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Abstract

We present a novel technique for shadow removal based
on an information theoretic approach to intrinsic image
analysis. Our key observation is that any illumination
change in the scene tends to increase the entropy of ob-
served texture intensities. Similarly, the presence of tex-
ture in the scene increases the entropy of the illumina-
tion function. Consequently, we formulate the separation
of an image into texture and illumination components as
minimization of entropies of each component. We employ
a non-parametric kernel-based quadratic entropy formula-
tion, and present an efficient multi-scale iterative optimiza-
tion algorithm for minimization of the resulting energy func-
tional. Our technique may be employed either fully auto-
matically, using a proposed learning based method for au-
tomatic initialization, or alternatively with small amount of
user interaction. As we demonstrate, our method is particu-
larly suitable for aerial images, which consist of either dis-
tinctive texture patterns, e.g. building facades, or soft shad-
ows with large diffuse regions, e.g. cloud shadows.

1. Introduction
Natural images can typically be described as the interac-

tion of scene illumination with the geometry and reflectance
of underlying objects. Separation of an image into these
components has been a well studied problem, generally re-
ferred to as intrinsic image analysis, where each component
characterizes an intrinsic property of the scene. Such de-
composition is useful for many computer vision problems;
e.g. tasks such as segmentation and recognition require illu-
mination invariance and therefore benefit from removal of
the illumination component.

A commonly observed phenomenon attributable to illu-
mination changes is (cast) shadow formation, caused by oc-
clusion of the light source. We present a shadow removal
approach based on an information theoretic model for the
underlying texture and illumination of the scene. Our key

observation is that any illumination change in the scene
tends to increase the diversity of observed texture inten-
sities. An information theoretic interpretation of this ef-
fect is that the entropy of texture appearance is increased.
Similarly, the presence of texture in the scene increases
the entropy of the illumination function, which is other-
wise mostly smooth except at shadow boundaries. Hence,
shadow removal can be cast as separation of texture from il-
lumination such that the entropy of both entities is reduced.
It is important to consider both texture and illumination si-
multaneously, as minimizing one quantity alone would sim-
ply transfer the entire energy to the other quantity. The con-
straint on illumination entropy serves as a regularization,
which imposes a robust smoothness prior on it.

Our method can be employed either fully automati-
cally or alternatively with small amount of user inter-
action, where a loosely specified region of pixels com-
pletely outside the shadow may be provided. Our formu-
lation of texture-illumination separation as entropy mini-
mization of the two components is novel. We employ non-
parametric estimates for texture and illumination densities
and a kernel-based quadratic entropy measure for diver-
sity. To minimize the resulting energy functional, we have
devised an efficient multi-scale iterative optimization tech-
nique, which may be applicable to other kernel-based meth-
ods as well. We also present a technique for automatically
bootstrapping our algorithm, resulting in a fully automatic
system.

Our approach is particularly suitable for soft shadows,
where an explicit shadow boundary may not be present, as
well as for images with distinctive textures, where texture
entropy can be easily analyzed. We have found these char-
acteristics to be typical of aerial images, which often need
to be processed for shadow removal before use in modern
mapping systems. For example, raw long-distance shots
used for satellite views in maps (e.g. Google Maps), can
have soft shadows cast by clouds with diffuse penumbra re-
gions. On the other hand, photos used for texturing build-
ing facades in 3D virtual environments (e.g. Google Earth),



usually have structured texture patterns, allowing for a sim-
plification of texture entropy analysis. We have applied our
technique on datasets from production mapping systems,
including fairly high resolution images, to demonstrate its
effectiveness. We also present sample results on natural im-
ages to show that our work is more generally applicable.

2. Related Work

For shadow detection and removal, two categories of al-
gorithms have been widely explored in the literature: model
based and learning based. Model based approaches charac-
terize the image generation process and model the process
physically [5, 12, 13]. On the other hand, with the rapid de-
velopment of image feature extraction and machine learning
techniques, learning based approaches are getting popular.
Color and gradient information is used in [15], and shadow-
variant and shadow-invariant cues from illumination, tex-
tural and odd order derivative characteristics are explored
in [18] to recognize shadows in monochromatic images.

Due to the under-determined nature of the problem,
researchers have studied restrictions to specific domains.
In [10], ground regions in outdoor scenes are specifically
targeted. In [9], textured surfaces are considered through
correlations between local mean luminance and local lu-
minance amplitude. More information may be integrated
as extra cues, such as multiple images [6], time-elapse im-
age sequences [16] or user interactions [3, 14, 17]. Several
algorithms rely on explicit classification of the shadow re-
gion before removal. One issue with such approaches is that
they rely on the shadows being mostly uniform with sharp
boundaries [7] or narrow penumbra regions [1, 11]. These
assumptions fail in the presence of soft non-uniform shad-
ows with large penumbra regions, which can occur in the
presence of multiple light sources or when the occluder is
only partially opaque (e.g. clouds). [4] provides a survey of
prior work in shadow removal from satellite/aerial imagery.
Most of these techniques are either highly specialized, or
require multispectral input.

Entropy minimization has been used for image filter-
ing in [2]. They employ gradient descent for optimization,
while we present a more efficient iterative least squares ap-
proach. An entropy based approach is used in [5, 7] as well.
However, they optimize over a different quantity: color
space projection basis. Recently, classifiers on paired re-
gions [8] have been used to detect shadows. They compute a
discrete solution followed by matting for removal, whereas
we use a continuous formulation, better suited for diffuse
shadows. However, their paired formulation is related to
our texture entropy formulation and both can possibly be
adapted to work together.

3. Information Theoretic Formulation
Let I(x, y) denote the observed intensity at pixel loca-

tion (x, y) in the image. Then, it can be expressed as a
function of the reflectance field (restricted to the 2D albedo
map)R(x, y) and per-pixel illumination L(x, y) as:

I(x, y) = L(x, y)·R(x, y) =⇒ I(x, y) = L(x, y)+R(x, y)

where the latter equation re-expresses the first one in log
domain. Treating these quantities as random variables, it is
reasonable to assume that R and L are independent of each
other, since they represent distinct intrinsic characteristics
of the scene: the surface and the illuminant. The observed
image I is therefore the sum of two independent random
variables. It is well known that the probability density func-
tion (PDF) of the sum of independent random variables can
be expressed as a convolution of their respective densities.
Hence, the summation results in a smoothing of the com-
ponent densities (as PDFs always form positive kernels).
From an information theoretic standpoint, this is equivalent
to an increase in the entropy of the system, as the PDFs be-
come more spread out. Mathematically, it can be stated as
H(I) ≥ H(R), H(L), where H denotes entropy.

(a) (b) (c)

(a) Entropy = 4.5

(b) Entropy = 3.8

(c) Entropy = 2.9

(d)

Figure 1: (a) Original shadowed image (b) Image
after shadow removal (c) Illumination component (d)
− log(intensity) histograms and their entropies. The orig-
inal image has higher entropy than any of its components.

This concept is further demonstrated in Figure 1. It
shows an image containing a shadow along with the
shadow-free and illumination components (as extracted by



our system). Figure 1d shows their log domain histograms
and respective entropies. Note that the histogram corre-
sponding to the shadow image is more spread out than ei-
ther the shadow-free or the illumination component, and is
indeed a convolution of the components. The shadow-free
image histogram is unimodal, while the illumination func-
tion is bimodal corresponding to the lit and dark regions.
Their convolution results in a bimodal histogram for the
shadowed image, which also has the highest entropy.

Decomposition of the image into its intrinsic com-
ponents is fundamentally under-constrained and therefore
some prior knowledge (or regularization) is necessary.
Based on the above observations, we can impose a novel
prior which requires the entropies of the components to be
smaller than the original image. However, that still leaves
the problem severely under-constrained. A stronger prior
is to search for the hypothesis that results in the smallest
possible component entropies. This formulation is consis-
tent with the Minimum Description Length (MDL) princi-
ple, which postulates that the hypothesis with the most com-
pact representation should be favored.

We note that a popular prior in the literature is to im-
pose smoothness constraints on the illumination function.
It turns out that minimization of illumination entropy is an
alternate way of expressing this smoothness constraint (al-
though it requires that the spatial location of pixels be taken
into account when computing entropy). The missing piece
is the regularization of the reflectance function, which is
what we propose in this paper. To that end, we seek to min-
imize the texture entropy of the reflectance field.

We distinguish texture from reflectance because, un-
like illumination, the reflectance function may not be (even
piecewise) spatially smooth, as evident in Figure 1b. How-
ever, it may exhibit constancy of appearance over the same
object/surface, which we capture using the notion of tex-
ture. We describe the texture at a given location as the
appearance of the local neighborhood around that location.
Texture entropy is then measured as the entropy of local
neighborhoods within a region belonging to the same sur-
face. Our objective is to obtain:

L∗ = arg min
L

H(L,P ) + λH(T, S); and R∗ = I − L∗

(1)
where T ≡ T (R) = T (I−L) denotes the texture as a func-
tion of reflectance, and λ controls the relative importance of
the two entropies. To obtain spatial regularization for illu-
mination, we couple it with the pixel location P ≡ (x, y),
and minimize the resulting joint entropy. For texture, we
only want to minimize the entropy within the region cor-
responding to individual surfaces S. However, we do not
have a-priori segmentation of the scene into distinct sur-
faces, making S unknown. Nevertheless, we account for it
when constructing the texture entropy (see Section 4).

4. Non-parametric Entropy Estimation

In order to measure the entropy of a random variable, we
first need to define its PDF. For a general scene, the forms
of the PDFs for texture and illumination are unknown and
therefore difficult to model parametrically. Hence, we resort
to non-parametric estimation of the PDF from sampled data
points. Kernel density estimation (a.k.a. Parzen windows)
is a well-known technique, where the PDF of a multivariate
random variable is defined as the interpolation of impulse
functions situated at data points. More formally, let X be
a d-dimensional random variable with an unknown PDF f .
Given a sample set {a1,a2, ...,aN} drawn from f , the ker-
nel density estimate of f at point x is:

f̂Ψ(x) =
1

N

N∑
i=1

KΨ(x,ai) (2)

where K is a normalized kernel function (i.e. integrates to
one) with smoothing (or bandwidth) parameter matrix Ψ.
A typical choice for K is the radially symmetric Gaussian
kernel, defined as:

G(x|ai,Ψ) =
1

(2π)d/2|Ψ|1/2
e−

1
2 (x−ai)

T Ψ−1(x−ai). (3)

Equipped with this estimate for the PDF of a random vari-
able, we can derive an expression for its entropy. The tra-
ditional definition of entropy is based on Shannon’s defi-
nition: Hsh(X) = −Ef [log f(X)], where Ef is the ex-
pected value over f . While Hsh can be estimated from f̂ ,
it is a difficult function to optimize. We instead use Renyi’s
quadratic entropy [5] definition which leads to much simpli-
fication. Renyi generalized the notion of entropy to yield a
family of entropies of different orders, of which Shannon’s
entropy is a special case. All these entropies are equivalent
w.r.t. minimization or maximization. In particular, Renyi’s
quadratic entropy is defined as:

HR2(X) = − log V (X) = − log

∫ ∞
−∞

f(x)2dx , where

(4)
V (X) =

∫∞
−∞ f(x)2dx is called the information potential.

For the purpose of optimization, we can drop the log and di-
rectly minimize −V (X). From here on, in a slight abuse of
notation, we define entropy to be the negative information
potential, i.e.

H(X) = −
∫ ∞
−∞

f(x)2dx, and Ĥ(X) = −
∫ ∞
−∞

f̂(x)2dx.

(5)
A nice property of this definition is that for the Gaussian
kernel, Ĥ can be calculated exactly, modulo the approxi-
mation involved in the estimation of the PDF. Specifically,



(5) is a convolution of f̂ with itself. Substituting the Gaus-
sian kernel from (3) in (2), and performing some reductions,
we obtain:

Ĥ(X) = − 1

N2

N∑
i=1

N∑
j=1

G(0|ai − aj , 2Ψ) (6)

= − 1

N2

N∑
i=1

N∑
j=1

G(aj |ai, 2Ψ). (7)

This is equivalent to estimating the PDF for the difference
of i.i.d. random variables, by applying the kernel density
method over all pairs of samples {ai − aj}, and evaluating
it at 0. Yet another interpretation is that the entropy is the
average of kernel functions evaluated at all pairs of samples.

4.1. Entropies for Intrinsic Images

Estimating the entropy in (7) by evaluating all pairs of
samples may be too exhaustive and overly redundant for
distant pairs, especially if they would not contribute towards
reducing the entropy. For example, in the case of illumina-
tion, sample pairs that are spatially far enough will not play
much role in the optimization, as their contribution to the
entropy would remain minimal even if we made their illumi-
nation values exactly equal. Similarly, for texture, sample
pairs coming from different surfaces would be useless and
may be discarded. Hence, we restrict sample pairs based on
their expected contribution by modifying (7) as follows:

Ĥ(X) ≈ − 1

N

N∑
i=1

1

|N (i)|
∑

j∈N (i)

G(aj |ai, 2Ψ) (8)

where the set of samples aj in the inner loop are restricted
to a subset of samples in the neighborhood of ai, denoted by
N (i). N (i) is usually restricted based on the fixed compo-
nents of X . For example, the second term in (1) measures
the joint entropy of illumination and spatial location. Let
U = (L,P ) be the corresponding random variable. Then
P forms the fixed component of U . A single sample from
U may be denoted as ui = (li,pi), where li is the log-
illumination1 at pixel location pi = (xi, yi). N (i) is then
constructed by only considering pixels that lie within a spa-
tial neighborhood around pi. To see why this makes sense,
consider the kernel function for the sample pair (ui,uj). If
we employ a diagonal smoothing matrix Φ for U , we have:

G(uj |ui, 2Φ) = G(lj |li, 2Φl) ·G(pj |pi, 2Φp) (9)

which implies that the sample pair is always weighted by
G(pj |pi, 2Φp), no matter what values we assign to (li, lj).
Consequently, pixels which are too far to have any signif-
icant weight may be discarded. Φp is typically chosen to

1l is restricted to be a scalar for now; color images are treated later.

have a small variance, so that only adjacent pixels need to
be considered in the sample set.

A similar argument can be made for the case of joint
texture-surface entropy (the second term in (1)). However,
the surface S is fixed but unknown, since we do not assume
a prior segmentation of the scene into surfaces. Conse-
quently, it is not clear how to construct the neighborhood
N (i). We overcome this issue by replacing the kernel func-
tion for S with a distribution that can be computed purely
based on observed variables, such as the image I and pixel
location P . Another advantage of this approach is that other
priors based on the knowledge of the scene can be easily
rolled into this distribution. Following the same derivation
as above, let V = (T, S) denote the joint random vari-
able, and vi = (ti, si) denote a sample from V . Here ti
is the vectorized neighborhood of pixels around pi in the
reflectance image R, while si is the surface that the sample
belongs to. Using the same decomposition as (9), we get:

G(vj |vi, 2Ω) = G(tj |ti, 2Ωt) ·G(sj |si, 2Ωs). (10)

The lack of knowledge of S implies that the second term
in the above equation cannot be computed directly. We
therefore replace it with the probability distribution Pr(si =
sj |I, P ), resulting in:

G̃(vj |vi, 2Ω) = G(tj |ti, 2Ωt) · Pr(si = sj |I, P ) (11)

which is a weighted Gaussian kernel. Note that since S
is discrete-valued, the above definition is in any case more
suitable than the Gaussian kernel based density estimate.

4.2. Surface and Texture Priors

We model Pr(si = sj |I, P ) as a product of terms cor-
responding to different priors. The choice of priors may
depend on prior knowledge of the scene, while others may
be applicable generally. A common prior is that a given
surface is expected to be spatially continuous. Therefore it
is best to select samples within a spatial radius around pi.
Formally, this is expressed as:

Pr(si = sj |P ) ∝ G(pj |pi,Ωp) (12)

where Ωp has a large variance, allowing far away pixels
to still be selected as samples. This procedure essentially
performs importance sampling to compute the sum in the
inner loop of (7), using the importance function in (12) for
sampling.

Another prior is that surface texture appearance under
different illuminations usually changes monotonically. In
other words, pixels in a local spatial neighborhood around
pi and pj should differ by nearly a constant amount for
all pixels. But this notion is exactly what the kernel func-
tion G(tj |ti, 2Ωt) in (11) captures, albeit based on the un-
knowns (ti, tj). To construct a prior based on the observed



image I , we compute the kernel function assuming the best
case scenario: that the mean log-intensities at the sample
pair perfectly predict the illumination difference between
the samples. This results in the following prior:

Pr(si = sj |I) ∝ G(ηj − η̄j |ηi − η̄i, 2Ωt) (13)

where ηi is the vectorized neighborhood of pixels around
pi in the original image I and η̄i is its mean value. We use
rejection sampling to bias the samples based on this prior.

5. Energy Minimization
The total energy that we wish to minimize (1) may be

rewritten as:

E = H(U) + λH(V ) =

−
N∑
i=1

N∑
j=1

{
µij ·G2Φl

(lij) + λνij ·G2Ωt(tij)
}

(14)

where N is now the number of pixels, and µij and νij
are fixed non-negative weights, computed based on (9) and
(11). These weights are non-zero only corresponding to the
illumination and texture sample sets, i.e. for j ∈ NU (i) and
j ∈ NV (i) respectively, and include the normalization by
number of samples. We choose NU and NV to be symmet-
ric, so that µij = µji, νij = νji. We have used shorthand
notation: xij ≡ xi − xj and GΨ(xij) ≡ G(xj |xi,Ψ).

We simplify (14) by treating li as locally constant for
pixels used to construct ti. This allows us to replace the
kernel function G(tj |ti, 2Ωt) with G(ηj − lj |ηi− li, 2Ωt),
leaving {li} as the only free variables. Minimization is car-
ried out by searching for a stationary point of E, i.e. where
∂E
∂li

= 0 ∀i. Redefining the diagonal smoothness matrices
as Φl = 1

2φ
2 and Ωt = 1

2dω
2I, where d is the dimensional-

ity of ti, we obtain:

∂E

∂li
= 2

∑
j

µij ·Gφ2(lij)

(
lij
φ2

)
+

2λ
∑
j

νij ·Gdω2(tij)

(
lij − η̄ij
ω2

)
=

∑
j

uij · lij + λ
∑
j

vij · (lij − η̄ij) (15)

where uij and vij are still non-negative, albeit dependent
on l. Nevertheless, we can devise an iterative scheme where
these weights are fixed based on the current solution l∗, re-
sulting in a linear system of equations, which is then solved
to update l∗. Note that since all weights are positive, solving
∂E
∂l = 0 based on (15) is equivalent to solving the following

weighted least squares problem:

l∗ = arg min
l

∑
j

uij · l2ij + λ
∑
j

vij · (lij − η̄ij)
2. (16)

This also provides some intuition behind what is going on.
The two sums in (16) are competing terms. While the
first term wants to keep the illumination function locally
smooth, the second term wants the change in illumination
between a sample pair to match the change in their mean
log-intensities. The weights make the estimation robust by
suppressing outliers, down-weighting their contribution via
the kernel functions.

The optimization scheme therefore reduces to an itera-
tively re-weighted least squares algorithm, which is solved
at each iteration using Preconditioned Conjugate Gradients
(PCG). The algorithm converges quickly in practice (5-10
iterations) and is not too sensitive to the initialization, es-
pecially when solved in a multi-scale fashion as described
next.

Multi-scale Optimization: At every iteration, we solve a
large linear system whose size is governed by the number of
pixels N . However, since the illumination field is expected
to be mostly smooth except at shadow boundaries, we can
solve it efficiently using a multi-scale procedure. We run the
optimization in a pyramidal fashion, starting at the coarsest
level. At each successive level, we up-sample the illumi-
nation image computed at the previous level and use it as
an initialization. Additionally, any pixel for which the il-
lumination is sufficiently smooth in its neighborhood is ex-
cluded from the optimization and retains the value from the
previous level. The size of the linear system consequently
reduces from O(N) to O(Nb), where Nb is the number of
shadow boundary pixels.

Color: To extend our technique to color images, we treat
illumination at pixel i as the joint variable (lri , l

g
i , l

b
i ). When

constructing the kernel functions, an isotropic (diagonal)
smoothness matrix is used, which implies that the kernel
weights for the three channels are multiplied with each
other. Other than that, the iterative framework remains the
same. We also exploit color information to bias the sam-
pling prior discussed in Section 4.2. Specifically, if two
regions belong to the same surface, then their average ob-
served log-intensities in the various color channels should
either all increase or all decrease, because we only expect
them to differ due to an illumination change. We therefore
reject sample pairs for which the condition sgn(η̄rj − η̄ri ) =

sgn(η̄gj − η̄gi ) = sgn(η̄bj − η̄bi ) is not satisfied. Addition-
ally, for outdoor scenes, we expect the illumination to be
white in well lit regions, and close to white in the dark re-
gions – there is a slight shift in the spectrum in dark re-
gions due to ambient light. We therefore reject samples
that do not satisfy: max(|ξr − ξg|, |ξg − ξb|, |ξb − ξr|) <
γmax(ξr, ξg, ξb), where ξa = |η̄ai − η̄aj | and γ is a thresh-
old (0.2 in our experiments).



Figure 2: Left-to-right: Original image; Clusters of illumination values, cluster 1 is the representative non-shadow cluster;
Saturated result if cluster 2 is wrongly picked as the non-shadow cluster; Darkened result if cluster 3 is chosen; Our generated
non-shadow mask based on cluster 1; Shadow removal result based on generated mask.

6. Processing Aerial Imagery
One of the applications that we have employed our ap-

proach is for shadow removal in aerial imagery. We con-
sider two classes of images. Firstly, we have images from
long-distance shots, that may be used for generating satel-
lite and 45◦ views in maps. These images often contain
cloud shadows, which can be fairly diffuse and large, and
therefore troublesome to remove. Secondly, we consider
rectified images of building facades used for texturing 3D
models in virtual environments, which often have distinc-
tive texture patterns. Another practical requirement is to be
able to process fairly high resolution images, automatically.

6.1. Building Facades

A characteristic of building facades is that they usually
exhibit strong periodic patterns. This is especially true in
our case, since we work with rectified facades, which are
ready for texture mapping onto 3D models. We exploit this
prior knowledge to adapt the sampling of pairs in (12) to
limit them to axis-aligned periodic neighbors only. In or-
der to extract the periods px for the x direction and py for
the y direction, normalized correlation is computed between
each pixel position and its corresponding positions obtained
by shifting the facade along x or y directions. The correla-
tion values with different shifts are then normalized for each
position, and used as a weighted vote for the shift. These
votes are accumulated from all the pixels in the image, and
the first salient peaks (other than 0) in each of the x and y
directions are selected as the periods along those axes. The
entire computation can be performed efficiently by imple-
menting it as multiple 1D auto-correlations.

6.2. Automatic Non-Shadow Area Detection

Our optimization requires the illumination to be con-
strained at some pixels. Given a rough mask containing
only non-shadowed pixels, we can constrain li = 0 at those
pixels. This mask need not be accurate, it just needs to be

Figure 3: Shadow removal results on building facades.

conservative to exclude shadows, and may either be user
specified or determined automatically. An automatic ap-
proach for mask initialization is as follows.

Firstly, we compute an initial illumination image by fil-
tering the original image. For facade images with periodic
patterns, a box filter of size px×py is used to get a good ap-
proximation. The interesting property of such a filter is that
convolving it with an ideal repetitive pattern with periods px
and py will give a constant output, which can be considered
as the illumination value. For cloud and natural images, we
use bilateral filtering with a kernel of size 21 × 21. We
then perform k-means clustering on these pixel-wise illu-
mination values. The goal is to pick the most likely cluster
containing only non-shadow pixels. We set k = 4 for clus-
ters with non-shadow pixels, non-shadow outliers (such as
very bright or saturated pixels), shadow pixels, and shadow
outliers (such as dark areas with little color information).

We train an Adaboost classifier to pick the best cluster
to represent non-shadow regions. The features extracted
from each cluster include: illumination value li of cluster
center, cluster size, variance of illumination values, mean
intensity value Ii from the original image, and normalized
mean intensity value of other clusters if i is picked as the
non-shadow cluster: Ij × li

lj
for j 6= i. The intuition is that

if cluster i is the representative non-shadow cluster, li and
lj together would normalize the pixels from other clusters,
including shadow clusters, to the correct intensity. Other-
wise, picking the wrong cluster will saturate or change the



color of other clusters, as shown in Figure 2. The classi-
fier is trained using 90 images, generated by simple user
strokes. On 43 test images, we obtain a precision of 98% at
93% recall on cluster-level classification.

7. Results and Discussion
We have applied our shadow removal algorithm to aerial

images including building facades and cloud shadows, as
well as natural scenes. Aerial images with cloud shad-
ows (Figure 4 and 5) are likely to have soft shadow bound-
aries, whereas building facades (Figure 3) and natural pho-
tos (Figure 6) more likely contain hard shadow boundaries.

Since we minimize texture entropy over the entire
shadow region, as opposed to just near a hard shadow
boundary, we obtain smoothly varying shadow (inverse il-
lumination) maps in soft shadow regions, as shown in Fig-
ure 5. We have used our algorithm to remove shadows from
high resolution images by employing the multi-scale opti-
mization described in Section 5. To handle resolutions as
high as 64 MPixel, we additionally employ a tiled approach
where the entire image is divided into a grid of overlap-
ping tiles, which are solved sequentially from left-to-right
and top-to-bottom. The overlap provides constraints which
ensure consistency across tiles. Figure 4 shows zoom-ins
to selected crop regions to portray the resolution of the un-
derlying images and the softness of removed shadows. Fig-
ure 1, 2 and 3 show examples of shadow removal in building
facades. We are successfully able to remove hard shadows
by exploiting the periodic structures of these facades.

Figure 6a compares the result of applying our algorithm
on a photograph with hard shadows to two other state-of-
the-art approaches. Of these, we out-perform [7], which is
also an entropy minimization based approach, albeit their
entropy is defined over a different quantity. Our result in
this case is comparable to [14], which is especially designed
for hard shadow boundaries. The mask we use here is a hy-
brid of automatic detection and user specification. The ini-
tial mask (red+blue pixels) is refined by the user by remov-
ing the blue pixels and keeping the red ones. The automated
initialization makes the user refinement relatively simple.

Limitations: While our method generates reasonable re-
sults on hard shadows, it can sometimes get confused be-
tween appearance and illumination changes. In Figure 6b,
the algorithm treats a portion of the white stripe near the
shadow boundary as part of the road, and therefore fails to
remove the shadow cleanly. More generally, presence of
multiple textures near hard shadow boundaries can some-
times cause failures, or require careful parameter selection
for texture entropy. Another limitation is that the initial
mask can sometimes misclassify shadow/non-shadow pix-
els, resulting in missed shadows or brightening of dark re-
gions, e.g. the river in Figure 4 (middle-row) is incorrectly

Figure 4: Cloud shadow removal on high-resolution images
(64 MPixel). Last column in each row shows zoomed-in
versions of before (red, top) and after (orange, bottom) re-
sults for corresponding crop rectangles in full images.

treated as a shadow. For semi-automated removal, this can
be addressed with user interaction as done in Figure 6a. In
future work, we wish to incorporate classification scores di-
rectly into the entropy minimization in a soft fashion.

Parameters and Runtime performance: In our experi-
ments, we usually set λ = 1.0, the diagonal bandwidth ma-
trices use variance of 0.2 for the illumination term, while
the texture term uses the the average variance over all image
patches. The multi-resolution and tiled solvers allow us to
process 512× 512 images in 10-20 seconds and 64 MPixel
images in 5-10 minutes on a 3.5GHz, 6-core, 12GB RAM
Intel Xeon workstation.

8. Conclusion
We have presented a novel approach for shadow removal

based on the minimization of texture and smoothness en-
tropy of the image. The texture term enables estimation of
long range illumination changes, while the smoothness term
encourages smooth illumination fields. The entropic for-
mulation results in a robust estimation that respects shadow
boundaries as well as texture variations. It works especially
well for soft shadows and distinctive texture patterns, as we
have demonstrated through our results on aerial imagery,
but is general enough for natural scenes. Our optimization
algorithm is efficient and scalable, and may be applicable to
other kernel-based methods, to be explored as future work.



Figure 5: Left-to-right: original image, non-shadow mask, shadow removed result, computed shadow map, zoomed-in before
(red) and after (orange) results for selective crops. Top row uses loosely specified user mask, bottom row uses automatic mask.

(a) (b)

Figure 6: Shadow removal on general natural images. (a) From left-to-right: original image; non-shadow mask (blue+red
was initial automatic mask, blue pixels were removed by user, red pixels form the final mask); our result; result from [7];
result from [14]. (b) Another before-and-after example, also showing limitations (discussed in text).
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