
AWeb-Based Tool for Developing Multilingual Pronunciation Lexicons

Samantha Ainsley1,2, Linne Ha3, Martin Jansche3, Ara Kim2, Masayuki Nanzawa3
1Department of Computer Science, Columbia University, USA

2 Work done at Google Inc., USA
3 Google Inc., USA

Abstract
We present a web-based tool for generating and editing pronunciation
lexicons in multiple languages. The tool is implemented as a web ap-
plication on Google App Engine and can be accessed remotely from a
web browser. The client application displays to users a textual prompt
and interface that reconfigures based on language and task. It lets users
generate pronunciations via constrained phoneme selection, which al-
lows users with no special training to provide phonemic transcriptions
efficiently and accurately.
Index Terms: pronunciation lexicons, speech recognition, text to
speech, internationalization

1. Introduction
A high quality pronunciation lexicon is at the heart of any robust speech
recognition system. However, commercially available pronunciation
lexicons are often expensive and lack modern non-dictionary terms
that occur frequently in speech recognition applications. Most exist-
ing pronunciation dictionaries do not have sufficient coverage for the
enormous variety of proper names one encounters in spokenweb search
(our domain of interest), including many unusual names of people, or-
ganizations, places, websites, etc. On the other hand, custom lexicons
are labor intensive to generate, requiring specialized linguistic training
and are prone to errors and inconsistencies. However, for resource-
scarce languages as well as for very broad coverage or specialized ap-
plications in resource-rich languages, developing new pronunciation
lexicons cannot easily be avoided.

Related work by Davel and colleagues [1, 2] has shown that it is
possible for “developers with limited linguistic experience [to] develop
accurate pronunciation models” [1] using a development process with
appropriate tool support. We follow an approach similar to the one ad-
vocated by Davel et al. for bootstrapping pronunciation lexicons. In
this paper, we describe the design of a web-based tool for entering pro-
nunciation information about words. Our tool differs from Davel and
Peche’s DictionaryMaker [3] in several ways: DictionaryMaker is a
stand-alone Java application that users have to download and install,
whereas our tool is a web application that only requires a browser and
working internet connection;1 our web-based client-server application
takes care of downloading and uploading data without user interven-
tion; and our tool offers additional transcription or annotation modes
described below.

Like DictionaryMaker our system solves the issues faced in gen-
erating phonemic transcriptions for customized pronunciation lexicons
by constraining the transcribers input to a fixed phoneme inventory and
providing audio feedback on input to minimize errors. The user inter-
face maps individual phonemes to relevant keyboard letters to provide
transcribers with an intuitive and efficient means of input. Transcribers

1This requirement is not without problems in the developing world.

are additionally provided with audio previews and example words il-
lustrating individual phonemes, eliminating the need for specialized
knowledge of the phoneme set for a given language. The phonemic
transcription interface is used both for entering a small seed dictio-
nary of pronunciations and for correcting pronunciations predicted by
a model trained on the seed dictionary.

The client-server architecture of our system additionally decreases
the time required to generate new lexicons by allowingmultiple users to
collectively build the same lexicon. Pronunciation data entered in the
client side of the application is continuously written to a centralized
storage location for later processing. The system allows for grouping
of word lists into smaller tasks that can be assigned to transcribers on
a rolling basis for an efficient work flow by letting faster transcribers
take on more tasks. Additionally, the same word can be assigned to
multiple transcribers for increased accuracy and to check agreement
between transcribers. These features have greatly improved efficiency
and accuracy in our experience.

The lexicon-editing tool is implemented as a web application on
top of Google App Engine [4], or GAE. This provides a scalable frame-
work that allows us to concentrate on application development with-
out having to worry about maintaining production servers. GAE also
provides components for user authentication as well as a distributed
datastore. The User Interface (UI) is implemented with the help of the
Google Web Toolkit [5], or GWT. This lets us focus on expressing the
UI and the application logic as a Java program. GWT then compiles
the Java code into HTML, CSS, and JavaScript to be interpreted by the
browser on the client side. For cross-browser audio support, we use the
gwt-voices sound library [6].

In general the client retrieves pronunciation prompts through asyn-
chronous calls to the server, which looks up available tasks in the GAE
datastore. The UI for working with these prompts runs entirely in the
browser. The client then passes the pronunciation or annotation gen-
erated by the user back to the server for persistence in the datastore.
From the user’s point of view, these transactions and most of the other
inner workings of the system are invisible. Users only need to point
a supported web browser (Chrome, Firefox, or Safari) at the URL for
our tool and sign in with a Google Account. They can then retrieve
assigned tasks and work on them inside the browser. There is no need
to install extra software or to explicitly download data for their work.

2. User interface
The UI is designed to support two primary user experiences: An ef-
ficient means for expert users to transcribe words quickly, and an in-
tuitive means for naïve users without special training in phonetics or
phonology to provide accurate transcriptions.

For a transcriber the interface is composed of two components: a
pronunciation editor (e.g. Figure 1) and a task manager sidebar (not
shown). The pronunciation editor displays the current prompt (the
word or phrase to be transcribed) above a phoneme display box (show-

{sainsley, linne, mjansche, mnanzawa}@google.com, ara@googlealumni.com 

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

3331



Figure 1: Pronunciation editor: phoneme display, virtual keyboard,
and example words.

ing the phonemic transcription in progress) and a virtual phoneme key-
board. The user is asked to transcribe the prompt into a string of
phonemes taken from a pre-defined phoneme inventory. We provide
the user with a virtual phoneme keyboard (Figure 1), which maps phys-
ical keys to individual phonemes. The keyboard configures its display
based on the task language, and handles key substitutions for language-
specific keyboard layouts. The situation for US English is shown in
Figure 1: It uses a standard QWERTY keyboard onto which phoneme
symbols in ArpaBet notation have been projected. For example, the
(unshifted) “E” key yields the tense /ey/ phoneme and Shift + “E” yields
the lax /eh/ phoneme.

The entire phoneme inventory is thus always visible and the
phoneme-to-key mapping is visually reinforced. Phoneme keys in the
on-screen virtual keyboard respond both to mouse clicks as well as
physical key presses. Novice users can pick phonemes with the mouse,
while advanced users can simply type once they’ve internalized the
phoneme-to-key mapping. We provide both audio feedback and exam-
ple words for individual phonemes. When the user hovers their mouse
over a phoneme key in the virtual keyboard, an example word for that
phoneme appears together with its transcription. In Figure 1 the exam-
ple none or nun and its phonemic transcription /n ah n/ appears as an
illustration of /n/. If available, we also provide audio recordings of the
example word and the isolated phoneme, which play when the corre-
sponding virtual or physical key are touched. This further reinforces
the phoneme-to-key mapping acoustically.

Additionally, the transcriber can review their entry and listen to
the entire phoneme sequence by selecting the speaker button on the left
side of the editor. The resulting concatenation of isolated phonemes
is far from ideal; however, it has a precedent in DictionaryMaker [3],
where it was found to be helpful [1].

The selected phonemes display in a text editor box with a cursor
for insertion and deletion control. The phoneme preceding the cursor
is highlighted and one or more phoneme suggestions – typically eas-
ily confused alternatives – are displayed below the editor. In Figure 1
the phoneme /n/ in the text editor box is highlighted and the alternative
/ng/ is suggested in a shaded box below. The transcriber can swap the
highlighted phoneme with one of its suggestions by pressing the cor-
responding numeric key (i.e. “1” to take the first suggestion). Sugges-
tions also respond to mouse clicks. When the transcriber has completed
the pronunciation, they can hit the “Enter” key to save their work and
they are automatically advanced to the next prompt.

When a user first logs into the application, the client requests a
list of tasks currently assigned to that user. Each task is a collection of
prompts the user has to transcribe. The user selects a task from a drop
down list in the task manager sidebar and the server sends the prompts
associated with the task – along with any pronunciations already sup-
plied by the user – back to the client and the task displays in the user
interface as previously described.

As soon as the user marks a phoneme sequence as complete, the
client sends the pronunciation to the server to be written to the GAE
datastore along with a unique identifier of the transcriber. This allows
us to collect multiple pronunciations for the same prompt and track
disparities between transcribers. Pronunciation data is sent back to the
server with each completed task item in order to minimize the amount
of data held on the client side in the event of a lost connection or expired
user log-in. The user is advanced to the next prompt and a check mark
is placed by the current prompt only if the client receives a successful
response from the server, in order to minimize data loss.

As previously mentioned, the tool is also intended to allow users
with no linguistic training to intuitively generate phonemic pronunci-
ations. Volunteers enter their own prompt in a text field and generate
its pronunciation via the phonemic keyboard. Whereas the key bind-
ings provide efficiency for transcribers, they also provide an intuitive
display for the untrained user who naturally associates phonemes with
letters. With meaningful key mappings, the naive user can retype the
original prompt to yield a rough estimate of its pronunciation. They
can then refine the pronunciation by listening to the phoneme previews
and replacing ambiguous with phones with pre-populated suggestions.

Early versions of our tool were focused on simplifying the work of
transcribers, especially through the use of phonemic keyboards. How-
ever, the creation of these keyboards used to happen outside the tool and
was itself quite error-prone. We found it helpful to implement a graph-
ical editor for phoneme keyboards within recent versions of the tool.
It allows administrators to design keyboard layouts, define phoneme
inventories, and graphically edit phoneme-to-key mappings.

3. Conclusions
We have presented a simple web-based tool for lexicographic work that
arises in many speech projects. Our goal has been to enable language
experts in remote locations to provide information about the pronunci-
ation of words quickly and accurately. A virtual on-screen keyboard
displays and continually reinforces a mapping from keys to phonemes.
As the experts become more and more familiar with this task, they
can increasingly rely on their physical keyboards to enter phonemes,
thus speeding up their work. Thus far, we have used our tool to gather
lexicons of several tens of thousands of words in four languages from
language experts who have little to no prior experience with building
pronunciation lexicons.

4. Acknowledgments
We would like to thank our colleagues from the Google Speech Group for help-
ful discussions. Special thanks to Kaisuke Nakajima for detailed feedback on
design and coding. Many thanks also to our language experts for their detailed
feedback on our tool, which has shaped its current look and functionality.

5. References
[1] Davel, M. and Barnard, E., “The efficient generation of pronunciation dic-

tionaries: Human factors during bootstrapping”, Interspeech/ICSLP 2004.
[2] Davel, M. and Martirosian, O., “Pronunciation dictionary development in

resource-scarce environments”, Interspeech 2009.
[3] Davel, M. and Peche, M., “DictionaryMaker user manual, version 2.0 (i)”,

2006. Online: http://dictionarymaker.sourceforge.net/doc/
dictmaker_manual_v2.0.pdf, accessed on 29 March 2011.

[4] “Google App Engine”, Google, Mountain View, CA. Online: http://
code.google.com/appengine/, accessed on 19 Sept 2010.

[5] “Google Web Toolkit”, Google, Mountain View, CA. Online: http://
code.google.com/webtoolkit/, accessed on 19 Sept 2010.

[6] Sauer, F., “gwt-voices: Sound library for Google-Web-Toolkit (GWT)”,
2009. Online: http://code.google.com/p/gwt-voices/, ac-
cessed on 29 March 2011.

3332


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Martin Jansche
	----------

