
Deadline-Aware Datacenter TCP (D2TCP)

Balajee Vamanan
Purdue University

bvamanan@ecn.purdue.edu

Jahangir Hasan
Google Inc.

jahangir@google.com

T. N. Vijaykumar
Purdue University

vijay@ecn.purdue.edu

ABSTRACT
An important class of datacenter applications, called Online Data-
Intensive (OLDI) applications, includes Web search, online retail,
and advertisement. To achieve good user experience, OLDI
applications operate under soft-real-time constraints (e.g., 300 ms
latency) which imply deadlines for network communication
within the applications. Further, OLDI applications typically
employ tree-based algorithms which, in the common case, result
in bursts of children-to-parent traffic with tight deadlines. Recent
work on datacenter network protocols is either deadline-agnostic
(DCTCP) or is deadline-aware (D3) but suffers under bursts due to
race conditions. Further, D3 has the practical drawbacks of
requiring changes to the switch hardware and not being able to
coexist with legacy TCP.

We propose Deadline-Aware Datacenter TCP (D2TCP), a
novel transport protocol, which handles bursts, is deadline-aware,
and is readily deployable. In designing D2TCP, we make two
contributions: (1) D2TCP uses a distributed and reactive approach
for bandwidth allocation which fundamentally enables D2TCP’s
properties. (2) D2TCP employs a novel congestion avoidance
algorithm, which uses ECN feedback and deadlines to modulate
the congestion window via a gamma-correction function. Using a
small-scale implementation and at-scale simulations, we show that
D2TCP reduces the fraction of missed deadlines compared to
DCTCP and D3 by 75% and 50%, respectively.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols.

General Terms
Algorithms, Design, Performance.

Keywords
Datacenter, Deadline, SLA, TCP, OLDI, ECN, Cloud Services.

1. INTRODUCTION
Datacenters are emerging as critical computing platforms for

ever-growing, high-revenue, online services such as Web search,
online retail, and advertisement. These services employ Online
Data Intensive applications (OLDI) [18] which have two
distinguishing properties: (1) Because application latency affects
user experience, and hence revenue [13], OLDI applications
operate under soft-real-time constraints (e.g., 300 ms latency). (2)

The applications employ tree-based, divide-and-conquer
algorithms where every query operates on data spanning
thousands of servers [12].

An OLDI query’s overall time budget gets divided among the
nodes of the algorithm’s tree (e.g., 40 ms for a parent-to-leaf
RPC). To avoid missing its deadline, a parent node sends out an
incomplete response without waiting for slow children that have
missed their deadlines. Because such incomplete responses
adversely affect response quality, and hence revenue, achieving
fewer missed deadlines is important. While a node’s response time
includes both computational and network latencies, we focus on
reducing the network delay. We note that in addition to achieving
fewer missed deadlines, a network protocol that allows tighter
network budgets is invaluable as it allows more time for
computation, thus producing higher-quality responses.

A key reason for increased network delay is that all the
children of a parent node face the same deadline and are likely to
respond nearly at the same time, causing a fan-in burst at the
parent in the common case [10][1][25]. Further, because typical
data centers host multiple applications at the same time to enable
flexible use and high utilization of the datacenter resources, OLDI
flows with different deadlines and background flows with no
deadlines (e.g., Web index update) share the network. As such,
multiple such bursts coinciding in time at a switch may lead to
congestive packet drops and TCP retransmits, which frequently
result in missed deadlines. We emphasize that the fan-in bursts are
fundamental to OLDI applications and are not artifacts of the
network. The shallow- and shared-buffer nature of datacenter
switches, combined with the buffer-filling nature of long-lived
TCP flows, precludes absorbing these bursts in packet buffers [1].
Current datacenters alleviate this problem by a combination of
two approaches: (1) over-provision the network link bandwidths
to absorb the bursts, and (2) increase the network’s time budget
(e.g., equal to, say, the 99th percentile of the observed network
delay) leaving less time for computation. While the former incurs
high cost, the latter either degrades response quality (e.g., less
time for Page Rank in Web search), or requires more machines to
compensate for less computation per machine and may worsen
fan-in bursts by increasing the fan-in degree (i.e., more children
per parent).

Recent work on datacenter networks either reduces the tail-
end network latency or proposes deadline-aware networks.
DCTCP [1] is an elegant proposal that targets the tail-end latency
by gracefully throttling flows in proportion to the extent of
congestion, thereby reducing queuing delays and congestive
packet drops and, hence, also retransmits. DCTCP reduces the
99th-percentile of the network latency by 29%. Unfortunately,
DCTCP is a deadline-agnostic protocol that equally throttles all
flows, irrespective of whether their deadlines are near or far. D3
shows that as much as 7% of flows may miss their deadlines with
DCTCP [25]. D3 tackles missed deadlines by pioneering the idea
of incorporating deadline awareness into the network. In D3, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1419-0/12/06...$15.00.

switches grant a sender’s request for the required bandwidth based
on the flow size and deadline.

While D3 improves upon DCTCP, D3 has significant
performance and practical shortcomings, which we cover in detail
in Sections 2.4.2 and 2.4.3. On the performance side, D3 employs
a centralized and pro-active approach in which the switches
allocate bandwidth greedily on a first-come-first-served basis.
Such a greedy approach may allocate bandwidth to far-deadline
requests arriving slightly ahead of near-deadline requests. We
show in Section 4.2.2 that, due to this race condition, D3 inverts
the priority of 24%-33% requests, thus contributing to missed
deadlines. Fixing these priority inversions is a hard problem as we
explain in Section 2.4.2. On the practical side, D3 has some major
drawbacks as well. D3 requires custom switching chips to handle
requests at line rates. Such custom hardware would incur high
cost and long turn-around time that hinders near-term deployment.
Further, because legacy TCP flows do not recognize D3's honor-
based bandwidth allocation, D3 cannot coexist with TCP. Such
lack of protocol interoperability prevents incremental deployment
necessary for introducing new technologies and for high
availability during upgrades. As such, any datacenter protocol
must be able to coexist with legacy TCP to be deployable in the
real world.

In summary, DCTCP improves tail latency but is not
deadline-aware whereas D3 is deadline-aware but it has both
performance and practical shortcomings. We stipulate that a
datacenter network protocol should:
• meet OLDI deadlines, especially in fan-in-burst-induced

congestion;
• achieve high bandwidth for background flows;
• work with existing switch hardware; and
• be able to coexist with legacy TCP.

We propose Deadline-Aware Datacenter TCP (D2TCP), a
novel transport protocol based on TCP that meets the above
requirements. In designing D2TCP, we make two contributions.

Our first contribution is D2TCP’s distributed and reactive
approach. Because having global up-to-date information for all
flows in a datacenter is technically infeasible given the rapid
arrival rate and latency of flows, any network scheduling scheme
must work with incomplete information. D2TCP approaches this
challenge by inheriting TCP’s distributed and reactive nature, and
adding deadline awareness to it. In contrast to D3’s centralized
bandwidth allocation at the switches, which rules out per-flow
state, D2TCP’s distributed approach allows the hosts to maintain
the needed state without changing the switch hardware. In contrast
to D3’s pro-active approach, which does not allow for correcting
the decisions resulting from inaccurate information, D2TCP’s
reactive approach allows senders to correct any temporary and
small over-subscription of the network which can be absorbed by
typical packet buffers.

Our second contribution is D2TCP’s novel congestion
avoidance algorithm which uses ECN feedback and deadline
information to modulate the congestion window size via a
gamma-correction function [2]. The key idea behind the algorithm
is that far-deadline flows back off aggressively and near-deadline
flows back off only a little or not at all. Our algorithm
simultaneously satisfies the four conditions stipulated above so
that D2TCP (1) achieves deadline-based prioritization in the
presence of fan-in-burst-induced congestion so that flows with
nearer deadlines are prioritized, while ensuring that congestion
does not worsen; (2) achieves high bandwidth for background
flows even as the short-lived D2TCP flows come and go; (3)
requires no changes to the switch hardware, so that deployment

amounts to merely upgrading the TCP and RPC stacks; and (4)
coexists with legacy TCP, allowing incremental deployment.

We demonstrate a real implementation of D2TCP on a small
16-server testbed, and show that even at such small scale where
fan-in-burst-induced congestion is much less severe than at real
scale, D2TCP reduces the fraction of missed deadlines by 20%
compared to DCTCP, while requiring fewer than 100 additional
lines of kernel code.

We perform further evaluations using at-scale simulations to
show that D2TCP
• reduces the fraction of missed deadlines compared to

DCTCP and D3 by 75% and 50%, respectively;
• achieves nearly as high bandwidth as TCP for background

flows without degrading OLDI performance;
• meets deadlines that are 35-55% tighter than those achieved

by D3 for a reasonable 5% of missed deadlines, giving
OLDIs more time for actual computation; and

• coexists with TCP flows without degrading their
performance.
Note that we do not present formal proofs for D2TCP’s

fairness and stability.
The remainder of the paper is organized as follows. In

Section 2, we discuss the nature of OLDI applications and
pinpoint the issues with the previous proposals. We describe the
details of D2TCP in Section 3. In Section 4, we describe our
experimental methodology and present our experimental results.
We discuss some related work in Section 5, and conclude in
Section 6.

2. OLDIs AND DATACENTER NETWORK
PROTOCOLS

We describe the nature of today's datacenter applications, and
how this nature interacts with the previous proposals for
datacenter network protocols.

2.1 Online Data Intensive Applications
As the name suggests, there are two defining properties of

Online Data Intensive (OLDI) applications: online and data-
intensive [18]. Online implies an interactive nature, wherein a user
typically inputs a query via a browser and expects an immediate
response. Consequently, OLDI applications are designed to
respond within a short deadline (e.g., 300 milliseconds). Data-
intensive means that the applications consult large data sets (e.g.,
entire index of the web) for computing the response. The large
volume of data is typically distributed over thousands of servers,
and each query hits every server.

The two properties combined lead to tree-based, divide-and-
conquer algorithms for OLDI applications [12], as shown in
Figure 1. The specific example we show is a two-level tree,
however, the properties we describe hold for shallower and deeper
trees as well. The user query arrives at the root, which broadcasts
the query down to the leaves across which the data is partitioned.
Each leaf sends its response to its parent which aggregates the
results from all the leaves and sends a response to the root. The
root, in turn, aggregates all the parents’ results and ships off the
final response to the user. This overall application architecture is
called scatter-gather or partition-aggregate. The propagation of
the request down to leaves and of the responses back up to the
root must complete within the deadline. That overall budget gets
divided among the levels of the tree. For example, a leaf may have
to respond to its parent within 30 milliseconds (Figure 1). When
this deadline expires, the parent aggregates the available results
and ships off the final response. Any leaf that misses its deadline

fails to contribute to the final response. Such missed deadlines
result in incomplete, lower-quality responses.

It is instructive to note that each leaf’s budget gets divided
into two parts: the computation time on the leaf, and the
communication latency between the leaf and its parent. This
division balances two competing demands. A generous budget for
communication ensures fewer missed deadlines by the network,
but also means less time for computation, thereby penalizing the
quality of results (e.g., less time for Page Rank in Web search).
The upshot is that not only is it desirable to have fewer missed
deadlines, but there is also great value in tightening the
communication budget to give more time for computation.

2.2 OLDI Fan-in Congestion
Consider a parent’s subtree when the parent sends a query to

its leaves. Because all leaves receive the query at nearly the same
time, and because they all face the same deadline, the leaves are
likely respond around the same time. The result is a burst of
responses fanning in to the parent in the common case [10] [1].
While such bursts can be smoothed by inserting jitter, doing so
increases the tail-end latency [9], and is therefore of limited use.
Further, because datacenters run multiple applications at the same
time to improve utilization, multiple fan-in bursts (from same or
different applications) may coincide in time at the same switch.

In addition to the bursty fan-in traffic described above,
datacenter networks also carry background traffic consisting of
long-lived flows. These flows push new control information and
data to the nodes of the OLDI applications. While this traffic is
usually not constrained by tight deadlines, it does involve large
data transfers. Given the nature of TCP, these long flows tend to
exercise the switch buffers to high utilization [1].

The combined network traffic described above often results
in fan-in-burst-induced congestions which cause tail drops as the
packet buffers fill up. Absorbing these bursts in larger packet
buffers is precluded by two factors. First, datacenter switches
employ network ASICs with on-chip packet buffer memory.
Given the limitations of die size, on-chip packet buffers are
naturally shallow. Switch designs with larger off-chip packet
buffers are significantly more expensive and complex [14], and
reserved for high-end core routers that must buffer for Internet
scale RTTs. Second, the nature of long-lived TCP flows is to fill
up larger buffers, which may lead to longer queuing delays and
still cause missed deadlines for OLDI traffic [1].

While fan-in-burst-induced congestions are a fundamental
characteristic of OLDI applications, the manner in which today's
datacenter networks handle such fan-in bursts contribute to missed
deadlines in two ways.

First, a TCP/IP network uses packet drops as a feedback to
inform the senders about on-going congestion1. Under this
mechanism, the sender must wait for a timeout to detect packet
loss even as the deadline expires. Furthermore, the sender also
halves its transmission rate to alleviate the congestion. The net
result is that the leaves involved in a fan-in-burst-induced
congestion are likely to miss their deadlines. Current datacenters
address this problem by a combination of two approaches: (1)
increasing the network link bandwidths and (2) increasing the
network time budget to be greater than, say, the 99th percentile
network latency. While the former incurs high cost, the latter
reduces the time budget for computation, which either penalizes
the response quality or requires more machines to compensate for
less computation per machine and may worsen fan-in bursts by
increasing the fan-in degree (i.e., more children per parent).

Second, TCP treats all congested flows equally which is sub-
optimal when the congested flows’ deadlines are different. Ideally,
a network should prioritize the flows that are about to miss their
deadlines while throttling the flows that can afford to wait.
However, TCP is a fair-share2 protocol which lacks such
deadline-based distinction. Because fan-in bursts are common in
OLDIs and fair-share protocols are deadline-agnostic, such
protocols are not well-suited to datacenters [25].

2.3 Datacenter TCP (DCTCP)
Explicit Congestion Notification (ECN) [21] is an extension

to the TCP/IP protocol that enables congestion feedback without
using packet drops as the feedback mechanism. ECN relies on
Active Queue Management (AQM) schemes like RED [8] to track
congestion at a switch. When a switch encounters sustained
congestion, it marks the Congestion Encountered (CE) bit in the
IP header, thereby informing the endpoints about the congestion.
The endpoints observe this CE bit feedback and reduce their
transmission rate.

DCTCP [1] shows that ECN does not suffice to solve OLDI’s
fan-in burst problem. In datacenters, the number of congested
flows is small enough that their congestion windows tend to be
synchronized with each other. Furthermore, the traffic is bursty in
nature. Therefore, halving the flows’ windows in response to the
ECN feedback causes the flows to thrash instead of gracefully
converging to the available bandwidth. In summary, one bit of
ECN feedback merely indicates the presence of congestion, but it
carries no information about the extent of congestion.

To address this problem, DCTCP elegantly aggregates the
one-bit ECN feedback from multiple packets and multiple RTTs to
form a multiple-bit, weighted-average metric for sizing the
window. Using this metric, the senders modulate their window
sizes in a graceful manner, without thrashing. As a result, DCTCP
reduces the 99th percentile of network latency in OLDIs by 29%.
Thus, DCTCP frees up more time for computation in OLDIs.

2.4 Deadline Driven Delivery (D3) Protocol
While DCTCP addresses the first issue mentioned in Section

2.2 (packet drops causing time-outs), DCTCP, being a fair-share
protocol, does not address the second issue (lack of deadline
awareness). As such, a later work called Deadline Driven Delivery
(D3) shows that DCTCP may cause up to 7% of the deadlines to

1 The use of RED [8] without ECN merely triggers this feedback

earlier than the onset of full congestion, but the feedback
mechanism remains the same -- a packet drop.

2 Strictly speaking TCP has an RTT-bias but we use the term fair-
share as TCP tries to treat flows equally and the bias is an
undesired side-effect.

Figure 1: OLDI architecture

5 m
se

c

leaf leaf

parent

leaf leaf

root

5 m
se

c

30
 m

se
c

30
 m

se
c

parent

User
query

OLDI repsonse
in 200 msec

be missed [25]. Citing TCP’s problems, D3’s authors argue that
TCP is fundamentally ill-suited for OLDIs and opt for an
altogether new protocol.

D3 pioneered the idea of incorporating deadline awareness
into the network. To that end, D3 proactively allocates bandwidth
based on the idea of bandwidth reservation before data
transmission. As applications know the deadline for a message,
they pass this information to the transport layer in the request to
send. Based on their deadlines and the amount of remaining data,
senders must request bandwidth every round trip time (RTT) and
send only the corresponding amount of data. Switches receive
these requests, compute a decision, and place the decisions into
the packet header. Thus, the senders learn how much data to
transmit in the next RTT. Because requests are made in a
deadline-aware manner, D3 dramatically reduces the fraction of
missed deadlines compared to DCTCP’s [25].
2.4.1 D3 operation

For every RTT, a sender computes the needed bandwidth as
the amount of remaining data divided by the time until the
deadline. The sender places the request into the D3 packet header.
The very first request in a flow uses a SYN-like packet carrying
the request and no data payload. In subsequent RTTs, the
bandwidth request for the next RTT is piggybacked on the data
packets of the current RTT.

The switches receive these packets and extract the bandwidth
request. The switches also maintain state for the bandwidth
already allocated (and hence the remaining bandwidth) along the
path in question. Based on this state, each switch makes a greedy
choice and tries to grant as much of the request as possible. The
switch places its grant-response in the packet header and forwards
the packet. Each switch along a packet's path performs the same
action, creating a vector of bandwidth grants in the header. The
receiver copies this vector into the ACK packet back to the sender.
The sender extracts the vector and chooses the minimum of all the
grants to decide how much data to transmit for the next RTT.
2.4.2 Challenges in centralized and proactive
scheduling

D3 employs a centralized and pro-active approach to
scheduling the network. To maximize network utilization, the
switches allocate bandwidth greedily on a first-come-first-served
basis. Because fan-in-burst-induced congestion is common in
OLDIs, near- and far-deadline traffic often competes for
bandwidth. Unfortunately, D3’s greedy approach may allocate
bandwidth to far-deadline requests arriving slightly ahead of near-
deadline requests (see Figure 2). Due to this race condition, D3

causes frequent priority inversions, which contribute to missed
deadlines. Indeed, our results in Section 4.2.2 show that D3 inverts
the priority of 24%-33% requests.

Fixing these priority inversions within a centralized,
proactive design space is hard for multiple reasons. First, given
the rapid arrival rate and tight deadlines of flows, it is not feasible
for a switch to wait and gather information on all flows before
making decisions. Instead the switch must make decisions on-the-
fly without knowledge of near-future requests. Second, because
maintaining detailed per-flow state at the switches is prohibitively
complex, D3 has no memory of which flows recently encountered
priority inversions. If requests continue to arrive in an unfavorable
order, the same priority inversions may happen again in
subsequent RTTs. Third, maintaining some spare bandwidth in
anticipation of future bursts is also hampered by the lack of
detailed per flow state. Allocation of such spare bandwidth
requires a priority list, so the switch can decide whether a given
request should be granted out of the spare pool or be denied. Such
a priority list again requires tracking detailed per-flow state.
Further, a large spare may underutilize the network whereas a
small spare may be insufficient to absorb bursts. A scheme that
dynamically adapts the amount of the spare bandwidth, must
balance the conflicting needs of maximizing utilization and
accommodating near-deadline bursts, which is an open and
complex research problem.

The above analysis assumes that D3’s bandwidth requests
contain deadline information, even though as proposed in [25],
D3’s bandwidth requests do not contain deadline information.
2.4.3 Challenges in practical deployment

To handle requests at line rates, D3 requires custom switch
ASICs. Unfortunately, such OLDI-specific, custom silicon would
not only incur high cost due to low volumes, but also incur long
turn-around time hindering near-term deployment.

Further, D3, as proposed, cannot coexist with TCP. TCP
flows passing through the same switches as D3 flows would not
recognize D3's honor-based bandwidth allocation. Placing TCP
and D3 flows in separate QoS classes would provide isolation but
would also require partitioning the bandwidth among the QoS
classes. Such partitioning has far-reaching consequences and
raises the hard issue of optimizing multiple applications’
bandwidth shares, fairness, and network utilization. Tunneling
TCP traffic inside D3 is problematic because it results in two
nested flow control loops with conflicting behavior. For example,
TCP may increment its window size, while D3 is decrementing it,
and the surplus segments would incur TCP time-outs, back-off
and retransmits. Protocol interoperability requirements in
datacenters, though less stringent than those in the Internet, cannot
be ignored completely as suggested by D3. Due to the lack of
interoperability, the upgrade of switches and applications to D3
would all have to occur in an atomic manner. For such large,
invasive changes to be atomic, the datacenter would have to be
unavailable for a long enough time that the changes are all but
implausible. Indeed, datacenter infrastructure upgrades are almost
always incremental for this reason, so that old and new
technologies coexist for some time. Finally, it may not be
reasonable to expect all application writers to abandon TCP and
develop D3 versions just because some applications desire the use
of D3. As such, any datacenter protocol must be able to coexist
with legacy TCP to be deployable in the real world.

3. Deadline-Aware Datacenter TCP (D2TCP)
We now describe the design of Deadline-Aware Datacenter

TCP (D2TCP), a novel protocol for datacenter networks. We set
out with the explicit goals of not requiring custom hardware and
supporting coexistence with legacy TCP. The basic idea behind
D2TCP is to modulate the congestion window size based on both
deadline information and the extent of congestion. In designing

Figure 2: D3's priority inversion

b/w requests arriving at switch

Request with far deadline

Request with near deadline

requests grantedrequests paused

D3 switch grants
requests FCFS

D2TCP, we make two contributions: D2TCP’s distributed and
reactive approach for allocating bandwidth and D2TCP’s deadline-
aware congestion avoidance algorithm.

3.1 Distributed and Reactive Allocation
Meeting deadlines in fan-in-burst-induced congestion

requires knowledge of the flows’ deadlines and the extent of
congestion. However, having complete and up-to-date global
information for all flows in a datacenter is technically infeasible
given the rapid arrival rate and latency of flows. Therefore, any
network scheduling scheme must make decisions with incomplete
information, and the challenge is to choose a compromise that is
well suited to OLDIs in datacenters.

D3’s centralized and proactive approach compromises the
handling of future bursts in order to maximize utilization. Because
OLDI traffic is bursty, D3 suffers from frequent priority
inversions, making D3’s compromise not well suited to
datacenters. In contrast, D2TCP inherits TCP’s distributed and
reactive nature, and adds deadline awareness to it. While D2TCP,
like D3, also makes decisions without complete and accurate
information, D2TCP’s compromises are better suited for
datacenters.

D2TCP modulates the window size based on the deadlines
and the extent of congestion. Each D2TCP sender sizes its window
without knowing how many other flows are congested and by how
much other flows will back off. The risk here is that multiple
congested senders with tight deadlines may refuse to back off and
over-subscribe to bandwidth at the congestion point. Fortunately,
due to their stateful nature, the senders can correct this over-
subscription by reacting to future congestion feedback in a careful
and calculated manner, ensuring that the oversubscription is only
temporary and small. Networks are equipped to deal with
temporary oversubscriptions by virtue of packet buffers. We note
that while D2TCP inherits it’s distributed and reactive nature from
TCP, our contributions are in adding deadline awareness without
abandoning TCP’s time-tested distributed and reactive approach;
and in identifying and analyzing the fundamental difference
between D3 and D2TCP, and explaining why those differences
matter in the context of datacenter network protocols.

To summarize, in contrast to D3’s centralized bandwidth
allocation at the switches, which rules out per-flow state, D2TCP’s
distributed approach allows the hosts to maintain the needed state
without changing the switch hardware. In contrast to D3’s pro-
active approach, which does not allow for correcting the decisions
resulting from inaccurate information, D2TCP’s reactive approach
allows senders to correct any temporary and small over-
subscription of the network. Thus, the compromises made by a
distributed, reactive scheme are better suited for datacenters.

3.2 Deadline-aware Congestion Avoidance
Our second contribution is D2TCP’s novel congestion

avoidance algorithm. Like D3, we assume that applications pass
the deadline information to the transport layer in the request to
send data. This information then enables D2TCP to modulate the
congestion window size in a deadline-aware manner. When
congestion occurs, far-deadline flows back off aggressively, while
near-deadline flows back off only a little or not at all. With such
deadline-aware congestion management, not only can the number
of missed deadlines be reduced, but also tighter deadlines can be
met because the network adapts to the time budget. D2TCP
requires no changes to the switch hardware, and only requires that
the switches support ECN, which is true of today’s datacenter
switches. Therefore, D2TCP deployment amounts to merely
upgrading the TCP and RPC stacks.
3.2.1 Congestion avoidance algorithm

The easiest way to explain the D2TCP congestion avoidance
algorithm is to start with DCTCP and build deadline awareness on
top of it. We expect that the switches are ECN-capable and are
configured to mark CE bits when the packet buffer occupancy
exceeds a certain threshold. Like DCTCP, we maintain 𝛼, a
weighted average that quantitatively measures the extent of
congestion:

𝛼 = (1 − 𝑔) × 𝛼 + 𝑔 × 𝑓

Here 𝑓 is the fraction of packets that were marked with CE
bits in the most recent window, and 𝑔 is the weight given to new
samples. We now define d as the deadline imminence factor, and
explain its derivation later in Section 3.2.3. For now it suffices to
know that a larger d implies a closer deadline. Based on 𝛼 and d
we compute p, the penalty function applied to the window size, as
follows:

𝒑 = 𝜶𝒅

This function was originally proposed for color correction in
graphics [2], and was dubbed gamma-correction because the
original paper uses γ as the exponent. Note that being a fraction,
𝛼 ≤ 1 and therefore, 𝑝 ≤ 1. After determining p, we resize the
congestion window W as follows:

 𝑊 = 𝑊 × �1 −
𝑝
2
� , 𝑖𝑓 𝑝 > 0

 = 𝑊 + 1, 𝑖𝑓 𝑝 = 0

In the case where 𝛼 is zero (i.e., no CE-marked packets,
indicating absence of congestion) and therefore p is zero, the
window size is grown by one segment similar to TCP. And when
all packets are CE-marked, 𝛼 = 1 and therefore 𝑝 = 1, then the
window size gets halved similar to TCP. For 𝛼 between 0 and 1
the window size is modulated by 𝑝.

Figure 3 plots 𝑝, with a number of different curves for
various values of d. The straight line in the middle shows d = 1,
and hence 𝑝 = 𝛼. The curves below the straight line are for d > 1
(i.e., near-deadline flows incur lower penalty), and the curves
above are for d < 1 (i.e., far-deadline flows incur higher penalty).
Note that when 𝑝 = 𝛼 the behavior matches DCTCP. Essentially,
DCTCP is a special case of D2TCP where d = 1 for all flows all
the time, so they back off equally upon congestion irrespective of
their deadlines. Accordingly, in D2TCP we use d = 1 for long
flows that do not specify deadlines (i.e., D2TCP behaves like
DCTCP).

α

p d =
 1

d >
 1

d <
 1

1.0

1.0

Figure 3: Gamma-correction function for congestion

avoidance (𝒑 = 𝜶𝒅)

3.2.2 Impact of d on congestion behavior
Looking at Figure 3 we see that when 𝑑 > 1 (i.e., near-

deadline flows), p increases only slowly in response to increases
in 𝛼 until 𝛼 gets close to 1, at which point p rapidly converges to
1 as well. In other words, minor and mild congestions do not
penalize near-deadline flows by much. However, severe
congestions cause a full backoff similar to TCP and DCTCP, That
is, when 𝛼 = 1, p = 1 the window size gets halved just like regular
TCP.

When 𝑑 > 1 (i.e., far-deadline flows), 𝑝 increases rapidly
even with small increases in 𝛼, and approaches 1 as 𝛼 catches up
to 1. Thus, even minor congestions cause rapid reduction in far-
deadline flows’ window sizes, but severe congestions do not
penalize the flows any more than regular TCP or DCTCP would.

The combination of d < 1 and d > 1 behaviors complement
each other under congestion situations. Far-deadline flows
relinquish bandwidth so that near-deadline flows can have greater
short-term share in order to meet their deadlines. Furthermore, if
congestion continues to worsen after far-deadline flows have
backed off, then two possible scenarios are at play: (1) there are
many near-deadline flows not reducing their share and (2) there
may be regular TCP flows consuming bandwidth in a deadline-
agnostic manner. In both scenarios, the d > 1 condition ensures
that as 𝛼 grows even near-deadline flows will throttle themselves,
allowing other near-deadline and regular TCP flows to make
progress. In fact, if the near-deadline flows have different
deadlines and hence different d, then the flows’ back-off behavior
will diverge as the congestion worsens. As a result, only the flows
with the most imminent deadlines will win.

In summary, the gamma-correction function provides
iterative feedback to near-deadline flows so that they do not drive
the network to congestive collapse.
3.2.3 Determining d based on deadlines

We now explain how we determine d based on a given
deadline value. The value of d should be such that the resulting
congestion behavior allows the flow to safely complete within its
deadline. We use deadline-agnostic congestion behavior (𝑝 = 𝛼
and 𝑊 = 𝑤

2
 upon full congestion) as a starting point. Say 𝑇𝑐 is the

time needed for a flow to complete transmitting all its data under
deadline-agnostic behavior; and D is the time remaining until its
deadline expires. Now if the flow can just meet its deadline under
deadline-agnostic congestion behavior (i.e., 𝑇𝑐 ≅ 𝐷) then d = 1 is
appropriate. It also follows that if 𝑇𝑐 > 𝐷 then we should set
𝑑 > 1 to indicate a tight deadline, and vice versa. Therefore, we
compute d as:

𝒅 =
𝑻𝒄
𝑫

Because d appears in the exponent of the gamma-correction
function, extreme values for d can result in 𝑝 behaving like a
binary value for the useful mid-range of 𝛼. In other words, the
mere presence of congestion would determine window sizing

behavior, instead of the extent of congestion. Essentially, we want
the gamma-correction function to yield gentle curves about the
straight line of 𝑑 = 1. Therefore, we propose capping d to be
within a desired range (Section 4.1.1). We explore the effects of
varying this cap in Section 4.2.4.

We now compute 𝑇𝑐 using Figure 4 which shows the
sawtooth wave for deadline-agnostic congestion behavior. We
pessimistically assume that the flow encounters full-on congestion
(i.e., 𝛼 = 1 and 𝑝 = 1); if there is less congestion then the flow
will complete sooner, making 𝑇𝑐 an upper bound for time to
completion. We assume that a flow’s current window size is W
and it has B bytes remaining to transmit. Further, we make the
following simplifying assumptions that congestion occurs in a
repeating pattern: (1) Full-on congestion occurs when the window
size is W; (2) consequently, the window size is halved in the next
RTT eliminating the congestion; and (3) in response, the window
size is increased by one segment every RTT until the window size
reaches W again at which point full-on congestion occurs again.
The resultant sawtooth wave has a time period L.

While 𝑇𝑐 can be computed using a precise analysis, we found
that a reasonable approximation suffices for achieving successful
deadline-aware congestion avoidance. In Figure 4(a), the average
window size over the duration of 𝑇𝑐 is 3

4
𝑊. Therefore, 𝑇𝑐 can be

approximated as:

𝑻𝒄 = 𝑩/(
𝟑
𝟒𝑾)

Though the average window size is different in the case of Figure
4(b), we still use this approximation for 𝑇𝑐 in all our evaluations.
A precise analysis of Figure 4(a) yields the following expression:

𝐵 = �𝑊
2

+ 𝑊
2

+ 1 + 𝑊
2

+ 2 + ⋯𝑊
2

+ 𝐿 − 1� ∗ 𝑇𝑐
𝐿

Solving for 𝑇𝑐, we get:

𝑇𝑐 = 𝐵
3𝑊
4 −

1
2

 if 𝑇𝑐 > 𝐿

Similarly, an analysis of Figure 4(b) yields:

𝐵 = 𝑊
2

+ 𝑊
2

+ 1 + 𝑊
2

+ 2 + ⋯+ 𝑊
2

+ 𝑇𝑐 − 1

Solving for 𝑇𝑐, we get:

 𝑇𝑐 = −𝑊−1
2

+ �1/4(𝑊 − 1)2 + 2𝐵 if 𝑇𝑐 < 𝐿

We found that D2TCP performs similarly with precise and
approximate expressions. Therefore, we do not present any
evaluations using the precise expressions.

3.2.4 Stability and convergence
As stated above, our computation of d makes some

approximations. Fortunately, D2TCP has some in-built self-
correction. If the algorithm under-estimates a flow’s d, the flow
may back off too much. However, in subsequent RTTs, the flow’s
D will decrease more than a commensurate decrease in its B. As a
result d will increase, causing the flow to increase its transmission
rate. The same is true for over-estimations of d. The flow will
transmit faster than needed, and its B will decrease faster than
needed. Consequently, subsequent RTTs will yield a lower d, thus
correcting the over-estimation. Furthermore, if the aggressive
transmission leads to severe congestion, then the natural response
of the gamma function will dial up the value of p and throttle the
flow as well.

Figure 4: Sawtooth waves for deadline-agnostic behavior

(a) Tc > L and (b) Tc < L

W/2

Tc

W

L

time

W

W/2

Tc

L

time

Another issue to consider with deadline-aware scheduling is
the possibility of inadvertently driving the network into
congestive collapse. Imagine if all flows were to demand
unreasonably tight deadlines, then their resulting congestion
avoidance behavior would be to refuse downsizing their windows,
effectively overloading the network. However, D2TCP’s gamma-
correction function guards against such overload at two levels: (1)
The effect of tighter deadlines is captured by the value of 𝑑 which,
in turn, determines the window size (hence sending rate). Because
we cap the maximum value of 𝑑 at 2.0, we limit how aggressively
near-deadline flows can send. Therefore, deadlines that are tighter
beyond a certain limit get rounded down so applications will not
drive the network into congestive collapse. (2) At extreme
congestion, as 𝛼 and 𝑝 approach 1, D2TCP defaults to TCP.
Therefore, D2TCP’s worst case stability is similar to that of TCP.
3.2.5 D2TCP summary

The D2TCP algorithm is as follows: A sender that does not
encounter CE-marked packets increases its window size by one
segment; otherwise, the sender computes 𝛼, 𝑇𝑐, and then d. The
sender then uses the gamma-correction function to obtain 𝑝 and
resizes the congestion window based on 𝑝.

We do not change other aspects of TCP, such as slow start,
and retransmission and timeout when there is a packet loss.

Note that when flows do not have a deadline (e.g.,
background flows) we use 𝑑 = 1 so that D2TCP defaults to
DCTCP. The stability of DCTCP for long flows is examined in
[1].

4. EVALUATION
We evaluate D2TCP using both simulations and a real

implementation. We use the real implementation to run a set of
microbenchmarks on a small testbed, and to validate our
simulator. We rely on simulations to evaluate production-like
workloads at the scale of thousands of servers. Furthermore,
because D3 requires custom hardware, we limited our
comparisons against D3 to simulations.

4.1 Small-scale Real Implementation
We first present evaluations on a small-scale real

implementation of DCTCP and D2TCP. We use a set of
microbenchmarks that examine the basic functionality of D2TCP
as a deadline-aware network protocol.
4.1.1 Implementation methodology

We started with the publicly available DCTCP source code
from [4]. We then built our D2TCP implementation on top of
DCTCP, which amounted to around 100 additional lines of code.
We instrumented D2TCP to operate over only a select range of
TCP ports, thus allowing us to use the same kernel for different
protocols. We deployed this implementation on the testbed
depicted in Figure 5. The testbed consists of a Top-of-Rack switch

connected to 16 server machines. The switch is based on a
Broadcom Scorpion ASIC with 24x 10Gbps ports and a 4MB
shared packet buffer, and the servers connect to the switch via
10Gbps links.

We set the key parameters of DCTCP and D2TCP to match
those in [1]: (1) 𝑔, the weighted averaging factor is 1/16; and (2)
K, the buffer occupancy threshold for marking CE-bits, is 20 for
1Gbps links, and 65 for 10Gbps links. For D2TCP we cap 𝑑, the
deadline imminence factor, to be between 0.5 and 2.0 (except in
Section 4.2.4, where we explore the effects of varying this cap).
We set RTOmin for all the protocols to be 20 ms.
4.1.2 Deadline awareness

We begin by examining the fundamental ability of D2TCP to
schedule the network in a deadline aware manner via deadline-
aware congestion avoidance. In this experiment we have four
hosts transmit flows to a fifth “root” host. We choose flow sizes
and deadlines to illustrate the impact of a deadline-aware protocol.
We set the flow sizes as 150, 220, 350 and 500 MB, with
respective deadlines of 1000, 1500, 2500 and 4000 ms. Note that
the flow sizes and deadlines in this synthetic test are not intended
to model a real workload.

In Figure 6 we show the throughput achieved by the various
flows over time, for both DCTCP and D2TCP. The difference
between DCTCP and D2TCP is most noteworthy in the 0-2200 ms
timeframe. As expected, DCTCP grants all flows equal
bandwidth, and consequently the near-deadline flows miss their
deadlines. In contrast, D2TCP’s deadline-aware congestion
avoidance allows the near deadline flows to take a larger share of
the available bandwidth, and the far-deadline flows
commensurately relinquish bandwidth. Consequently, the flow
completion times for flow #0 and #1 under D2TCP are
significantly shorter than those under DCTCP. As the number of
active flows decrease, the opportunity for deadline-aware
scheduling among them also decreases. Consequently, flow #2
and #3 have similar completion times under both schemes. These
results establish the utility of a deadline aware network protocol.
4.1.3 Mixing deadline and non-deadline traffic

Recall that when flows have no deadlines we set 𝑑 = 1
which causes D2TCP to behave identical to DCTCP. DCTCP’s
stability and convergence for traffic patterns that consist entirely
of such long non-deadline flows are examined in [1] in detail. We
do not evaluate such traffic mixes in our paper, as the results for
D2TCP would be identical to that for DCTCP.

Instead, we examine traffic patterns that consist of a mix of
deadline and non-deadline traffic. To that end, we set up a small-
scale OLDI application with one root and the number of leaves
varying between 20 and 40. Because the testbed has only 16
server machines, we run multiple leaves on each physical
machine. The root periodically sends a query to all the leaves,
which in turn, idle for a fixed “computation time” and then
respond to the query. The replies from the leaves are sized 100-

Figure 5: Real implementation testbed

Rack Switch

machine

machine

machine

machine

machine

10
 G

bp
s

lin
ks

16
 m

ac
hi

ne
s

Figure 6: Throughput for DCTCP (left) vs. D2TCP (right)

0.0

0.5

1.0

1.5

2.0

20
0

60
0

10
00

14

00

18
00

22

00

26
00

30

00

34
00

38

00

B
an

dw
id

th
 (G

bp
s)

Time (ms)

Flow-0 Flow-1

0.0

0.5

1.0

1.5

2.0

20
0

60
0

10
00

14

00

18
00

22

00

26
00

30

00

34
00

B
an

dw
id

th
 (G

bp
s)

Time (ms)

Flow-2 Flow3

500 KB, and have a deadline of 5-25 ms. In addition to this OLDI
traffic, we have two servers initiate long-lived flows of 10MB to
the root, once every 80 ms. The experiment lasts for the duration
of 1000 OLDI queries. The aggregate traffic results in a network
utilization of around 10% which is a realistic load for datacenters,
and not an artificial overload scenario. Our goal in this experiment
is to compare DCTCP and D2TCP in the real implementation.

In Figure 7(left) we show the percentage of missed deadlines
in the real implementation and in simulation of DCTCP and
D2TCP (shown as DCTCP-Real, D2-Real, DCTCP-Sim, and D2-
Sim), while varying the fan-in between 20 and 40. We discuss
DCTCP-Sim and D2TCP-Sim results in Section 4.1.4. We see
that, across the board, D2-Real misses fewer deadlines than
DCTCP-Real, with the difference increasing as we increase the
fan-in. At a fan-in of 40, DCTCP-Real misses 15.2% of deadlines,
whereas D2-Real misses 12.3% of deadlines.

In Figure 7(right) we show the throughput achieved by the
non-deadline long flows for varying fan-in degrees. We see that at
a fan-in degree of 40, the throughput achieved by D2-Real is 451
Mbps, which compares favorably to the throughput of 438 Mbps
for DCTCP-Real. Therefore, the performance of deadline flows is
not improved by degrading the throughput of non-deadline flows.
4.1.4 Simulator validation

To validate our simulator, we compare the real
implementation and simulation results in Figure 7. We notice that
the absolute numbers from the simulation are slightly off from the
real implementation. For example, the percentage of missed
deadlines for both DCTCP and D2TCP under simulation is lower
than those under real implementation. Such discrepancy is
expected as simulations do not capture all the details and nuances
of a real system, such as burst-smoothing jitter caused by
unpredictable system events, interrupt coalescing, Large Segment
Offload (LSO), and other TCP quirks.

Nevertheless, the relative performance difference between
DCTCP and D2TCP, and the trend in that difference, are similar
across simulation and real implementation. At a fan-in of 30 in
Figure 7, D2TCP achieves 16% reduction in missed deadlines over
DCTCP under simulations, whereas under real implementation the
reduction is 15%. As we increase the fan-in degree, the relative
performance difference between DCTCP and D2TCP increases
under both simulation and real implementation. Because of these
key similarities, we believe that our at-scale simulation results are
trustworthy. In addition, we also ensure that our simulation results
closely match published DCTCP and D3 results [25], as we show
in the next section.

4.2 At-Scale Simulations
We now present our at-scale simulations. We model the

network topology and the traffic after typical production
deployments. Recall from Section 1 that D2TCP’s goal is to

reduce the percentage of missed deadlines without degrading
throughput for long-lived flows. Therefore, we focus on these
metrics in our at-scale simulations.
4.2.1 Simulation methodology

We implemented DCTCP and D2TCP on top of ns-3's TCP
New Reno protocol [19], and enabled the marking of CE bits in
the switch model of ns-3. For D3, we wrote both the end-host
protocol and the switch logic, based on the details in [25]. We set
D3’s base rate to be one segment per RTT. Further, we use the
same RRQ packet format described in [25] including the 8-bit
bytes-per-microsecond field. All DCTCP and D2TCP parameters
match those in Section 4.1.1.

We performed our simulations on the network depicted in
Figure 8, which uses a fat-tree topology typical of datacenter
networks. There are 25 racks with each rack having up to 40 end-
host machines. Thus, our simulations capture the behavior of a
1000-machine deployment. Each end-host connects to the top-of-
rack (ToR) switch via a 1 Gbps link. Because the bottleneck in
datacenter networks is usually the ToR switch [10] [1] [25], we
abstracted away the rest of the fat-tree topology, replacing it with
one large fabric switch with large buffers. Each ToR is connected
to the fabric switch via a single link with a line rate equal to 1 *
number-of-hosts-in-a-rack Gbps. We sized the packet buffers in
the ToR switches to match typical buffer sizes of shallow-buffered
switches in real data centers (4MB) [1]. We set the link latencies
to 20 µs, achieving an average of RTT of 200 µs, which is
representative of datacenter network RTTs.

We ran a set of five synthetic OLDI applications on the
network, equally dividing the total number of end-hosts among
the applications. The assignment of an application node to a
physical end-host is random to capture the effects of (1)
applications dynamically requesting and relinquishing virtual
machines in the data center, and (2) virtual to physical machine
assignment being completely fluid. Each application consists of a
set of five identical OLDI trees, each with one parent and n
leaves, which have the same settings for leaf-to-parent message
size and for deadlines. These settings are different across the five
applications. We varied n, the number of leaves per parent, in the
trees to explore varying degree of fan-in-bursts.

The distributions of message sizes and of deadlines in real
OLDIs are publicly available [1]. However, details such as the
exact deadline for given leaf-to-parent ratio and message size, are
not publicly available. Therefore, like [25], we chose semi-
synthetic values for deadlines using the aforementioned
distributions.

Whether a message misses its deadline or not depends
entirely on the precise deadline assigned to a message size. As

Figure 7: Missed deadlines (left) & bandwidth of long

flows (right) in real implementation vs. simulation

0

5

10

15

20 30 40

M
is

se
d

de
ad

lin
es

 (%
)

Fan-in degree

DCTCP-Real D2-Real

400

450

500

550

600

20 30 40

Lo
ng

 fl
ow

 b
/w

 (M
bp

s)

Fan-in degree

DCTCP-Sim D2-Sim
Fabric switch with large buffers

ToR

machine

machine

machine

machine

machine

1
G

bp
s

lin
ks

ToR

machine

machine

machine

machine

machine

1
G

bp
s

lin
ks

(n
um

 ho
sts

 pe
r r

ac
k)

Gbp
s

ToR

machine

machine

machine

machine

machine

1
G

bp
s

lin
ks

(num
 hosts per rack)

Gbps

(n
um

 h
os

ts
 p

er

ra
ck

) G
bp

s

Figure 8: Simulated network

such, the choices of the deadlines directly impact the results of
any experiment. Therefore, we carefully calibrated our message
sizes and deadlines such that the number of missed deadlines for
DCTCP and D3 are in line with the results in the D3 paper [25].
This corroboration is discussed in detail in Section 4.2.2. We set
the five OLDI applications’ message sizes to 2, 6, 10, 14, and 18
KB and deadlines to 20, 30, 35, 40 and 45 milliseconds,
respectively. We used these calibrated message sizes and
deadlines in all our experimental results, except in Section 4.2.6.
Note that the message sizes (fixed size of few KBs), long flow
sizes (a few MB), and number of concurrent long-lived
connections (1 connection) are chosen to match the characteristics
of production workloads [1]. In all our experiments, the network
utilization is 10-20% which is a realistic load for datacenters, and
not an artificial overload scenario.
4.2.2 OLDI performance

Recall that in OLDIs the parent-to-leaf RPC has an overall
budget that gets divided into computation and network parts. If all
leaves were to finish computation at exactly the same instant for
every single query, then the network deadline would be a hard and
fixed value. In reality, the computation time can vary across
leaves if the work for a query is not evenly balanced. While the
computation budget forms a hard upper bound, some leaves may
respond sooner resulting in a slightly looser effective network
deadline. In addition, some applications attempt to smooth fan-in
bursts via user-injected jitter [9]. As such, the exact nature and
architecture of an OLDI application can affect the distribution of

effective deadlines. We stipulate that a robust network protocol
should work across a spectrum of deadline distributions. To that
end, we evaluate three deadline distributions which use the same
base deadlines as specified in Section 4.2.1, to which each adds a
different variation. Our low variance case models a 10% uniform-
random variation added to the base deadline. The medium
variance case adds a 50% uniform-random variation, and the high
variance case models a one-sided exponential distribution with
mean equal to the base deadline. Our high variance case matches
the deadline distribution used in [25].

We now compare D2TCP against DCTCP and D3 in terms of
the fraction of missed deadlines for our benchmark. Figure 9,
Figure 10, and Figure 11 correspond to the low, medium and high
variance deadline cases. In all three graphs, the Y axis shows the
fraction of missed deadlines for TCP, DCTCP, D3, and D2TCP as
we vary the degree of burstiness on the X axis by increasing the
fan-in degree (i.e., number of leaves per parent) from 5 to 40.
Typical OLDI applications’ fan-in degrees fall in this range [1]
[25].

Across all three graphs, we see that TCP misses a rapidly
increasing number of deadlines as we increase the fan-in degree
(i.e., burstiness). While DCTCP and D3 improve over TCP, they
still miss a significant fraction of deadlines. For the medium
variance case both DCTCP and D3 miss around 25% of the
deadlines at the fan-in degree is 40. In comparison, D2TCP keeps
the fraction of missed deadlines under 7% at a fan-in degree of 40.
Because this trend holds true for all three deadline variation cases,
we argue that D2TCP is robust enough to handle a wide spectrum
of deadline distributions. For the remainder of the results section,
we use only the medium variance case for all remaining
experiments.

All the schemes perform better with the higher-variance
deadlines. Such behavior is expected because higher variance
smoothes out fan-in-burst-induced congestion. Note that for the
high variance case, the fraction of missed deadlines for D3 fall in
the range of 0-15% which is close to that of 0-9% reported in the
D3 paper [25], confirming that our D3 implementation is
reasonable.

To explain the above results, we show another set of data for
the medium variance case. Figure 12 shows the 50th, 90th, and 99th
percentile latencies for DCTCP, D3 and D2TCP normalized to the
delay allowed by the deadline. On each line, the three points from
bottom to top correspond to the 50th, 90th, and 99th percentile
latencies, respectively. As expected, D2TCP’s latencies are
significantly lower than those of DCTCP and D3, resulting in
fewer missed deadlines. Overall, the latencies for all the schemes
closely track the fraction of missed deadlines in Figure 10.

We now examine our earlier claims about D3’s shortcomings.
Recall that D3’s greedy approach may allocate bandwidth to far-
deadline requests arriving slightly ahead of near-deadline

Figure 9: Missed deadlines for low variance (10%)

Figure 10: Missed deadlines for med. variance (50%)

Figure 11: Missed deadlines for high variance (Exp)

52.3 58.2

0
5

10
15
20
25
30
35
40
45

5 10 15 20 25 30 35 40

M
is

se
d

de
ad

lin
es

 (%
)

Fan-in degree

TCP DCTCP D3 D2

50.71 56.95

0
5

10
15
20
25
30
35
40
45

5 10 15 20 25 30 35 40

M
is

se
d

de
ad

lin
es

 (%
)

Fan-in degree

TCP DCTCP D3 D2

51.62 57.82

0
5

10
15
20
25
30
35
40

5 10 15 20 25 30 35 40

M
is

se
d

de
ad

lin
es

 (%
)

Fan-in degree

TCP DCTCP D3 D2

Figure 12: Normalized latencies at the 50th, 90th, and 99th

percentiles

0%

100%

200%

300%

400%

15 20 25 30 35 40 45

Fl
ow

 la
te

nc
y

no
rm

. t
o

de
la

y
al

lo
w

ed
 b

y
de

ad
lin

e

Fan-in degree

DCTCP D3 OTCP D2TCP D2TCP

D2TCP

D2TCP

requests. This race condition causes D3 to frequently invert
priorities of congested flows. To confirm these claims, we
compute the percentage of requests that are denied while later-
deadline requests have been granted. This percentage is a measure
of priority inversion in D3. Table 1 shows this percentage for D3

under all three variance cases, for various fan-in degrees. From
the table, we see that even in a favorable setting (high variance
deadlines with a fan-in degree of 20), D3 incurs priority inversion
for nearly 25% of all flows. Also note that the priority inversions
worsen both as the fan-in degree increases, and as the variance in
deadlines gets tighter causing more burstiness.
4.2.3 Background flows

To test whether long-lived, non-OLDI flows achieve high
bandwidth even as short-lived OLDI flows come and go, we
replace one leaf-to-parent flow in each OLDI tree with a long-
lived background flow. This background flow has an exponential
arrival with mean of 300 ms and sends 1 MB of data.

In Figure 13, we show the background flows’ bandwidth for
DCTCP, D3, and D2TCP, normalized to that for TCP on the Y axis
as we vary the fan-in degree on the X axis. Background flows
give up bandwidth to OLDI flows only for the short duration of
fan-in-burst-induced congestion under all the schemes.
Consequently, all the schemes perform well, achieving 85% or
more of the bandwidth achieved by TCP. D2TCP is slightly better
than DCTCP which throttles background flows to make room
unnecessarily for far-deadline, OLDI flows. Overall, D2TCP
achieves 95% or more of the bandwidth achieved by TCP.

To confirm that the background flows do not take bandwidth
away from the OLDI flows, we show in Figure 14 the fraction of

missed deadlines for the OLDI flows in the presence of the
background flows. For all the schemes, the fraction remains
similar to that in the absence of the background flows (Figure 10).
4.2.4 Varying the cap on d – deadline imminence

Recall from Section 3.2.3, that because 𝑑 appears in the
exponent of the gamma-correction function, extremely low and
high values may cause undesirable behavior. Therefore we cap the
value of 𝑑 to be within the range (𝑛, 1/𝑛). In all our experiments
we set 𝑛 = 2.0. In this section we evaluate the effects of varying
𝑛. In Figure 15, we show D2TCP’s percentage of missed deadlines
for various fan-ins as we vary 𝑛 between 1.25 and 3.0. As
expected, when 𝑛 is close to 1.0, D2TCP’s behavior matches
DCTCP and the fraction of missed deadlines is high. As 𝑛
increases to 2.0, the fraction drops dramatically but then levels
off. At 𝑛 = 3.0 and beyond we see that the fraction starts to
increase slowly as the larger 𝑛 allows near-deadline flows to
increasingly ignore congestion feedback.
4.2.5 Coexisting with TCP

To demonstrate that D2TCP can coexist with TCP without
hurting bandwidth or deadlines, we use the same production
benchmark but use a mix of D2TCP and TCP for the various
network traffic. Because we are specifically interested in TCP
performance here, we restrict this experiment to fan-in degrees
where TCP performance is acceptable in Figure 10 (i.e., missed
deadline fraction of 5% or less, and fan-in degree of 15 and 20).

We run three experiments gradually adding D2TCP traffic to
a TCP datacenter. Imagine that the set of five OLDI applications
in our workload are divided into two sets: set A consist of three
OLDIs, and set B consists of the other two OLDIs. We start with

Table 1: Priority inversion for D3

Fan-in Degree Low-Var. Med. Var. Hi. Var.
20 31.9 26.3 24.1
25 33.2 28.7 24.6
30 35.7 30.8 28.6
35 41.9 33.4 31.5

40 48.6 40.5 33.1

Figure 13: Bandwidth of background flows

Figure 14: Missed deadlines under background flows

0.80

0.85

0.90

0.95

1.00

1.05

5 10 15 20 25 30 35 40

Lo
ng

 fl
ow

 b
an

dw
id

th

no
rm

. t
o

TC
P

Fan-in degree

DCTCP D3 OTCP

0
5

10
15
20
25
30
35
40

5 10 15 20 25 30 35 40

M
is

se
d

de
ad

lin
es

 (%
)

Fan-in degree

DCTCP D3 OTCP

Table 2: Long-flow b/w when D2TCP & TCP coexist

Fan-in
degree

Long flow bandwidth (Mbps)

All TCP Mix #1 Mix #2

15 90 90 90

20 86 86 86

Figure 15: Missed deadlines while varying cap on d

Figure 16: Missed deadlines when D2TCP & TCP coexist

0

5

10

15

20

1.25 1.5 1.75 2 2.25 2.5 2.75 3

M
is

se
d

de
ad

lin
es

 (%
)

Range of d [1/n,n]

Fan-in = 25 Fan-in = 30 Fan-in = 35

0
1
2
3
4
5
6
7
8
9

Set A Set B Set A Set B

M
is

se
d

de
ad

lin
es

 (%
)

All-TCP Mix#1 Mix#2

Fan-in = 15 Fan-in = 25

D2TCP

D2TCP

all five OLDIs and all long flows running on TCP. We first
“upgrade” set B to D2TCP, while set A continues to run on TCP.
Next, we upgrade the background long-flow traffic to D2TCP as
well. In summary, the three setups are:
• All-TCP: 5x OLDIs + long flows; no D2TCP.
• Mix#1 TCP: 3x OLDIs + long flows; D2TCP: 2x OLDIs.
• Mix#2 TCP: 3x OLDIs; D2TCP: 2x OLDI + long flows.

In Figure 16, we show the fraction of missed deadlines (Y
axis) for sets A and B in the three runs as we vary the fan-in
degree (X axis). We separately analyze long flows below. For set
A, comparing All-TCP and Mix#1 shows that TCP’s (i.e., set A’s)
missed-deadline fraction is not worsened by sharing the network
with D2TCP traffic (set B in Mix#1). Furthermore, set B sees a
reduction in missed deadlines upon migrating from TCP (All-
TCP) to D2TCP (Mix#1). Going back to set A, comparing Mix#1
and Mix#2 we see that TCP’s (i.e., set A’s) missed-deadline
fraction is not hurt by background flows upgrading to D2TCP.
Similarly, set B's) missed-deadline fraction stays the same
between Mix#1 and Mix#2, showing that background flows using
D2TCP do not hurt the OLDIs using D2TCP.

In Table 2, we show the long-flow throughput achieved in the
three runs. Going from All-TCP to Mix#1, the throughput does
not degrade, showing that upgrading some OLDIs to D2TCP does
not hurt long TCP flows. Comparing Mix#1 and Mix#2 shows
that D2TCP’s long-flow throughput is similar to that of TCP.
4.2.6 Tighter deadlines

To show that D2TCP performs well over a range of deadlines,
we evaluate D2TCP under tighter deadlines than our default
(Section 4.2.1). Because we found that deadlines tightened by
10% or 20% lead to similar behavior, we show results only for the
20% case in Figure 17. As expected, the tighter deadlines here
result in more deadlines being missed under all the schemes than
those missed in Figure 10. Nevertheless, D2TCP maintains its
advantage over DCTCP and D3 under the tighter deadlines.

While the above results show the fractions of missed
deadlines under tighter deadlines, it may be important to
determine the inverse (i.e., how much tighter can the deadlines be
for a target fraction of missed deadlines). For instance, this
question is typically of interest to datacenter operators who would

like to maintain the fraction of missed deadlines within an
acceptable threshold and wish to know how much the
communication deadlines can be tightened to allow more time for
computation and improve response quality. In Table 3, we show
the tightness of deadlines supported by D2TCP as compared to D3
for a target fraction of missed deadlines. We limit the study to a
reasonable fraction of missed deadlines (i.e., 5%). From the table,
we see that D2TCP achieves deadlines that are tighter by 35-55%,
which would make sizable room for computation.

5. RELATED WORK
There is an abundance of past work that deals with the

subjects of congestion control, network scheduling, and reducing
latencies. There are many schemes that build on top of TCP, while
others are novel protocols altogether. A comprehensive review of
all such work is beyond the scope of this paper, but we summarize
some of the most relevant work here.

Earliest Deadline First (EDF) [17] is one of the earliest
packet scheduling algorithms and is provably optimal when
deadlines are associated with individual packets. When deadlines
are associated with flows, however, applying EDF to individual
packets as they arrive at the switch is not only suboptimal but can
worsen the congestion in the network [26].

In [24], the authors show that having finer grain system
clocks allow for a faster response to TCP timeouts, and help in
reducing the net latency of TCP flows.

Rate Control Protocol (RCP) [5] can achieve 10-fold
improvement in the completion times of small- to medium-sized
flows in the Internet, particularly downloads representative of
typical web browsing. RCP is provably optimal when minimizing
overall completion times is the metric. RCP replaces TCP’s slow
start phase with an allocation equal to the fair share available at
the bottleneck route. Like D3, RCP requires hardware
modification to the routers.

Live multimedia traffic also has a soft-real-time nature, and
both proactive bandwidth reservation [6] and reactive [23] [16]
schemes exist. TCP-RTM [16] observes that TCP always favors
reliability over timeliness, and proposes extensions that improve
performance of multimedia applications by allowing minimal
amount of packet re-ordering and loss in the TCP stack.

Active Queue Management schemes like RED [8] and E-
TCP [11] inject early warnings of congestion to TCP endhosts by
randomly dropping packets when switch buffer occupancy is high.
Because senders back-off before full on congestion, these schemes
allow TCP to operate in the high throughput, fast-retransmit
mode, instead of degrading to full back-off.

High-speed TCP [7], CUBIC [22], and XCP [15] all
successfully improve the performance of TCP in high bandwidth-
delay-product networks. They exploit the large degree of
statistical multiplexing present, and also mitigate TCP’s drastic
reaction to packet losses. XCP shares some common design
details with D3 in that senders request bandwidth via a congestion
header, and the switches populate their responses in this header.

Re-feedback [3] addresses the problem of fairness and
stability in the Internet when untrusted senders may act selfishly
in the face of congestion. Re-feedback incentivizes senders to
populate packet headers with honest information about congestion
situation so the network may schedule accordingly.

 QCN [20] proposes to improve Ethernet performance in
datacenters via multibit feedback from the switches to endhosts.
By utilizing smarter switches and hardware-based reaction logic
in the endhost NICs, QCN dramatically reduces recovery time
during congestions, thus improving flow completion times.
However, QCN cannot span beyond L2 domains limiting its scope

Table 3: Deadlines achieved by D3 and D2TCP for similar
fraction of missed deadlines

Fan-in
degree

D3’s
missed

deadlines
(%)

D2TCP’s
missed

deadlines
(%)

D2TCP’s
tighter

deadline
(%)

10 0.71 0.84 55

15 3.61 3.49 45

20 4.7 4.88 35

Figure 17: Missed deadlines under tighter deadlines

0
5

10
15
20
25
30
35
40

5 10 15 20 25 30 35 40

M
is

se
d

de
ad

lin
es

 (%
)

Fan-in degree

DCTCP D3 OTCP D2TCP

of application. VCP [27] is another similar scheme that relies on
ECN-like feedback via elaborate processing at the switches.

6. CONCLUSION
Online, data-intensive applications (OLDI) in datacenters

(e.g., Web search, online retail and advertisement) achieve good
user experience by controlling latency using soft-real-time
constraints which translate to deadlines for network
communication within the applications. Further, OLDI
applications typically employ tree-based algorithms which, in the
common case, result in fan-in burst of children-to-parent traffic
with tight deadlines. Previous work on datacenter network
protocols is either deadline-agnostic, or is deadline-aware but
suffers under bursts due to race conditions.

We proposed Deadline-Aware DataCenter TCP (D2TCP)
which:
• prioritizes near-deadline flows over far-deadline flows in the

presence of fan-in-burst-induced congestion;
• achieves high bandwidth for background flows even as the

short-lived OLDI flows come and go;
• requires no changes to the switch hardware; and
• coexists with legacy TCP.

D2TCP uses a distributed and reactive approach for
bandwidth allocation that fundamentally enables D2TCP’s
properties. D2TCP’s key mechanism is a novel congestion
avoidance algorithm, which uses ECN feedback and deadlines to
modulate the congestion window via a gamma-correction
function.

Using small-scale real implementation, and at-scale
simulations, we showed that D2TCP
• reduces the fraction of missed deadlines compared to both

DCTCP and D3 by 75% and 50%, respectively;
• achieves nearly as high bandwidth as TCP for background

flows without degrading OLDI performance;
• meets deadlines that are 35-55% tighter than those achieved

by D3 for the same reasonable fraction of missed deadlines
(i.e., 5%), giving OLDIs more time for actual computation;
and

• coexists with TCP flows without degrading their
performance.
D2TCP has significant performance and practical advantages.

On the performance side, by reducing the number of missed
deadlines, D2TCP improves OLDI applications’ response quality,
and hence user experience. Further, by meeting tighter deadlines,
D2TCP allows more time for computation in OLDI applications
and thereby further enhances OLDI response quality and user
experience. Given that OLDI applications are likely to scale up in
size to accommodate ever-growing data on the Web, D2TCP’s
tighter deadlines may fundamentally enable this scale-up without
degrading OLDI response quality. On the practical side, by
requiring no changes to the switch hardware, D2TCP can be
deployed by merely upgrading the TCP and RPC stacks. Our
prototype implementation of D2TCP amounted to only 100 lines
of kernel code. Finally, by being able to coexist with TCP, D2TCP
is amenable to incremental deployment, a key requirement for
datacenter network protocols in the real world. The growing
importance of OLDI applications implies that these significant
advantages make D2TCP an important ingredient for datacenters.

ACKNOWLEDGMENTS
We thank the SIGCOMM reviewers, and our shepherd David

Maltz, for their insightful comments which helped us significantly
improve the paper. We also thank Sridhar Raman and Abdul

Kabbani for their help with real implementations of DCTCP and
D2TCP, and Gwendolyn Voskuilen for reviewing the paper.

REFERENCES
[1] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.

Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In
Proc. SIGCOMM, 2010.

[2] Charles A. Poynton (2003). Digital Video and HDTV: Algorithms and
Interfaces. Morgan Kaufmann. pp. 260, 630. ISBN 1558607927.

[3] B. Briscoe et. al. Policing Congestion Response in an Internetwork using
Re-feedback. In Proc. SIGCOMM 2005.

[4] Datacenter TCP, http://www.stanford.edu/~alizade/Site/DCTCP.htm
[5] Nandita Dukkipati. RCP: Congestion Control to Make Flows Complete

Quickly. PhD Thesis, Department of Electrical Engineering, Stanford
University, October 2006.

[6] D. Ferrari, A. Banerjea, and H. Zhang. Network support for multimedia:
A discussion of the tenet approach. In Proc. Computer Networks and
ISDN Systems, 1994.

[7] S. Floyd. RFC 3649: HighSpeed TCP for large congestion windows.
[8] S. Floyd and V. Jacobson. Random early detection gateways for

congestion avoidance. IEEE/ACM Transactions on Networking,
1(4):397–413, 1993.

[9] S. Floyd and V. Jacobson. The synchronization of periodic routing
messages. IEEE/ACM Transactions on Networking, 2(2):122-136, 1994.

[10] R. Griffith, Y. Chen, J. Liu, A. Joseph, and R. Katz. Understanding TCP
incast throughput collapse in datacenter networks. In WREN Workshop,
2009.

[11] Y. Gu, D. Towsley, C. Hollot, and H. Zhang. Congestion control for
small buffer high bandwidth networks. In Proc. INFOCOM, 2007.

[12] Urs Hoelzle, Jeffrey Dean, and Luiz André Barroso. Web Search for A
Planet: The Architecture of the Google Cluster, In IEEE Micro Magazine,
April 2003.

[13] T. Hoff. Latency is Everywhere and it Costs You Sales - How to Crush it,
July 2009. http://highscalability.com/blog/2009/7/25/
latency-iseverywhere-and-it-costs-you-sales-how-to-crush-it.html.

[14] S. Iyer et. al. Analysis of a memory architecture for fast packet buffers. In
IEEE HPSR Workshop, 2001.

[15] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In Proc. SIGCOMM, 2002.

[16] Sam Liang and David Cheriton. TCP-RTM: Using TCP for Real Time
Applications. In Proc. ICNP, 2002.

[17] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Journal of the
ACM, 20(1), 1973.

[18] D. Meisner, C. M. Sadler, L. A. Barroso, W. Weber and T. F. Wenisch.
Power Management of Online Data-Intensive Services. In Proc. ISCA,
June 2011.

[19] The ns-3 discrete-event network simulator. http://www.nsnam.org/
[20] R. Pan, B. Prabhakar, and A. Laxmikantha. QCN: Quantized congestion

notification an overview. http://www.ieee802.org/1/
files/public/docs2007/au_prabhakar_qcn_overview_geneva.pdf

[21] K. Ramakrishnan, S. Floyd, and D. Black. RFC 3168: The addition of
explicit congestion notification (ECN) to IP.

[22] I. R. Sangtae Ha and L. Xu. Cubic: A new TCP-friendly high-speed TCP
variant. In Proc. SIGOPS-OSR, 2008.

[23] V. Tsaoussidis and C. Zhang. 2002. TCP-Real: receiver-oriented
congestion control. The International Journal of Computer and
Telecommunications Networking. 40(4), 2002.

[24] V. Vasudevan et al. Safe and effective fine-grained TCP retransmissions
for datacenter communication. In Proc. SIGCOMM, 2009.

[25] C. Wilson, H. Ballani, T. Karagiannis, A. Rowstron. Better Never Than
Late: Meeting Deadlines in Datacenter Networks. In Proc. SIGCOMM,
2011.

[26] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better never
than late: Meeting deadlines in datacenter networks. Technical Report
MSR-TR-2011-66, Microsoft Research, May 2011.

[27] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One more bit is
enough. In Proc. SIGCOMM, 2005.

	1. INTRODUCTION
	2. OLDIs AND DATACENTER NETWORK PROTOCOLS
	2.1 Online Data Intensive Applications
	2.2 OLDI Fan-in Congestion
	2.3 Datacenter TCP (DCTCP)
	2.4 Deadline Driven Delivery (D3) Protocol
	2.4.1 D3 operation
	2.4.2 Challenges in centralized and proactive scheduling
	2.4.3 Challenges in practical deployment

	3. Deadline-Aware Datacenter TCP (D2TCP)
	3.1 Distributed and Reactive Allocation
	3.2 Deadline-aware Congestion Avoidance
	3.2.1 Congestion avoidance algorithm
	3.2.2 Impact of d on congestion behavior
	3.2.3 Determining d based on deadlines
	3.2.4 Stability and convergence
	D2TCP summary

	4. EVALUATION
	4.1 Small-scale Real Implementation
	4.1.1 Implementation methodology
	4.1.2 Deadline awareness
	4.1.3 Mixing deadline and non-deadline traffic
	4.1.4 Simulator validation

	4.2 At-Scale Simulations
	4.2.1 Simulation methodology
	4.2.2 OLDI performance
	4.2.3 Background flows
	4.2.4 Varying the cap on d – deadline imminence
	4.2.5 Coexisting with TCP
	4.2.6 Tighter deadlines

	5. RELATED WORK
	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

