.66GHz Intel processor. We
implement all the models in C++ language, without any special optimization of the code.

5.3.1 Training Time

Figure 10 shows the average training time of different models together with standard devi-
ations on both binary and multi-class classification tasks with 5 randomly initialized runs.
Here, we do not compare with DiscLDA because learning the transition matrix is not ful-
ly implemented in (Lacoste-Julien, 2009), but we will compare the testing time with it.
From the results, we can see that for binary classification, MedLDAc is more efficient than
multi-class sLDA and is comparable with LDA+SVM. The slowness of multi-class sLDA is
because the normalization factor in the distribution model of y strongly couples the topic
assignments of different words in the same document. Therefore, the posterior inference
is slower than that of unsupervised LDA and MedLDAc which uses unsupervised LDA as
the underlying topic model. For the sLDA regression model, it takes even more training
time because of the mismatch between its normal assumption and the non-Gaussian binary
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Figure 10: Training time (CPU seconds in log-scale) of different models with respect to the
number of topics for both (Left) binary and (Right) multi-class classification.

response variables, which prolongs the E-step. In contrast, MedLDAc does not have such a
normal assumption.

For multi-class classification, the training time of MedLDAc is mainly dependent on
solving a multi-class SVM problem. Here, we implemented both 1-slack and n-slack versions
of multi-class SVM (Joachims et al., 2009) for solving the sub-problem of estimating q(η)
and Lagrangian multipliers in MedLDAc. As we can see from Figure 10, the MedLDAc with
1-slack SVM as the sub-solver can be very efficient, comparable to unsupervised LDA+SVM.
The MedLDAc with n-slack SVM solvers is about 3 times slower. Similar to the binary
case, for the multi-class supervised sLDA (Wang et al., 2009), because of the normalization
factor in the category probability model (i.e., a softmax function), the posterior inference
on different topic assignment variables (in the same document) are strongly correlated.
Therefore, the inference is (about 10 times) slower than that on unsupervised LDA and
MedLDAc which takes an unsupervised LDA as the underlying topic model. For regression,
the training time of MedLDAr is comparable to that of sLDA, while MedLDAr

p is more
efficient.

We also show the time spent on inference (i.e., E-step) and the ratio it takes over the
total training time for different models in Figure 11(a). We can clearly see that the difference
between 1-slack MedLDAc and n-slack MedLDAc is on the learning of SVMs (i.e., M-step).
Both methods have similar inference time. We can also see that for LDA+SVM and multi-
sLDA, more than 95% of the training time is spent on inference, which is very expensive
for multi-sLDA. Note that LDA+SVM takes a longer inference time than MedLDAc. This
is because we use more data (both training and testing) to learn unsupervised LDA. The
SVM classifiers built on raw input word count features are generally much more faster than
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Figure 11: (a) The inference time (CPU seconds in linear scale) and total training time for
learning different models, as well as the ratio of inference time over total training
time. For MedLDAc, we consider both the 1-slack and n-slack formulations; for
LDA+SVM, the SVM classifier is by default the 1-slack formulation; and (b)
Testing time (CPU seconds in log-scale) of different models with respect to the
number of topics for multi-class classification.

all the topic models. For instance, it takes about 230 seconds to train a 1-slack multi-class
SVM on the 20 Newsgroups training data, or about 1000 seconds to train a n-slack multi-
class SVM on the same training set; both are faster than the fastest topic model 1-slack
MedLDAc. This is reasonable because SVM classifiers do not spend time on inferring the
latent topic representations.

5.3.2 Testing Time

Figure 11(b) shows the average testing time with standard deviation on 20 Newsgroup
testing data with 5 randomly initialized runs. We can see that MedLDAc, multi-class sLDA
and unsupervised LDA are comparable in testing time, faster than that of DiscLDA. This
is because all the three models of MedLDAc, multi-class sLDA and LDA are downstream
models (See the Introduction for definition). In testing, they do exactly the same tasks,
that is, to infer the overall latent topical representation and do prediction with a linear
model. Therefore, they have comparable testing time. However, DiscLDA is an upstream
model, for which the prediction task is done with multiple times of doing inference to find
the category-dependent latent topical representations. Therefore, in principle, the testing
time of an upstream topic model is about |C| times slower than that of its downstream
counterpart model, where C is the finite set of categories. The results in Figure 11(b) show
that DiscLDA is roughly about 20 times slower than other downstream models. Of course,
the different inference algorithms can also make the testing time different.
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6. Conclusions and Discussions

We have presented maximum entropy discrimination LDA (MedLDA), a supervised topic
model that uses the discriminative max-margin principle to estimate model parameters such
as topic distributions underlying a corpus, and infer latent topical vectors of documents.
MedLDA integrates the max-margin principle into the process of topic learning and infer-
ence via optimizing one single objective function with a set of expected margin constraints.
The objective function is a tradeoff between the goodness of fit of an underlying topic model
and the prediction accuracy of the resultant topic vectors on a max-margin classifier. We
provide empirical evidence as well as theoretical insights, which appear to demonstrate that
this integration could yield predictive topical representations that are suitable for prediction
tasks, such as regression and classification. We also present a general formulation of learning
maximum entropy discrimination topic models, which allows any form of likelihood based
topic models to be discriminatively trained. Although the general max-margin framework
can be approximately solved with different methods, we concentrate on developing efficient
variational methods for MedLDA in this paper. Our empirical results on movie review, hotel
review and 20 Newsgroups data sets demonstrate that MedLDA is an attractive supervised
topic model, which can achieve state of the art performance for topic discovery and predic-
tion accuracy while needs fewer support vectors than competing max-margin methods that
are built on raw text or the topical representations discovered by unsupervised LDA.

MedLDA represents the first step towards integrating the max-margin principle into
supervised topic models, and under the general MedTM framework presented in Section 4,
several improvements and extensions are in the horizon. Specifically, due to the nature of
MedTM’s joint optimization formulation, advances in either max-margin training or better
variational bounds for inference can be easily incorporated. For instance, the mean field
variational upper bound in MedLDA can be improved by using the tighter collapsed varia-
tional bound (Teh et al., 2006) that achieves results comparable to collapsed Gibbs sampling
(Griffiths and Steyvers, 2004). Moreover, as the experimental results suggest, incorporation
of a more expressive underlying topic model enhances the overall performance. Therefore,
we plan to integrate and utilize other underlying topic models like the fully generative sLDA
model in the classification case. However, as we have stated, the challenge in developing
fully supervised MedLDA classification model lies in the hard posterior inference caused by
the normalization factor in the category distribution model. Finally, advance in max-margin
training would also results in more efficient training.
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Appendix A. Proof of Corollary 4

In this section, we prove the corollary 4.

Proof Since the variational parameters (γ,ϕ) are fixed when solving for q(η), we can
ignore the terms in Lbs that do not depend on q(η) and get the function

Lbs
[q(η)], KL(q(η)∥p0(η))−

∑
d

Eq[log p(yd|Z̄d,η, δ
2)]

= KL(q(η)∥p0(η)) +
1

2δ2

(
Eq(η)[η

⊤E[AA⊤]η − 2η⊤
D∑

d=1

ydE[Z̄d]]
)
+ c,

where c is a constant that does not depend on q(η).

Let U(ξ, ξ∗) = C
∑D

d=1(ξd + ξ∗d). Suppose (q0(η), ξ0, ξ
∗
0) is the optimal solution of P1,

then we have: for any feasible (q(η), ξ, ξ∗),

Lbs
[q0(η)]

+ U(ξ0, ξ
∗
0) ≤ Lbs

[q(η)] + U(ξ, ξ∗).

From Corollary 3, we conclude that the optimum predictive parameter distribution is
q0(η) = N (λ0,Σ), where Σ = (I +1/δ2E[A⊤A])−1 does not depend on q(η). Since q0(η) is
also normal, for any distribution24 q(η) = N (λ,Σ), with several steps of algebra it is easy
to show that

Lbs
[q(η)] =

1

2
λ⊤(I+

1

δ2
E[A⊤A])λ−λ⊤(

D∑
d=1

yd
δ2

E[Z̄d])+ c′ =
1

2
λ⊤Σ−1λ−λ⊤(

D∑
d=1

yd
δ2

E[Z̄d])+ c′,

where c′ is another constant that does not depend on λ.

Thus, we can get: for any (λ, ξ, ξ∗), where

(λ, ξ, ξ∗) ∈ {(λ, ξ, ξ∗) : yd−λ⊤E[Z̄d] ≤ ϵ+ ξd; −yd+λ⊤E[Z̄d] ≤ ϵ+ ξ∗d; and ξ, ξ∗ ≥ 0 ∀d},

we have

1

2
λ⊤
0 Σ

−1λ0 − λ⊤
0 (

D∑
d=1

yd
δ2

E[Z̄d]) + U(ξ0, ξ
∗
0) ≤

1

2
λ⊤Σ−1λ− λ⊤(

D∑
d=1

yd
δ2

E[Z̄d]) + U(ξ, ξ∗),

which means the mean of the optimum posterior distribution under a Gaussian MedLDA
is achieved by solving a primal problem as stated in the Corollary.

24. Although the feasible set of q(η) in P1 is much richer than the set of normal distributions with the
covariance matrix Σ, Corollary 3 shows that the solution is a restricted normal distribution. Thus, it
suffices to consider only these normal distributions in order to learn the mean of the optimum distribution.
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Appendix B. Max-Margin Learning of the Vanilla LDA for Regression

In Section 3.1, we have presented the MedLDA regression model that uses supervised sL-
DA (Blei and McAuliffe, 2007) to discover latent topic assignments Z and document-level
topical representations θ. The same principle can be applied to perform joint maximum
likelihood estimation and max-margin training for unsupervised LDA (Blei et al., 2003),
which does not directly model side information such as user ratings y. In this section, we
present this MedLDA model, which will be referred to as MedLDAr

p. As in MedLDAc, we
assume that the supervised side information y is given, even though not included in the
joint likelihood function defined in LDA25.

A näıve approach to using unsupervised LDA for supervised prediction tasks (e.g., re-
gression) is a two-stage procedure: 1) using unsupervised LDA to discover the latent topical
representations of documents; and 2) feeding the low-dimensional topical representations
into a regression model (e.g., SVR) for training and testing. This de-coupled approach
can be rather sub-optimal because the side information of documents (e.g., rating scores of
movie reviews) is not used in discovering the low-dimensional representations and thus can
result in a sub-optimal representation for prediction tasks. Below, we present MedLDAr

p,
which integrates an unsupervised LDA for discovering topics with the SVR for regression.
The inter-play between topic discovery and supervised prediction will result in more dis-
criminative latent topical representations, similar as in MedLDAr.

When the underlying topic model is unsupervised LDA, the likelihood is p(W|α,β), the
same as in MedLDAc. For regression, we apply the ϵ-insensitive support vector regression
(SVR) (Smola and Schölkopf, 2003) approach as before. Again, we learn a distribution
q(η). The prediction rule is the same as in Eq. (8). The integrated learning problem is

P6(MedLDAr
p) : min

q,q(η),α,β,ξ,ξ∗
Lu(q;α,β) +KL(q(η)||p0(η)) + C

D∑
d=1

(ξd + ξ∗d) (43)

∀d, s.t. :


yd − E[η⊤Z̄d] ≤ ϵ+ ξd

−yd + E[η⊤Z̄d] ≤ ϵ+ ξ∗d
ξd, ξ

∗
d ≥ 0

,

where the KL-divergence is a regularizer that biases the estimate of q(η) towards the prior.
In MedLDAr, this KL-regularizer is implicitly contained in the variational bound Lbs as
shown in Eq. (9). The constrained problem is equivalent to the “unconstrained” problem
by removing slack variables:

min
q,q(η),α,β

Lu(q;α,β) +KL(q(η)||p0(η)) + C

D∑
d=1

max(0, |yd − E[η⊤Z̄d]| − ϵ) (44)

Variational Algorithm: For MedLDAr
p , the unconstrained optimization problem (44)

can be similarly solved with a coordinate-descent algorithm as in the case of MedLDAr.

25. One could argue that this design is unreasonable because with y one should only consider sLDA. But we
study fitting the vanilla LDA using y in an indirect way described below because of the popularity and
historical importance of this scheme in many applied domains

39



Zhu, Ahmed, and Xing

Specifically, we assume that q({θd, zd}) =
∏D

d=1 q(θd|γd)
∏N

n=1 q(zdn|ϕdn), where the varia-
tional parameters γ and ϕ have the same meanings as in MedLDAr. Then, we alternately
solve for each variable and get a variational algorithm which is similar to that of MedLDAr.

Solve for (α,β) and q(η): the update rules of α and β are the same as in the
MedLDAr. The parameter δ2 is not used here. By using Lagrangian methods, we get that

q(η) =
p0(η)

Z
exp

(
η⊤

D∑
d=1

(µ̂d − µ̂∗
d)E[Z̄d]

)
(45)

and the dual problem is the same as D2. Again, we can choose different priors to introduce
some regularization effects. For the standard normal prior: p0(η) = N (0, I), the posterior is
also a normal: q(η) = N (λ, I), where λ =

∑D
d=1(µ̂d − µ̂∗

d)E[Z̄d] is the mean. This identity
covariance matrix is much simpler than the covariance matrix Σ as in MedLDAr, which
depends on the latent topical representation Z. Since I is independent of Z, the prediction
model in MedLDAr

p is less affected by the latent topical representations. Together with
the simpler update rule (48), we can conclude that the coupling between the max-margin
estimation and the discovery of latent topical representations in MedLDAr

p is looser than
that of MedLDAr. The looser coupling will lead to inferior empirical performance as we
show in Section 5.2.

For the standard normal prior, the dual problem is a QP problem:

max
µ,µ∗

− 1

2
∥λ∥22 − ϵ

D∑
d=1

(µd + µ∗
d) +

D∑
d=1

yd(µd − µ∗
d) (46)

∀d, s.t. : µd, µ
∗
d ∈ [0, C],

Similarly, we can derive its primal form, which is as a standard SVR problem:

min
λ,ξ,ξ∗

1

2
∥λ∥22 + C

D∑
d=1

(ξd + ξ∗d) (47)

s.t. ∀d :


yd − λ⊤E[Z̄d]≤ ϵ+ ξd

−yd + λ⊤E[Z̄d]≤ ϵ+ ξ∗d
ξd, ξ

∗
d ≥ 0.

Now, we can leverage recent developments in support vector regression (e.g., the public
SVM-light package) to solve either the dual problem or the primal problem.

Solve for q({θd, zd}): We have the same update rule for γ as in MedLDAr. By using
the similar one-step approximation strategy, we have:

ϕdn ∝ exp
(
E[log θd|γd] + log p(wdn|β) +

E[η]
N

(µ̂d − µ̂∗
d)
)
, (48)

Again, we can see that how the max-margin constraints in P6 regularize the procedure of
discovering latent topical representations through the last term in Eq. (48). Specifically,
for a document d, which lies around the decision boundary, i.e., a support vector, either µ̂d

or µ̂∗
d is non-zero, and the last term biases ϕdn towards a distribution that favors a more

accurate prediction on the document. However, compared to Eq. (19), we can see that Eq.
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(48) is simpler and does not have the complex third and fourth terms of Eq. (19). This
simplicity suggests that the latent topical representation is less affected by the max-margin
estimation (i.e., the prediction model’s parameters).
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