
Graph Cube: On Warehousing and OLAP
Multidimensional Networks

Peixiang Zhao♮ Xiaolei Li♭ Dong Xin† Jiawei Han§

♮,§University of Illinois, Urbana, IL, United States
♭Microsoft Corporation, Redmond, WA, United States

†Google Inc., Mountain View, CA, United States
♮pzhao4@uiuc.edu ♭xiaoleil@microsoft.com †dongxin@google.com §hanj@uiuc.edu

ABSTRACT
We consider extending decision support facilities toward large
sophisticated networks, upon which multidimensional at-
tributes are associated with network entities, thereby form-
ing the so-called multidimensional networks. Data ware-
houses and OLAP (Online Analytical Processing) technol-
ogy have proven to be effective tools for decision support on
relational data. However, they are not well-equipped to han-
dle the new yet important multidimensional networks. In
this paper, we introduce Graph Cube, a new data warehous-
ing model that supports OLAP queries effectively on large
multidimensional networks. By taking account of both at-
tribute aggregation and structure summarization of the net-
works, Graph Cube goes beyond the traditional data cube
model involved solely with numeric value based group-by’s,
thus resulting in a more insightful and structure-enriched
aggregate network within every possible multidimensional
space. Besides traditional cuboid queries, a new class of
OLAP queries, crossboid, is introduced that is uniquely use-
ful in multidimensional networks and has not been studied
before. We implement Graph Cube by combining special
characteristics of multidimensional networks with the exist-
ing well-studied data cube techniques. We perform extensive
experimental studies on a series of real world data sets and
Graph Cube is shown to be a powerful and efficient tool for
decision support on large multidimensional networks.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; H.2.7 [Da-
tabase Administration]: Data warehouse and repository

General Terms
Algorithms, Management, Performance

Keywords
Data warehouse, OLAP, Data cube, Graph cube, Multidi-
mensional network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

1. INTRODUCTION
Recent years have seen an astounding growth of networks

in a wide spectrum of application domains, ranging from
sensor and communication networks to biological and so-
cial networks. And it becomes especially apparent as far as
the great surge of popularity for Web 2.0 applications is con-
cerned, such as Facebook, LinkedIn, Twitter and Foursquare.
Typically, these networks can be modeled as large graphs
with vertices representing entities and edges depicting re-
lationship between entities [1]. Apart from the topolog-
ical structures encoded in the underlying graph, multidi-
mensional attributes are often specified and associated with
vertices, forming the so-called multidimensional networks.
While studies on contemporary networks have been around
for decades [20], and a plethora of algorithms and systems
have been devised for multidimensional analysis in relational
databases [7, 4], none has taken both aspects into account
in the multidimensional network scenario. As a result, there
exist considerable technology gaps in managing, querying
and summarizing such data effectively. And a growing need
arises in order to shorten these technology gaps and develop
specialized approaches for multidimensional networks.

Example 1. Figure 1 presents a sample social network
consisting of several individuals interconnected with friend
relationship. There are ten vertices (identified with user
ID) and thirteen edges in the underlying graph, as shown
in Figure 1(a). Each individual of the network contains a
set of multidimensional attributes describing her/his proper-
ties, including user ID (as primary key), gender, location (in
state), profession and yearly income, which is represented as
a tuple in a vertex attribute table, as shown in Figure 1(b).
The graph structure, together with the vertex-centric multi-
dimensional attributes, forms a multidimensional network.

One possible opportunity of special interest is to support
data warehousing and online analytical processing (OLAP)
on multidimensional networks. Data warehouses are criti-
cal in generating summarized views of a business for proper
decision support and future planning [4]. This includes ag-
gregations and group-by’s of enterprise RDB data based on
the multidimensional data cube model [7]. For example, in
a sales data warehouse, time of sale, sales district, sales-
person, and product might be the dimensions of interest,
and numeric quantities such as sales, budget and revenue
might be the measures to be examined. OLAP operations,
such as roll-up, drill-down, slice-and-dice and pivot, are sup-
ported to explore different multidimensional views and al-



1

2 3

4

5

6

7 8 9

10

(a) Graph

ID Gender Location Profession Income

1 Male CA Teacher $70, 000
2 Female WA Teacher $65, 000
3 Female CA Engineer $80, 000
4 Female NY Teacher $90, 000
5 Male IL Lawyer $80, 000
6 Female WA Teacher $90, 000
7 Male NY Lawyer $100, 000
8 Male IL Engineer $75, 000
9 Female CA Lawyer $120, 000
10 Male IL Engineer $95, 000

(b) Vertex Attribute Table

Figure 1: A Sample Multidimensional Network with a Graph and a Multidimensional Vertex Attribute Table

5 5
9

3

Male Female

(a) Aggregate Network

Gender COUNT(*)

Male 5
Female 5

(b) Aggregate Table

Figure 2: Multidimensional Network Aggregation
vs. RDB Aggregation (Group by Gender)

low interactive querying and analysis of the underlying data.
As important means of decision support and business intel-
ligence, data warehouses and OLAP are advantageous for
multidimensional networks as well. For example, a com-
pany is investigating how to run a marketing campaign in
order to maximize returns. They turn to a large national so-
cial network to study the business and preference patterns of
interlinked people within different multidimensional spaces,
such as genders, locations, professions, hobbies, income lev-
els and possible combinations of these dimensions. This lets
users analyze the underlying network in a summarized man-
ner within multiple multidimensional spaces, which is typ-
ical and of great value in most data warehousing applica-
tions. In Facebook and Twitter, advertisers and marketers
take advantage of their social networks within different mul-
tidimensional spaces to better promote their products via
social targeting or viral marketing [2, 22]. In multidimen-
sional networks, however, much of the valuation and interest
lies in the network itself. Simple numeric value based group-
by’s in traditional data warehouses are no longer insightful
and of limited usage, because the structural information of
the networks is simply ignored. As a result, existing data
warehousing and OLAP techniques need to be re-examined
and revolutionized in order to improve the potential power
and core competency of decision support facilities specifi-
cally tailored for multidimensional networks.

Example 2. Figure 2(a) presents an aggregate network
by summarizing the multidimensional network shown in Fig-
ure 1 on the dimension “Gender”. The vertices with grey
color represent condensed vertices “Male” and “Female”, and
the weight of each vertex means the number of individuals
in the original network that comply with the same values
for the dimension(s) represented by the condensed vertex.
In this case, there are 5 males and 5 females in the mul-
tidimensional network. The edges represent aggregate rela-
tionships between condensed vertices while the edge weights
present the number of edges in the original network connect-
ing vertices belonging to two condensed vertices, respectively.
Self-loops are allowed, as shown for the edges (Male, Male)
and (Female, Female). The edge weight that equals 1 is not
presented in the diagram by default.

2

3

1

2

1 1

5

(Female, CA)

(Male, IL)

(Male, CA)

(Female, WA)

(Female, NY)

(Male, NY)

(a) Aggregate Network

Gender Location COUNT(*)

Male CA 1
Female CA 2
Female WA 2
Male IL 3
Male NY 1
Female NY 1

(b) Aggregate Table

Figure 3: Multidimensional Network Aggregation
vs. RDB Aggregation (Group by Gender and Loca-
tion)

In contrast, Figure 2(b) presents a traditional group-by
along the dimension “Gender” on the vertex attribute table,
shown in Figure 1(b). In this case, we select COUNT(·) as
the default aggregate operator.

Figure 3(a) presents another aggregate network by sum-
marizing the original multidimensional network on the di-
mensions “Gender” and “Location”. While Figure 3(b) il-
lustrates a traditional group-by on the vertex attribute table
along the dimensions “Gender” and “Location”.

As shown in Example 2, a multidimensional network can
be summarized to aggregate networks in coarser levels of
granularity within different multidimensional spaces. Dur-
ing the network aggregation, we consider both vertex coa-
lescence and structure summarization simultaneously, thus
resulting in much meaningful and structure-enriched aggre-
gate networks, as illustrated in Figure 2(a) and Figure 3(a).
In contrast, the numeric value based aggregation for rela-
tional data can be regarded as a special case in our scenario,
because the inter-tuple relationships are simply ignored dur-
ing aggregation, as shown in Figure 2(b) and Figure 3(b).
Therefore, the traditional concepts and techniques of data
warehousing and OLAP have been enriched in a more struc-
tural way for multidimensional networks. Moreover, a set
of new OLAP queries can be addressed on multidimensional
networks, such as “What is the network structure as grouped
by users’ gender?” The answer is shown in Figure 2(a). We
note that there are a lot of connections between males and
females in the network (9 edges as the edge weight), while
few connections exist between males (only 1 edge as the edge
weight). A closer look at this interesting phenomenon could
be expressed as a drill-down query: “What is the network
structure as grouped by both gender and location?” The an-
swer is shown in Figure 3(a). We notice in the aggregate
network that between the 2 females in California and the 3
males in Illinois, there exist 5 connections, taking up 55.6%
of the total 9 connections between males and females. While
the only connection between males actually exists between
two males in Illinois. These queries could reveal interest-



ing structural behaviors and potentially insightful patterns,
which are very hard, if not impossible, to detect from the
original network, as shown in Figure 1.
In this paper, we consider extending decision support fa-

cilities on multidimensional networks by introducing a new
data warehousing model, Graph Cube, for effective network
exploration and summarization. Going beyond traditional
data cubes which address simple value-based group-by’s on
relational data, Graph Cube considers both multidimensional
attributes and network structures into one integrated frame-
work for network aggregation. In every potential multidi-
mensional space, the measure of interest now becomes an
aggregate network in coarser resolution. In addition, we pro-
pose different query models and OLAP solutions for multidi-
mensional networks. Besides traditional cuboid queries with
refined structural semantics, a new class of OLAP queries,
called crossboid, is introduced, which is uniquely useful in
the multidimensional network scenario and has not been
studied before. An example crossboid query could be “what
is the network structure between users grouped by profes-
sion and users grouped by income level?” Despite definitely
OLAP in flavor, this query breaks the boundaries estab-
lished in the traditional OLAP model in that it straddles two
different group-by’s simultaneously. We implement Graph
Cube by combining special characteristics of multidimen-
sional networks with the existing well-studied data cube
techniques. To the best of our knowledge, Graph Cube is
the first to systematically address warehousing and OLAP
issues on large multidimensional networks, and the solutions
proposed in this paper will help improve decision support
and business intelligence in large networks.
The contributions of our work can be summarized as fol-

lows:

1. We propose a new data warehousing model, Graph
Cube, to extend decision support services on multidi-
mensional networks. The multidimensional attributes
of the vertices define the dimensions of a graph cube,
while the measure turns out to be an aggregate net-
work, which proves to be much more meaningful and
comprehensive than numeric statistics examined in tra-
ditional data cubes.

2. We formulate different OLAP query models and pro-
vide new solutions in the multidimensional network
scenario. Besides cuboid queries that explore all po-
tential multidimensional spaces of a graph cube, we in-
troduce a new class of OLAP queries, crossboid, which
breaks the boundaries of the traditional OLAP model
by straddling multiple different multidimensional spaces
simultaneously. Crossboid has shown to be especially
useful for network study and analysis.

3. We make use of well-studied partial materialization
techniques to implement Graph Cube. Specific char-
acteristics of multidimensional networks are leveraged
as well for better implementation alternatives.

4. We evaluate our methods on a variety of real mul-
tidimensional networks and the experimental results
demonstrate the power and effectiveness of Graph Cube
in warehousing and OLAP large networks. In addition,
our query processing and cube implementation algo-
rithms have proven to be efficient even for very large
networks.

The reminder of this paper is organized as follows. Sec-
tion 2 gives preliminary concepts and examines the Graph
Cube model on multidimensional networks. Section 3 for-
mulates different OLAP queries defined upon Graph Cube.
Section 4 focuses on the implementation details of Graph
Cube. Experimental studies are shown in Section 5. After
discussing the related work in Section 6, we conclude our
study in Section 7.

2. THE GRAPH CUBE MODEL
Many networks in real applications can be abstracted as

a multidimensional network, which is formally defined as
follows,

Definition 1. [MULTIDIMENSIONAL NETWORK]
A multidimensional network, N , is a graph denoted as N =
(V,E,A), where V is a set of vertices, E ⊆ V ×V is a set of
edges and A = {A1, A2, . . . , An} is a set of n vertex-specific
attributes, i.e., ∀u ∈ V , there is a multidimensional tuple
A(u) of u, denoted as A(u) = (A1(u), A2(u), . . . , An(u)),
where Ai(u) is the value of u on i-th attribute, 1 ≤ i ≤ n.
A is called the dimensions of the network N .

As explained in Example 1, Figure 1 presents a sample multi-
dimensional network drawn from a real social network. The
dimensions of the network are ID, gender, location, profes-
sion, and income. For an individual with ID = 1 in the net-
work, his corresponding multidimensional tuple is (1, Male,
CA, Teacher, 70, 000), the first tuple shown in Figure 1(b).

Data warehouses and OLAP for traditional RDB data
have developed many mature technologies over the years.
Here a brief primer of terminologies is listed. Given a re-
lation R of n dimensions, an n-dimensional data cube is a
set of 2n aggregations from all possible group-by’s on R.
For any aggregation in a form of (A1, A2, . . . , An), some (or
all) dimension Ai could be ∗ (ALL), representing a super-
aggregation along Ai which is equivalent to the removal of
Ai during aggregation. There are cells in an aggregation,
represented as c = (a1, a2, . . . , an : m), where ai is a value
of c on i-th dimension, Ai (1 ≤ i ≤ n), and m is a numeric
value, called measure, computed by applying a specific ag-
gregate function on c, e.g., COUNT(·) or AVERAGE(·). In
Example 2, Figure 2(b) presents a group-by on (Gender,
*, *), if three dimensions are chosen for aggregation: Gen-
der, Location and Profession, and Figure 3(b) presents a
group-by on (Gender, Location, *). Both group-by’s adopt
COUNT(·) as the underlying aggregate function.

By analogy, we can define possible aggregations upon mul-
tidimensional networks. Based on Definition 1, given a net-
work with n dimensions, there exist 2n multidimensional
spaces (aggregations). However, the measure within each
possible space is no longer simple numeric values, but an
aggregate network, defined as follows,

Definition 2. [AGGREGATE NETWORK] Given
a multidimensional network N = (V,E,A) and a possible
aggregation A′ = (A′

1, A
′
2, . . . , A

′
n) of A, where A′

i equals Ai

or ∗, the aggregate network w.r.t. A′ is a weighted graph
G′ = (V ′, E′,WV ′ ,WE′), where

1. ∀[v], a nonempty equivalence class of V , where [v] =
{v|A′

i(u) = A′
i(v), u, v ∈ V, i = 1 . . . n}, ∃v′ ∈ V ′ as

a representative of [v]. The weight of v′, w(v′) =
ΓV ([v]), where ΓV (·) is an aggregate function defined
upon vertices. v′ is therefore called a condensed vertex;



2. ∀u′, v′ ∈ V ′, and a nonempty edge set E(u′,v′) = {(u, v)|
u ∈ [u] represented as u′, v ∈ [v] represented as v′,
(u, v) ∈ E}, ∃e′ ∈ E′ as a representative of E(u′,v′).
The weight of e′, w(e′) = ΓE(E(u′,v′)), where ΓE(·) is
an aggregate function defined upon edges. e′ is there-
fore called a condensed edge.

As explained in Example 2, Figure 2(a) and Figure 3(a)
present the aggregate networks for the aggregations (Gen-
der, *, *) and (Gender, Location, *), respectively. We choose
COUNT(·) in the example to derive weights for both vertices
and edges, while more complicated aggregate functions can
be chosen and the aggregate functions for vertices and edges
can be different. For example, AVERAGE(·) can be used
if the edges are weighted in the original network. For the
sake of brevity, we will choose COUNT(·) as the default ag-
gregate function to compute both vertex and edge weights,
while our model and algorithms can be easily generalized to
accommodate other aggregate functions.

Definition 3. [GRAPH CUBE] Given a multidimen-
sional network N = (V,E,A), the graph cube is obtained by
restructuring N in all possible aggregations of A. For each
aggregation A′ of A, the measure is an aggregate network G′

w.r.t. A′, as defined in Definition 2.

Given a multidimensional network N = (V,E,A), each
aggregation A′ of A is often called a cuboid 1. The size of
a cuboid A′ is (|V ′|+ |E′|), where V ′ and E′ are the vertex
and edge set of the aggregate network corresponding to A′,
respectively. For a cuboid A′, dim(A′) denotes the set of
non-∗ dimensions of A′. For example, if A′ = (Gender, ∗, ∗),
dim(A′) = {Gender}. Consider two cuboids A′ and A′′.
A′ is an ancestor of A′′ if dim(A′) ⊆ dim(A′′), and there-
fore A′′ is a descendant of A′. Specifically, if |dim(A′′)| =
|dim(A′)| + 1, A′ is a parent of A′′, or A′′ is a child of A′.
If |dim(A′)| = |dim(A′′)| = l, then A′ and A′′ are siblings,
both of which are at l-th level of the graph cube. A distin-
guished cuboid Ab with |dim(Ab)| = n is called base cuboid
and it is a descendant of all other cuboids in the graph
cube. Another distinguished cuboid Aall = (∗, ∗, . . . , ∗)
where |dim(Aall)| = 0, is called apex cuboid. The apex
cuboid Aall is an ancestor of all other cuboids in the graph
cube. If we denote the set of all cuboids of a graph cube as
2A, i.e., the power set of A, a graph cube lattice L = ⟨2A,⊆⟩
can be induced by the partial ordering ⊆ upon 2A.

Example 3. Figure 4 presents a graph cube lattice, each
node of which is a cuboid in the graph cube generated from
the multidimensional network shown in Figure 1. The edges
in the lattice depict the parent-child relationship between two
cuboids. The size of each cuboid is shown within the lattice
node.

Given a multidimensional network G with n dimensions,
there are 2n cuboids in the graph cube. For each cuboid
in a graph cube, there is a unique aggregate network cor-
responding to it. Specifically, the original multidimensional
network is a special aggregate network corresponding to the
base cuboid Ab. While the aggregate network for the apex
cuboid Aall has a singleton vertex with a possible self-loop.

1Here after, we will use equivalently the terms cuboid, ag-
gregation, view and query.

2

5 12 8

15 16 19

23

Apex

(Gender) (Location) (Profession)

(Gender, Location) (Gender, Profession) (Location, Profession)

Base

Figure 4: The Graph Cube Lattice

An aggregate network corresponding to an ancestor cuboid is
more generalized than the aggregate network corresponding
to one of its descendant cuboids, which is fine-grained and
contains more attribute/structure details. In the graph cube
framework, users can explore the original network in differ-
ent multidimensional spaces by traversing the graph cube
lattice. In this way, a set of aggregate networks with differ-
ent summarized resolution can be examined and analyzed
for decision support and business intelligence purposes.

3. OLAP ON GRAPH CUBE
In traditional OLAP on relational databases, numeric mea-

sures can be easily aggregated in the data cube. This nat-
urally leads to queries such as “What is the average income
of females?” or “What is the maximum income of software
engineers in Washington State?” For multidimensional net-
works, however, aggregate networks become the measure of
a graph cube. Consider some typical OLAP-style queries
that might be asked on a multidimensional network:

1. “What is the network structure between the various lo-
cation and profession combinations?”

2. “What is the network structure between the user with
ID = 3 and various locations?”

These queries clearly involve some kind of aggregations upon
the original network in different multidimensional spaces.
What is atypical here is the answers returned. For the first
query, the answer is the aggregate network corresponding
to the cuboid (∗, Location, Profession) in the graph cube.
While the second query asks for an aggregate network across
two different cuboids, (Gender, Location, Profession) and (∗,
Location, ∗). In the following sections, we will formulate and
address two different queries posed on the graph cube: (1)
cuboid queries in a single multidimensional space and (2)
crossboid queries across multiple multidimensional spaces.

3.1 Cuboid Query
An important kind of query on graph cube is to return

as output the aggregate network corresponding to a specific
aggregation of the multidimensional network. This query is
referred to as cuboid query because the answer is exactly the
aggregate network of the desired cuboid in the graph cube.
Algorithm 1 outlines a baseline algorithm to address cuboid
queries in detail.

In Algorithm 1, we first create a hash structure, ζ, which
maintains a mapping from each distinct tuple w.r.t. the ag-
gregation A′, to a condensed vertex in the desired aggre-
gate network G′ (Line 2). We then traverse the multidi-
mensional network G. For each vertex u in G, we cre-



Algorithm 1: Cuboid Query Processing

Input: A Multidimensional Network N = (V,E,A), an
aggregation A′

Output: The aggregate network
G′ = (V ′, E′,WV ′ ,WE′) w.r.t. A′

1 begin
2 Initialize a hash structure ζ : A′ → V ′

3 for u ∈ V do
4 if ζ(A′(u)) = NULL then
5 Create a condensed vertex u′ ∈ V ′, labeled

with A′(u) = (A′
1(u), A

′
2(u), . . . , A

′
n(u))

6 u′.weight← 0
7 ζ(A′(u))← u′

8 ζ(A′(u)).weight← ζ(A′(u)).weight+ 1

9 for e(u, v) ∈ E do
10 u′ ← ζ(A′(u))
11 v′ ← ζ(A′(v))
12 if e′(u′, v′) ̸∈ E′ then
13 Create a condensed edge e′(u′, v′) ∈ E′

14 e′.weight← 0

15 e′.weight← e′.weight+ 1

16 return G′ = (V ′, E′,WV ′ ,WE′)

ate a new condensed vertex u′ corresponding to the tuple
(A′

1(u), A
′
1(u), . . . , A

′
n(u)), if there is no such condensed ver-

tex u′ ∈ V ′ before hand (Lines 4−7). Otherwise, we simply
update the weight for the condensed vertex (Line 8). For
each edge e(u, v) in G, we retrieve the mapped condensed
vertices u′ and v′ for the adjacent vertices u and v, respec-
tively (Lines 10−11). If u′ is not adjacent to v′ in the aggre-
gate network G′, we create a new condensed edge e′(u′, v′)
(Lines 12 − 14). Otherwise, we simply update the weight
for the condensed edge e′(Line 15). The time complexity of
Algorithm 1 is O(|V |+ |E|), the time used for traversing G.
The space used to maintain the hash structure ζ is O(|V ′|)
and we need O(|V ′| + |E′|) space to maintain the aggre-
gate network G′. So the space complexity of Algorithm 1 is
O(|V ′|+ |E′|).
Based on Algorithm 1, it is straightforward to address all

cuboid queries from the multidimensional network, which
is exactly the aggregate network corresponding to the base
cuboid Ab. However, as the original network could be very
large and may not be held in memory, query processing
can be extremely time-consuming. Consider two cuboids
A′ and A′′ in the graph cube, if A′′ is a descendant of A′

(A′′ ̸= Ab) and A′′ has been precomputed from Ab based
on Algorithm 1, can we make use of A′′ to directly compute
A′, instead of computing it from Ab? The following theorem
guarantees a positive answer to this question.

Theorem 1. Given two cuboids A′ and A′′ in a graph
cube, where dim(A′) ⊆ dim(A′′) and A′′ ̸= Ab, the cuboid
query A′ can be answered directly from A′′.

Proof. Refer to the Appendix.

Based on Theorem 1, if the cuboid A′′ has been precom-
puted, A′ can be answered directly from A′′, and not neces-
sarily from the base cuboid Ab. The algorithm is the same as
Algorithm 1 except that we change the input from the origi-
nal multidimensional network G corresponding to Ab to the

1

1 3

1 1

ID: 3

WA IL

CA NY

3

Figure 5: The Aggregate Network between a User
(ID=3) and Various Locations

aggregate network G′′ corresponding to A′′. In this way, the
time complexity of the algorithm becomes O(|V ′′| + |E′′|),
way better than O(|V | + |E|) for the baseline algorithm.
Theoretically the aggregate network G′′ is no greater than
the original multidimensional network G, while in practice,
G′′ can be much smaller than G for some cuboids in the
graph cube.

Now if we have a set of precomputed cuboids A′′, which
one should we choose to compute A′? We define the descen-
dant set of cuboid A′, des(A′), as des(A′) = {A′′|dim(A′) ⊆
dim(A′′), A′′ is in the graph cube}. Based on the aforemen-
tioned complexity analysis, the following cuboid A∗ will be
selected:

A∗ = argmin(size(A′′)), A′′ ∈ des(A′) (1)

So, we always choose the precomputed cuboid, A∗, whose
size, (|V ∗|+ |E∗|), is minimal among all cuboids in des(A′)
to answer the cuboid query A′.

When all the cuboids have been computed, the support of
OLAP operations, such as roll-up, drill-down, and slice-and-
dice, becomes straightforward in the graph cube framework.
Roll-up means going from a cuboid to one of its ancestors,
such that we can summarize an aggregate network in finer
resolution to another one in coarser resolution. Drill-down,
on the contrary, goes from an ancestor cuboid to one of its
descendants. As shown in Example 2, after examining the
aggregate network for the cuboid (Gender, ∗, ∗), users may
be more interested in how males interact with females across
different locations. We can drill-down to the cuboid (Gen-
der, Location, ∗) and more interesting interaction patterns
in finer resolution can be discovered. As to slice-and-dice,
selections are performed on a cuboid and an induced aggre-
gate network will be generated as a result. For example,
users may be interested in the network structure between
NY and CA, aggregated by Location. A slice-and-dice oper-
ation can be performed upon the cuboid (∗, Location, ∗) and
only the interactions between the vertices NY and CA (in-
cluding self-loops, if possible) are returned as output. Differ-
ent OLAP operations can be further combined as advanced
OLAP queries on the graph cube and they have formed a
powerful tool set and new query mechanism on multidimen-
sional networks.

3.2 Crossboid Query
Cuboid query discussed in Section 3.1 is the query within a

single multidimensional space, which follows the traditional
OLAP model proposed on relational data [7]. What is more
interesting, however, is that multidimensional networks in-
troduce a new kind of query, which crosses multiple multidi-
mensional spaces of the network, i.e., more than one cuboid
is involved in a query. We thus call such queries crossing
different cuboids of the graph cube as cross-cuboid queries,
or crossboid queries for short.



Apex

(Gender, Location, Profession)

(Gender, Profession)

(Gender, Location, Profession)(Profession)

(Location)

(Location, Profession)

(Gender, Location)

(Gender)

Figure 6: Traditional Cuboid Queries

Example 4. Consider the query proposed in Section 3:
“What is the network structure between the user 3 and var-
ious locations?” The answer is shown in Figure 5. In the
network, the vertex with white color represents user 3 in the
cuboid (Gender, Location, Profession), while all the other
vertices with grey color are different locations in the cuboid
(∗, Location, ∗). Edges indicate relationships between user 3
and her friends grouped by different locations. For instance,
this user has 3 friends at Illinois state, represented by the
edge with weight 3.

Example 4 shows a crossboid query in the multidimen-
sional network. This query definitely has an OLAP flavor in
that it involves aggregation upon the network. However, it
deviates significantly from traditional OLAP semantics. In
traditional OLAP on relational data, for example, it does
not make sense to query the average income of user 3, a
numeric value, with various locations. Although it is natu-
ral to compare user 3’s income with the average income of
users at Illinois, this comparison, however, is orthogonal to
OLAP. In the multidimensional network scenario, aggrega-
tion involving multiple cuboids becomes possible within a
single query, which is unique to the graph cube.
For a more graphical explanation of this difference, Fig-

ure 6 shows a 3-dimensional data cube on traditional rela-
tional data. In this model, queries exist wholly within a
single cuboid. Note cuboid queries discussed in Section 3.1
follow this query model as well. For instance, the answer
for “What is the aggregate network between two genders?”
comes solely from the 1-dimensional (Gender) cuboid.
In contrast, the crossboid query in Example 4 breaks the

traditional OLAP semantics and straddles two distinct cuboids
in different levels of the graph cube. Figure 7 shows this
query graphically: the dashed lines between cuboids present
the regions in which crossboid queries are interested. For
instance, the right region corresponds to the aggregate net-
work between base cuboid and the (Location) cuboid. Imag-
ine the black dot inside the 3-dimensional base cuboid is the
user 3. The aggregate network shown in Figure 5 is the ex-
act answer to this crossboid query if we slice-and-dice the
right region only for the user 3. Similarly, the dashed region
between the (Gender) cuboid and the (Location) cuboid on
the left corresponds to a crossboid query: “what is the net-
work structure between users grouped by gender vs. users
grouped by location?”. Here the crossboid query straddles
two distinct cuboids (Gender) and (Location) in the same
level of the graph cube, and the query answer is shown in
Figure 8.

(Gender)

(Location)

(Gender, Location, Profession)

"What is the network structure

"What is the network structure between
users grouped by gender and
users grouped by location?"

between users and the locations?"

Figure 7: Crossboid Queries Straddling Multiple
Cuboids

In general, a crossboid query can include any number of
cuboids from the graph cube. As shown in Figure 7, three
different cuboids can be linked together to form a crossboid.
In the rest of the paper, we focus on the crossboid queries
straddling two cuboids, while our model can be generalized
to address crossboid queries spanning multiple cuboids.

Definition 4. [CROSSBOID QUERY] Given two dis-
tinct cuboids S and T in the graph cube, the crossboid query,
S ◃▹ T , is a bipartite aggregate network, G′ = (V ′

S

∪
V ′
T , E

′,
WV ′ ,WE′), where for each vertex u in the multidimensional
network G, it is aggregated into a condensed vertex u′ ∈ V ′

S

w.r.t. S and another condensed vertex u′′ ∈ V ′
T w.r.t. T , re-

spectively. For each edge e(u, v) ∈ G, it is aggregated into
two condensed edges e′(u′, v′′) and e′(v′, u′′), respectively,
where u′(v′) and u′′(v′′) are the condensed vertices for u(v)
to be aggregated to w.r.t. S and T , respectively. The weights
for both condensed vertices and edges, WV ′ ,WE′ , are deter-
mined in the same way as dictated in Definition 2.

In Definition 4, we abuse the join operator, ◃▹, to denote
a crossboid query between two cuboids, S and T . Given
an n-dimensional network, the graph cube contains 2n−1 ×
(2n − 1) crossboids if S ̸= T (note S ◃▹ T = T ◃▹ S).
More specifically, if S = T , crossboid queries boil down to
cuboid queries, as discussed in Section 3.1. That is, cuboid
query is just a special case of crossboid query when S = T .
Therefore, given a graph cube, there are 2n cuboids and
(22n−1 − 2n−1) crossboids, respectively, resulting in a total
of (22n−1 + 2n−1) OLAP queries to be addressed.

Algorithm 2 presents a detailed procedure to address the
crossboid query, S ◃▹ T , from the multidimensional network
G. It is similar to Algorithm 1, while for each vertex u in
the network, we need to aggregate it to cuboid S and T ,
respectively (Lines 3− 13). And for each edge e(u, v) in the
network, we need to create or update two condensed edges
e′(u′, v′′) and e′(v′, u′′) (Lines 14 − 24). The reason is that

5

Male

5

Female

CA IL WA NY

6 2

2

3

3 3 2 2

26

4

Figure 8: The Aggregate Network to the Crossboid
Query Straddling (Gender) and (Location) Cuboids



Algorithm 2: Crossboid Query Processing

Input: A Multidimensional Network N = (V,E,A),
cuboids S and T

Output: The aggregate network S ◃▹ T = (V ′
S

∪
V ′
T , E

′,
WV ′ ,WE′)

1 begin
2 Initialize two hash structures ζS : S → V ′

S and
ζT : T → V ′

T

3 for u ∈ V do
4 if ζS(S(u)) = NULL then
5 Create a condensed vertex u′ ∈ V ′

S , labeled
with S(u) = (S1(u), S2(u), . . . , Sn(u))

6 u′.weight← 0
7 ζS(S(u))← u′

8 ζS(S(u)).weight← ζS(S(u)).weight+ 1
9 if ζT (T (u)) = NULL then

10 Create a condensed vertex u′′ ∈ V ′
T , labeled

with T (u) = (T1(u), T2(u), . . . , Tn(u))
11 u′′.weight← 0
12 ζT (T (u))← u′′

13 ζT (T (u)).weight← ζT (T (u)).weight+ 1

14 for e(u, v) ∈ E do
15 u′ ← ζS(S(u)), v

′′ ← ζT (T (v))
16 if e′(u′, v′′) ̸∈ E′ then
17 Create a condensed edge e′(u′, v′′) ∈ E′

18 e′(u′, v′′).weight← 0

19 e′(u′, v′′).weight← e′(u′, v′′).weight+ 1
20 v′ ← ζS(S(v)), u

′′ ← ζT (T (u))
21 if e′(v′, u′′) ̸∈ E′ then
22 Create a condensed edge e′(v′, u′′) ∈ E′

23 e′(v′, u′′).weight← 0

24 e′(v′, u′′).weight← e′(v′, u′′).weight+ 1

25 return G′ = (V ′, E′,WV ′ ,WE′)

edge e(u, v) in the original network is undirected and we need
to consider the interaction between two condensed vertices
from both directions. The time complexity of Algorithm 2
is O(|V | + |E|). And if there are |VS | and |VT | condensed
vertices in the aggregate networks w.r.t. the cuboid S and T ,
respectively, the space complexity of Algorithm 2 is O(|VS |×
|VT |).
Given a multidimensional network G and two cuboids S,

T in the graph cube (S ̸= T ), we can answer the crossboid
query, S ◃▹ T , based on Algorithm 2. However, it becomes
extremely inefficient to compute every crossboid from the
original network G. Can we address crossboid queries by
leveraging precomputed cuboids in the graph cube? Before
giving a positive answer to this question, we first define the
nearest common descendant, ncd(S, T ), of two cuboids S, T
in the graph cube, as follows,

Definition 5. [NCD(S,T)] The common descendant set
of cuboids S and T in a graph cube, cd(S, T ), is defined as
cd(S, T ) = des(S)

∩
des(T ). Then the nearest common de-

scendant of S and T , ncd(S, T ), is a cuboid in the graph
cube, such that ncd(S, T ) ∈ cd(S, T ), and ̸ ∃U ∈ cd(S, T ),
dim(U) ⊆ dim(ncd(S, T )).

Example 5. As shown in Figure 3, for cuboids (Gender)
and (Profession), both the base cuboid and the (Gender, Pro-

fession) cuboid are their common descendants. However,
only the (Gender, Profession) cuboid is the nearest common
descendant.

Theorem 2. Given two cuboids S and T in the graph
cube (S ̸= T ), the crossboid query S ◃▹ T can be answered
directly from the cuboid ncd(S, T ).

Proof. Refer to the Appendix.

Based on Theorem 2, we can compute the crossboid query
S ◃▹ T from ncs(S, T ) instead of the original network. Note
ncs(S, T ) can be easily derived because dim(ncs(S, T )) =
dim(S)

∪
dim(T ). In this way, the time complexity of the

algorithm becomes O(|Vncs(S,T )|+ |Encs(S,T )|), which is way
better than Algorithm 2 because the aggregate network w.r.t.
ncs(S, T ) is always no greater than the original network.

4. IMPLEMENTING GRAPH CUBES
In order to implement a graph cube, we need to com-

pute the aggregate networks of different cuboids grouping on
all possible dimension combinations of a multidimensional
network. (Note for a crossboid query, it can be indirectly
answered by the nearest common descendant, which is a
cuboid in the graph cube as well.) Such implementation
of a graph cube is critical to improve the response time of
OLAP queries and of operators such as roll-up, drill-down
and slice-and-dice. The following implementation alterna-
tives are possible:

1. Full materialization: We physically materialize the
whole graph cube. This approach can definitely achieve
the best query response time. However, precomputing
and storing every aggregate network is not feasible for
large multidimensional networks, in that we have 2n

aggregate networks to materialize and the space con-
sumed could become excessively large. Sometimes it is
even hard, if not impossible, to explicitly maintain the
multidimensional network itself into main memory.

2. No materialization: We compute every cuboid query
on request from the raw data. Although no extra space
is required for materialization, the query response time
can be slow because we have to traverse the multidi-
mensional network once for each such query.

3. Partial materialization: We selectively materialize
a subset of cuboids in the graph cube, such that queries
can be addressed by the materialized cuboids, in light
of Theorem 1 and 2. Empirically, the more cuboids
we materialize, the better query performance we can
achieve. In practice, due to the space limitation and
other constraints, only a small portion of cuboids can
be materialized in order to balance the tradeoff be-
tween query response time and cube resource require-
ment.

There have been many algorithms invented for cube im-
plementation in the context of relational data [17], most of
which chose to optimize the partial materialization approach
that has proven to be NP-complete by a straightforward re-
duction from the set cover problem [10]. In [11], the authors
further proved that partial materialization is inapproximable
if P ̸=NP. Therefore, the ongoing research was mainly moti-
vated to propose heuristics for sub-optimal solutions. Note
the partial materialization problem in the graph cube sce-
nario is still NP-complete because the problem in traditional



data cubes can be regarded as a special case in our setting.
Therefore the main focus here is to select a set S of k cuboids
(k < 2n) in the graph cube for partial materialization, such
that the average time taken to evaluate OLAP queries can
be minimized.
As it turns out, most of the existing algorithms proposed

on data cubes can be used to implement the graph cube
with minor modification. We adopt a greedy algorithm [10]
for partial materialization on the graph cube. We define the
cost, C(v), of a cuboid v in the graph cube as the size of v,
i.e., C(v) = (|V ′|+|E′|), where G′(V ′, E′) is the correspond-
ing aggregate network of v. Advanced sampling methods [8,
13] can be used for estimating both |V ′| and |E′| of the ag-
gregate network. Assume the set S has already contained
some materialized cuboids (|S| < k), the benefit to further
including v into S, denoted by B(S, v), is the total reduc-
tion cost of the cuboids in the graph cube if v is involved for
cuboid computation. Formally,

B(S, v) =
∑

dim(u)⊆dim(v)

(C(v)− C(w∗)) (2)

where

w∗ = argmin(C(w)), w ∈ des(u) ∩ S

That is, we compute the benefit introduced by v, which indi-
cates how much it can improve the cost for query evaluation
in the presence of S. To this point, the greedy algorithm be-
comes straightforward: we initially include the base cuboid
in S. Then we iterate for k times and for each iteration,
we select the cuboid v with the highest benefit B(S, v) into
S. Note in practice the network corresponding to the base
cuboid is usually too large to be materialized, so we actu-
ally compute (k + 1) cuboids in S. In this way the base
cuboid can be excluded while the other k cuboids are ma-
terialized. The time complexity of the greedy algorithm is
O((k + 1)N2), where N is the total number of cuboids in
the graph cube, or O((k + 1)22n), where n is the number of
dimensions in the multidimensional network.

Theorem 3. Let Bgreedy be the benefit of k cuboids cho-
sen by the greedy algorithm and let Bopt be the benefit of any
optimal set of k cuboids, then Bgreedy ≤ (1−1/e)×Bopt and
this bound is tight.

Proof. Refer to [10].

We make no assumption in the greedy algorithm about
the query workload and distribution, i.e., all the cuboids
in the graph cube will be queried with equal probability.
However, it has been shown in the data cube scenario that
most OLAP queries and operations are performed only on
the cuboids with small number of dimensions, e.g., from 1
to 3 [14]. This evidence still holds for graph cubes. The
main reason is that the aggregate networks corresponding
to the cuboids with large set of dimensions can be massive
and with comparable size to the original multidimensional
network. So it is still hard to materialize these large aggre-
gate networks explicitly. On the other hand, users will be
easily overwhelmed by the large networks and the insights
gained can be limited. Instead, they are more likely to query
the cuboids with small sets of dimensions and crosscheck af-
terwards the corresponding aggregate networks with man-
ageable size, for example, with tens of vertices and edges.
Drill-downs are selectively performed only on few cuboids of

Area Conferences

DB SIGMOD, VLDB, ICDE, PODS, EDBT
DM KDD, ICDM, SDM, PKDD, PAKDD
IR SIGIR, WWW, CIKM, ECIR, WSDM
AI IJCAI, AAAI, ICML, CVPR, ECML

Table 1: Major Conferences Chosen For Each Re-
search Area

Productivity Publication Number x

Excellent 50 < x
Good 21 ≤ x ≤ 50
Fair 6 ≤ x ≤ 20
Poor x ≤ 5

Table 2: Four Different Buckets of the Publication
Number for the Productivity Attribute

interest toward the cuboids with medium size. To this end,
we propose another heuristic algorithm, MinLevel, to mate-
rialize the cuboid c where dim(c) = l0. l0 is an empirical
value specified by users, which indicates the level in the cube
lattice at which we start materializing cuboids that contain
l0 non-∗ dimensions. If all the cuboids with l0 dimensions
are included in S and |S| < k, we continue choosing cuboids
with (l0 + 1) dimensions, until |S| = k. The time complex-
ity of MinLevel is O(k), which is irrelevant to the number
of dimensions, n. In practice, MinLevel has proven to be a
more efficient and practical approach for graph cube mate-
rialization, compared to the greedy algorithm.

5. EXPERIMENTS
In this section, we present the major experimental results

of our proposed method, Graph Cube. We examine two real
data sets and our evaluation is conducted from both effec-
tiveness and efficiency perspectives. All our algorithms and
experimental methods are implemented in C++ and tested
on a Windows PC with AMD triple-core processor 2.1GHz
and 3G of RAM.

5.1 Experimental Data Sets
We perform our experimental studies on two real-world

data sets: DBLP 2 and IMDB 3. Specifically, we will focus
the effectiveness study on the DBLP data set and the effi-
ciency study on both data sets. The details of the two data
sets are given as follows,

DBLP Data Set. This data set contains the DBLP
Bibliography data downloaded in March, 2008. We further
extract a subset of publication information from major con-
ferences in four different research areas: database (DB), data
mining (DM), artificial intelligence (AI) and information re-
trieval (IR). Table 1 shows the conferences we choose for
each of the four research areas. We build a co-authorship
graph with 28, 702 authors as vertices and 66, 832 coauthor
relationships as edges. For each author, there are three di-
mensions of information: Name, Area, and Productivity. Area
specifies a research area the author belongs to. Although an
author may belong to multiple research areas, we select one
only among the four in which she/he publishes most. For
Productivity, we discretize the publication number of an au-
thor into four different buckets, as shown in Table 2.

2http://www.informatic.uni-trier.de/∼ley/db/
3http://www.imdb.com/interfaces



7752 4590

11329 5031

DB DM

AI IR

22490

18729

1182

7116

8010

2220

1229

1550

2307 1999

(a) (Area)

26170 2165

321 46

Poor Fair

Good Excellent

31587

682

5787

3520

139

15877

872

496

1744 2584

(b) (Productivity)

6825

(DB, Poor)

732

(DB, Fair)

161

(DB, Good)

34

(DB, Excellent)

4209

(DM, Poor)

331

(DM, Fair)

43

(DM, Good)

7

(DM, Excellent)

10498

(AI, Poor)

747

(AI, Fair)

83
(AI, Good)

1
(AI, Excellent)4638

(IR, Poor)

355

(IR, Fair)

34

(IR, Good)

4

(IR, Excellent)

8887

1148

410

105

4182 252

32

4

10975

838

76

4590

478

31

1

5276

2877

1270
1422

670

425

396 290

170

361

253

679

292

333

523

244

203

(c) (Area, Productivity)

Figure 9: Cuboid Queries of the Graph Cube on DBLP Data Set

7752 4590

DB DM

21591

11329 5031

AI IR

26170 2165 321 46

Poor Fair Good Excellent

10193

5816

2596

7166

1857
1511

719

20355

7639
2158

148

9778

4394 1420
414

(a) Area ◃▹ Productivity

97

DB

4

DM

3

AI

11

IR

52

Poor

33

Fair

24

Good

6

Excellent

1 Hector Garcia-Molina

97 4 3 11

52 33 24 6

(b) Area ◃▹ Base ◃▹ Produc-
tivity for “Hector Garcia-
Molina”

66

DB

71

DM

4

AI

13

IR

71

Poor

52

Fair

12

Good

13

Excellent

1 Philip S. Yu

66 71 4 13

71 52 12 13

(c) Area ◃▹ Base ◃▹ Produc-
tivity for “Philip S. Yu”

Figure 10: Crossboid Queries of the Graph Cube on DBLP Data Set

IMDB Data Set. This data set was extracted from the
Internet Movies Data Base (IMDB) in September, 2010. It
contains movie information including the following dimen-
sions : Title, Year, Length, Budget, Rating, MPAA and Type.
For the dimension Length, we further discretize it into short
(within 30 minutes), medium (between 30 and 90 minutes)
and long (beyond 90 minutes). For the dimension Budget,
we bucketize it into 10 different histograms with the equal-
width method. For the dimension Rating, we discretize the
original absolute rating scores to the ten-star grading crite-
rion, in which the more stars a movie gets, the better rating
it has. ForMPAA (The Motion Picture Association of Amer-
ica), it classifies a movie into one of the following categories:
{G, PG, PG-13, R, NC-17, NR}. And for the dimension
Type, it contains the following seven different genres for a
movie: action, animation, comedy, drama, documentary, ro-
mance and short. Based on this data set, we build a movie
network as follows. For each movie there is a corresponding
vertex in the network. And there is an edge between two
movies if they both share the same rating value. There are
116, 164 vertices and 5, 452, 350 edges in the network.

5.2 Effectiveness Evaluation
We first evaluate the effectiveness of Graph Cube as a pow-

erful decision-support tool in the DBLP co-authorship net-
work. We will present some interesting findings by address-
ing OLAP queries on the network. The summarized aggre-
gate networks demonstrate a new angle to study and explore
massive networks. In the experiments, we are interested in
the co-authorship patterns between researchers from differ-
ent perspectives. Upon the graph cube built on the DBLP
co-authorship network, we first issue a cuboid query (Area)
and the resulting aggregate network is shown in Figure 9(a).
This aggregate network is a complete graph K4 illustrating
the co-authorship patterns between researchers grouped by

different research areas. Note different research communities
exhibit quite different co-authorship patterns. For example,
among the four research areas we study, the DB commu-
nity cooperates a lot with the IR community and the DM
community, while the cooperations between DB and AI are
not that frequent. More interestingly, the DB community
cooperates most with itself (22, 490 coauthor relationships),
compared with other communities. The AI community and
the DM community cooperate a lot partially because some
common algorithms and methods, e.g., SVM or k-means,
are frequently shared by both communities.

Figure 9(b) presents another aggregate network correspond-
ing to the cuboid query (Productivity) in the graph cube.
This aggregate network illustrates the co-authorship pat-
terns between researchers grouped by different productiv-
ity. As shown in the figure, the researchers with poor pro-
ductivity (with publication number no greater than 5) take
up around 91.2% of all the researchers we are examining.
For this group of researchers, they cooperate a lot with re-
searchers of fair productivity, while they cooperate much
less with researchers of good or excellent productivity. If
we define density of a condensed vertex v as density(v) =
wE(e(v, v))/wV (v), where the numerator denotes the weight
of the self-loop edge of v and the denominator denotes the
weight of v itself, then density(Excellent) = 3.02, which is
much larger than the density values of Poor (1.207) and Fair
(1.626) vertices. It means that excellent researchers have
formed closer and more compact co-authorship patterns and
the in-between cooperations are significantly more frequent
than other groups.

If users are interested in zooming into a more fine-grained
network for further inspection, a drill-down operation can
be performed, or equivalently, a cuboid query (Area, Pro-
ductivity) is addressed. The resulting aggregate network is a
complete graph K16, shown in Figure 9(c). For the sake of



 0

 2

 4

 6

 8

 10

 12

 14

 1  2  3

R
un

tim
e 

(s
ec

on
ds

)

Number of Dimensions

Raw Table
Graph Cube

(a) Time vs. # Dimensions

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  3  4  5  6

R
un

tim
e 

(s
ec

on
ds

)

Number of Edges (*10K)

Raw Table
Graph Cube

(b) Time vs. # Edges

Figure 11: Full Materialization of the Graph Cube
for DBLP Data Set

clarity, we only illustrate part of the edges (with large edge
weights) of the network. In this aggregate network, every
vertex is in the (Area, Productivity) resolution, and therefore
presents more detailed information for research cooperation.
For example, for researcher in the DB community with good
productivity (represented as the vertex (DB, Good)), they
cooperate most with DB researchers of poor productivity,
while they cooperate much less with DM or AI researchers.
Interestingly, they cooperate frequently with researchers of
poor productivity in IR community as well.
After examining the cuboid queries upon the graph cube,

we further address different crossboid queries. Figure 10(a)
present a crossboid query Area ◃▹ Productivity straddling two
different cuboids (Area) and (Productivity) in the same level
of the graph cube. The aggregate network presents a quite
different view of co-authorship patterns by cross-checking
interactions between research areas and the productivity of
researchers. An interesting finding as shown in Figure 7(a)
is that, although DB is not the largest research community
(actually, AI is the largest one), it consistently attracts the
highest number of researchers for cooperation across vari-
ous levels of productivity, compared with the other three
communities. From another direction, excellent researchers
cooperate with the DB community most, and then the DM
community, followed by the IR and AI community. And
for the researchers with poor productivity, they cooperate
frequently with the DB and AI community, while their co-
operation with DM and IR is much less.
Figure 7(b) and Figure 7(c) present another crossboid

query Area ◃▹ Base ◃▹ Productivity straddling three cuboids
in different levels of the graph cube. We further slice-and-
dice the result to show the cooperation patterns for specific
researchers “Hector Garcia-Monlina” and “Philip S. Yu”, re-
spectively. From Figure 7(b), it is pretty clear that Hec-
tor cooperated with researchers in the DB community most,
and the number of cooperations is much larger than that in
other areas. And he cooperated extensively with researchers
in different productivity levels. In contrast, Philip cooper-
ated almost equally frequently with both the DB community
and the DM community. And he cooperated more with re-
searchers in poor, fair and excellent productivity.

5.3 Efficiency Evaluation
In this section, we evaluate the efficiency of our Graph

Cube method. We also test different Graph Cube implemen-
tation techniques on multidimensional networks.
We first evaluate our algorithms on the DBLP data set.

As this data set contains 3 dimensions only, it is fairly easy
to hold all cuboids in main memory. We thus focus on the
efficiency of full cube materialization on this data set. The
raw network data is first stored on disk and we start build-

 0

 200

 400

 600

 800

 1000

 1  2  3  4  5  6

R
un

tim
e 

(s
ec

on
ds

)

Number of Dimensions

Graph Cube
Raw Table

(a) Time vs. # Dimen-
sions

 0

 200

 400

 600

 800

 1000

 1  2  3  4  5

R
un

tim
e 

(s
ec

on
ds

)

Number of Edges (*1M)

Graph Cube
Raw Table

(b) Time vs. # Edges

Figure 12: Full Materialization of the Graph Cube
for IMDB Data Set

ing the graph cube based on Algorithm 1, which is a base-
line method, denoted as Raw Table. Note for each cuboid
in the graph cube, Raw Table has to access the disk for
cuboid computation, which is inefficient. Graph Cube adopts
a bottom-up method to compute cuboids and the interme-
diate results can be shared to facilitate the computation of
ancestor cuboids, as described in Section 3.1. As shown
in Figure 11(a), for different numbers of dimensions in the
underlying network, the time consumed for two competing
methods is significantly different. Graph Cube is consistently
faster than Raw Table. More specifically, when the dimen-
sion value is 3, which means we need to materialize the full
cube, Graph Cube is about 10 times faster than Raw Table.
Figure 11(b) presents the time used for full cube material-
ization, while in this case, we start varying the size of the
underlying network by changing the number of edges. As
illustrated, both methods grow linearly w.r.t. the network
size. However, Graph Cube outperforms Raw Table for 8−10
times.

We then perform the same experiments on the IMDB data
set. The raw network data is first stored on disk. In this ex-
periment, we explicitly drop the Name dimension and keep
the remaining 6 dimensions. And the pre-computed cuboids
by Graph Cube are stored on disk as well because of limited
space resource. As illustrated in Figure 12(a), Graph Cube
can compute the full graph cube within 10 minutes. Al-
though the cuboids on low levels still need to access the disk
for the pre-computed cuboids, the intermediate aggregate
networks are much smaller than the original network. In
comparison, Raw Table spends around 1, 000 seconds when
the network dimension is 3, and the time spent grows ex-
ponentially large w.r.t. the dimension. Raw Table therefore
becomes extremely inefficient for the networks with high di-
mensionality. In Figure 12(b), we set the network dimension
to be 3 and start varying the network size. As shown, Graph
Cube still outperforms Raw Table for up to 4 times.

We then turn to another implementation alternative to
partial-materialize the graph cube. In this experiment, we
select a set of 20 cuboids in the graph cube with estimated
size no greater than 1, 000 and use them as cuboid queries.
We further choose arbitrary pairs of these cuboids to com-
pose another set of 200 crossboid queries. The rationale to
choose these queries is that, users seldom explore the aggre-
gate networks whose sizes are larger than 1, 000. We com-
pare two different partial materialization algorithms to ad-
dress both cuboid queries and crossboid queries: the greedy
algorithm, denoted as Greedy, and the heuristic algorithm,
MinLevel, as described in Section 4. We set the materializa-
tion level l0 = 3 for MinLevel to start materializing cuboids
from the level 3 of the graph cube. The average response
time of different queries are reported in Figure 13. By vary-
ing the number k of cuboids to be materialized into main



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 6  8  10  12  14  16

R
un

tim
e 

(s
ec

on
ds

)

Number of Materialized Cuboids

Greedy
MinLevel

(a) Cuboid Queries

 0

 10

 20

 30

 40

 50

 60

 70

 6  8  10  12  14  16

R
un

tim
e 

(s
ec

on
ds

)

Number of Materialized Cuboids

Greedy
MinLevel

(b) Crossboid Queries

Figure 13: Average Query Respond Time w.r.t. Dif-
ferent Partial Materialization Algorithms

memory, we notice that MinLevel outperforms Greedy con-
sistently, for both cuboid queries (Figure 13(a)) and cross-
boid queries (Figure 13(b)). The main reason is that, it is of
little use to materialize a very large cuboid with great ben-
efit, because this query is seldom issued on the graph cube.
Instead, most of the commonly issued queries (with manage-
able size) can be successfully answered by the materialized
cuboids chosen by MinLevel.

6. RELATED WORK
As key ingredients in decision support systems (DSS),

data warehouses and OLAP have demonstrated competitive
advantages for business, and kindled considerable research
interest in the study of multidimensional data models and
data cubes [7, 4]. In recent years, significant advances have
been made to extend data warehousing and OLAP technol-
ogy from the relational databases to new emerging data in
different application domains, such as imprecise data [3], se-
quences [16], taxonomies [21], text [15] and streams [9]. A
recent study by Chen et al. [5] aims to provide OLAP func-
tionalities on graphs. However, the problem definition is
different from Graph Cube. In [5], the input data is a set
of graphs, each of which contains graph-related and vertex-
related attributes. The algorithmic focus is to aggregate
(overlay) multiple graphs into a summary static graph. In
contrast, Graph Cube focuses on OLAP inside a single large
graph. Furthermore, a set of aggregated networks with vary-
ing size and resolution is examined in the lens of multidimen-
sional analysis.
Graph summarization is a field closely related to our work.

Scientific applications such as DNA analysis and protein syn-
thesis often involve large graphs, and effective summariza-
tion is crucial to help biologists solve their problems [19].
One path of approach for graph summarization is to com-
press the input graph [6, 18]. Such compressed graphs can
be effectively used to summarize the original graph. Graph
clustering [26] is another approach that partitions the graph
into regions that can be further summarized. GraSS [12]
summarizes graph structures based on a random world model
and the target of summarization is to help improve the ac-
curacy of common queries, such as adjacency, degree and
eigenvector centrality. And finally, graph visualization [24]
addresses the problem of summarization as well. In rela-
tion to our work, however, most of the aforementioned stud-
ies have not had multidimensional attributes assigned on
the network vertices. As a result, the summarization tech-
niques are free to choose the groupings and do not have to
respect semantic differences between the vertices. In con-
trast, Graph Cube approaches the problem from a more data
cube and OLAP angle, which has to honor the semantic

boundaries to match decision support operations. The sys-
tematic aggregation in the multidimensional spaces and also
the large network analysis aspects are topics not addressed
in the above studies.

One interesting recent work by Tian et al. [23] and Zhang
et al. [25] brings an OLAP flavor to graph summarization.
It introduces the SNAP operation and a less restrictive k-
SNAP operation that will aggregate the graph to a sum-
marized version based on user input of attributes and edge
relationships. As the authors mentioned, it is similar to
OLAP-style aggregations. In contrast to Graph Cube, k-
SNAP performs roll-up and drill-down by deceasing and in-
creasing the number k of node-groupings in the summary
graph, which is like specifying the number of clusters in
clustering algorithms. While for Graph Cube, aggregation
and OLAP operations are performed along the dimensions
defined upon the network. Moreover, Graph Cube proposes
a new class of OLAP queries, crossboid, which is new and
has not been studied before.

7. CONCLUSIONS
In this paper, we have addressed the problem of support-

ing warehousing and OLAP technology for large multidi-
mensional networks. Due to the recent boom in large-scale
networks, businesses and researchers seek to build infras-
tructures and systems to help enhance decision-support fa-
cilities on networks in order to summarize and maximize the
potential value around them. This work has studied this
exact problem by first proposing a new data warehousing
model, Graph Cube, which was designed specifically for ef-
ficient aggregation of large networks with multidimensional
attributes. We formulated different OLAP query models
for Graph Cube and proposed a new class of queries, cross-
boid, which broke the boundary of the traditional OLAP
model by straddling multiple cuboids within one query. We
studied the implementation details of Graph Cube and our
experimental results have demonstrated the power and effi-
cacy of Graph Cube as the first, to the best of our knowledge,
tool for warehousing and OLAP large multidimensional net-
works. However, this is merely the tip of the iceberg. The
marriage of network analysis and warehousing/OLAP tech-
nology brings many exciting opportunities for future study.

Acknowledgments
The work was supported in part by the NSF IIS-09-05215,
and by the U.S. Army Research Laboratory under Coop-
erative Agreement No. W911NF-09-2-0053 (NS-CTA). The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

8. REFERENCES
[1] C. C. Aggarwal and H. Wang. Managing and Mining

Graph Data. Springer, 2010.
[2] T. Baird. The Truth About Facebook. Emereo Pty Limited,

2009.

[3] D. Burdick, A. Doan, R. Ramakrishnan, and
S. Vaithyanathan. OLAP over imprecise data with domain
constraints. In VLDB, pages 39–50, 2007.



[4] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Rec.,
26(1):65–74, 1997.

[5] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu. Graph
OLAP: Towards online analytical processing on graphs. In
ICDM, pages 103–112, 2008.

[6] D. Gibson, R. Kumar, and A. Tomkins. Discovering large
dense subgraphs in massive graphs. In VLDB, pages
721–732, 2005.

[7] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Min. Knowl.
Discov., 1(1):29–53, 1997.

[8] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct values
of an attribute. In VLDB, pages 311–322, 1995.

[9] J. Han, Y. Chen, G. Dong, J. Pei, B. W. Wah, J. Wang,
and Y. D. Cai. Stream cube: An architecture for
multi-dimensional analysis of data streams. Distrib.
Parallel Databases, 18(2):173–197, 2005.

[10] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In SIGMOD, pages
205–216, 1996.

[11] H. Karloff and M. Mihail. On the complexity of the
view-selection problem. In PODS, pages 167–173, 1999.

[12] K. LeFevre and E. Terzi. GraSS: Graph structure
summarization. In SDM, pages 454–465, 2010.

[13] J. Leskovec and C. Faloutsos. Sampling from large graphs.
In KDD, pages 631–636, 2006.

[14] X. Li, J. Han, and H. Gonzalez. High-dimensional OLAP: a
minimal cubing approach. In VLDB, pages 528–539, 2004.

[15] C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text
cube: Computing IR measures for multidimensional text
database analysis. In ICDM, pages 905–910, 2008.

[16] E. Lo, B. Kao, W.-S. Ho, S. D. Lee, C. K. Chui, and D. W.
Cheung. OLAP on sequence data. In SIGMOD, pages
649–660, 2008.

[17] K. Morfonios, S. Konakas, Y. Ioannidis, and N. Kotsis.
ROLAP implementations of the data cube. ACM Comput.
Surv., 39(4):12, 2007.

[18] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph
summarization with bounded error. In SIGMOD, pages
419–432, 2008.

[19] S. Navlakha, M. C. Schatz, and C. Kingsford. Revealing
biological modules via graph summarization. Journal of
Computational Biology, 16:253–264, 2009.

[20] M. Newman. Networks: An Introduction. Oxford
University Press, 2010.

[21] Y. Qi, K. S. Candan, J. Tatemura, S. Chen, and F. Liao.
Supporting OLAP operations over imperfectly integrated
taxonomies. In SIGMOD, pages 875–888, 2008.

[22] H. Thomases. Twitter Marketing: An Hour a Day. Wiley,
2010.

[23] Y. Tian, R. A. Hankins, and J. Patel. Efficient aggregation
for graph summarization. In SIGMOD, pages 567–580,
2008.

[24] M. Wattenberg. Visual exploration of multivariate graphs.
In CHI, pages 811–819, 2006.

[25] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph
summarization. In ICDE, pages 880–891, 2010.

[26] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based
on structural/attribute similarities. PVLDB, 2(1):718–729,
2009.

APPENDIX
Proof of Theorem 1
As dim(A′) ⊆ dim(A′′), there exists at least one dimension
At (1 ≤ t ≤ n), s.t. At = ∗ for A′ but At ̸= ∗ for A′′.

For each condensed vertex v′ in the aggregate network G′

w.r.t. A′, v′ = {v|A′
i(u) = A′

i(v), u, v ∈ V, i = 1 . . . n} (Note
here after we use v′ to represent its corresponding nonempty
vertex equivalence class, [v], for presentational brevity). We
partition the vertices within v′ into k disjoint sets, where
v′j = {v|A′

i(u) = A′
i(v), u, v ∈ V, i = 1 . . . n, i ̸= t}, 1 ≤

j ≤ k, i.e., the vertices are partitioned based on the value
differences w.r.t. the dimension At. Note each v′j is a con-
densed vertex for the aggregate network G′′ w.r.t. A′′, and
v′.weight =

∑
1≤j≤k v

′
j .weight.

For each condense edge e′(u′, v′) in the aggregate network
G′, e′ = {(u, v)|u ∈ u′, v ∈ v′, u′, v′ ∈ V ′, (u, v) ∈ E} (Note
here after we use e′ to represent its corresponding nonempty
edge set, E(u′,v′), for presentational brevity). We partition
the edges within e′ into m× n disjoint sets e′ij (1 ≤ i ≤ m,
1 ≤ j ≤ n), as follows. We first partition the condensed ver-
tex u′ intom disjoint sets u′

i, (1 ≤ i ≤ m), and then partition
the condensed vertex v′ into n disjoint sets v′j (1 ≤ j ≤ n).
Both partitions are performed in the same way such that
vertices within one partition have the same values across all
dimensions of A′, except At. An edge (u, v) ∈ E belongs to
the partition e′ij if u ∈ u′

i and v ∈ v′j . Note the partition
e′ij is exactly a condense edge in the aggregate network G′′,
w.r.t. A′′, and e′.weight =

∑
1≤i≤m

∑
1≤j≤n e′ij .weight.

Therefore, the aggregate network w.r.t. A′ can be de-
rived directly from the aggregate network w.r.t. A′′, i.e.,
the cuboid query A′ can be answered by A′′. 2

Proof of Theorem 2
As dim(S) ⊆ dim(ncd(S, T )), there exists at least one di-
mension As (1 ≤ s ≤ n), s.t., As = ∗ for S but As ̸= ∗ for
ncd(S, T ). Similarly, there exists at least one dimension At

(1 ≤ t ≤ n), s.t., At = ∗ for T but At ̸= ∗ for ncd(S, T ).
Note s ̸= t, otherwise S = T .

Let G′ = (V ′
S

∪
V ′
T , E

′,WV ′ ,WE′) be the aggregate net-
work for the crossboid S ◃▹ T . For each condensed ver-
tex u′ ∈ V ′

S w.r.t. S, u′ = {v|Si(u) = Si(v), u, v ∈ V, i =
1 . . . n}. We partition the vertices within u′ into k disjoint
sets, u′

j = {v|Si(u) = Si(v), u, v ∈ V, i = 1 . . . n, i ̸= s},
1 ≤ j ≤ k, i.e., the vertices are partitioned by differen-
tiating their attribute values along As. Every u′

j is actu-
ally a condensed vertex in the aggregate network Gncd(S,T )

w.r.t. ncd(S, T ), and u′.weight =
∑

1≤j≤k u
′
j .weight. Anal-

ogously, for each condensed vertex v′ ∈ V ′
T , we partition the

vertices within v′ along the dimension At into l disjoint sets
v′j (1 ≤ j ≤ l), each of which corresponds to a condensed
vertex in Gncd(S,T ) and v′.weight =

∑
1≤j≤l v

′
j .weight.

For each condensed edge e′(u′, v′) ∈ E′, e′ = {(u, v)|u ∈
u′, v ∈ v′, u′ ∈ V ′

S , v
′ ∈ V ′

T , (u, v) ∈ E}. We partition the
edges within e′ into m× n sets e′ij (1 ≤ i ≤ m, 1 ≤ j ≤ n),
as follows. The condensed vertex u′ is partitioned along the
dimension As into m disjoint sets u′

i, (1 ≤ i ≤ m), and the
condensed vertex v′ is partitioned along the dimension At

into n disjoint sets v′j (1 ≤ j ≤ n). The edge (u, v) ∈ E is
put in the partition e′ij if u ∈ u′

i and v ∈ v′j . The partition
e′ij is exactly a condense edge in Gncd(S,T ) w.r.t. ncd(S, T ),
and e′.weight =

∑
1≤i≤m

∑
1≤j≤n e′ij .weight.

Therefore, the crossboid query S ◃▹ T can be directly
answered by the cuboid ncd(S, T ).


