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ABSTRACT
We study markets of indivisible items in which price-based
(Walrasian) equilibria often do not exist due to the discrete
non-convex setting. Instead we consider Nash equilibria of
the market viewed as a game, where players bid for items,
and where the highest bidder on an item wins it and pays
his bid. We first observe that pure Nash-equilibria of this
game excatly correspond to price-based equilibiria (and thus
need not exist), but that mixed-Nash equilibria always do
exist, and we analyze their structure in several simple cases
where no price-based equilibrium exists. We also undertake
an analysis of the welfare properties of these equilibria show-
ing that while pure equilibria are always perfectly efficient
(“first welfare theorem”), mixed equilibria need not be, and
we provide upper and lower bounds on their amount of in-
efficiency.

1. INTRODUCTION

1.1 Motivation
The basic question that Economics deals with is how to

“best” allocate scarce resources. The basic answer is that
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trade can improve everyone’s welfare, and will lead to a mar-
ket equilibrium: a vector of resource prices that “clear the
market” and lead to an efficient allocation. Indeed, Arrow
and Debreu [1] and much further work shows that such mar-
ket equilibria exist in general settings.

Or do they...? An underlying assumption for the exis-
tence of price-equilibria is always some notion of “convex-
ity”. While some may feel comfortable with the restriction
to “convex economies”, markets of discrete items – arguably
the main object of study in computerized markets and auc-
tions – are only rarely “convex” and indeed in most cases
do not have any price-based equilibria. What can we pre-
dict to happen in such markets? Will these outcomes be
efficient in any sense? In this paper we approach this ques-
tions by viewing the market as a game, and studying its
Nash-equilibria.

1.2 Our Model
To focus on the basic issue of lack of price-based equilibria,

our model does not address informational issues, assumes a
single seller, and does not assume any budget constraints.

Our seller is selling m heterogeneous indivisible items to
n buyers who are competing for them. Each buyer i has a
valuation function vi specifying his value for each subset of
the items. I.e. for a subset S of the items vi(S) specifies
the value for that buyer if he gets exactly this subset of the
items, expressed in some currency unit (i.e., the buyers are
quasi-linear). We will assume free disposal, i.e., that the vi’s
are monotonically non-decreasing, but nothing beyond that.

The usual notion of price-based equilibrium in this model
is called a Walrasian equilibrium: a set of item prices p1 . . . pm
and a partition S1 . . . Sn of the m items among the n buyers
such that each buyer gets his “demand” under these prices,
i.e., Si ∈ argmaxS(vi(S)−

∑
j∈S pj). When such equilibria

exist they maximize social welfare,
∑

i vi(Si), but unfortu-
nately it is known that they only rarely exist – exactly when
the associated integer program has no integrality gap (see
[3] for a survey).

We will consider this market situation as a game where
each player1 i announces m offers bi1, . . . bim, with the in-
terpretation that bij is player i’s bid of item j. After the
offers are made, m independent first price auctions are be-
ing made. That is the utility of each bidder i is given by
ui(b) = vi(Si) −

∑
j∈Si

bij where S1 . . . Sn are a partition
of the m items with the property that each item went to
a highest bidder on it. Some care is needed in the case of

1We use interchangeably the terms: player, bidder and
buyer, and all three have the same meaning.



ties – two (or more) bidders i 6= i′ that place the highest
bid bij = bi′j for some item j. In this case a tie breaking
rule is needed to complete the specification of the alloca-
tion and thus of the game. Importantly, we view this as a
game with complete information, so each player knows the
(combinatorial) valuation function of each other player.

1.3 Pure Nash Equilibrium
Our first observation is that the pure equilibria of this

game capture exactly the Walrasian equilibria of the mar-
ket. This justifies our point of view that when we later allow
mixed-Nash equilibria as well, we are in fact strictly gener-
alizing the notion of price-equilibria.

Theorem: Fix a profile of valuations. Walrasian equilibria
of the associated market are in 1-1 correspondence with pure
Nash equilibria of the associated game. This holds in the
exact sense for some tie-breaking rule, and holds in the sense
of limits of ε-Nash equilibria for all ties-breaking rules.

A profile of strategies (bids) in the game is called a “limit
of ε-Nash equilibria” if for every ε > 0 there exists a sequence
of ε-Nash equilibria that approach it.

Let us demonstrate this theorem with a trivial example:
a single item on sale and two bidders who have values of 1
and 2 respectively for it. A Walrasian equilibrium can fix
the item’s price p anywhere between 1 and 2, at which point
only the second bidder desires it and the market clears. In
the associated game (with any tie breaking rule), a bid p for
the first player and bid p+ ε for the second player will be an
ε-Nash-equilibrium. In the special case that the tie breaking
rule gives priority to the second bidder, an exact pure-Nash
equilibrium will have both bidders bidding p on the item.

This theorem is somewhat counter intuitive as strategic
(non-price-taking) buyers in markets may improve their util-
ity by strategically “reducing demand”. Yet, in our set-
ting strategic buyers still reach the basic non-strategic price-
equilibrium.

As an immediate corollary of the fact that a Walrasian
equilibrium optimizes social welfare (“The first welfare the-
orem”), we get the same optimality in our game setting:

Corollary – A “First Welfare Theorem”For every pro-
file of valuations and every tie-breaking rule, every pure
Nash equilibrium of the game (including a limit of ε-equilibria)
optimizes social welfare. In other words, the price of anarchy
of pure Nash equilibria is trivial.

1.4 Mixed Nash Equilibria
As mentioned above, since Walrasian equilibria only rarely

exists, so do only rarely exist pure Nash equilibria in our
games. So it is quite natural to consider also the standard
generalization, Mixed-Nash equilibria of our market games.
The issue of existence of such mixed Nash equilibria is not
trivial in our setting as buyers have a continuum of strate-
gies and discontinuous utilities so Nash’s theorem does not
apply. Nevertheless, there has been a significant amount
of economic work on these types of settings and a theorem
of Simon and Zame [8] provides at least a partial general
positive answer:

Corollary (to a theorem of [8]): For every profile of valua-
tions, there exists some (mixed) tie-breaking rule such that
the game has a mixed-Nash equilibrium.

It seems that, like in the case of pure equilibria, an ε-
Nash equilibrium should exist for all tie breaking rules, but
we have not been able to establish this.

Once existence is established, we turn our attention to-
wards analyzing what these mixed equilibria look like. We
start with the two basic examples that are well known not
to have a price equilibria:

Example – Complements and Substitutes Bidders:
In this example there are two items and two bidders. The
first bidder (“OR bidder”) views the two items as perfect
substitutes and has value of vor for either one of them (but
is not interested in getting both). The second bidder (“AND
bidder”) views them as complements and values the bundle
of both of them at vand (but is not interested in either of
them separately). It is not difficult to see that when vand <
2vor no pure equilibrium exists, however we find specific
distributions F and G for the bids of the players that are in
mixed-Nash equilibrium.

Example – Triangle: In this example there are three items
and three players. Each of the players is interested in a
specific pair of items, and has value 1 for that pair, and 0 for
any single item, or any other pair. A pure Nash equilibrium
does not exist, but we show that the following is a mixed-
Nash equilibrium: each player picks a bid x uniformly at
random in the range [0, 1/2] and bids this number on each of
the items. Interestingly the expected utility of each player is
zero. We generalize the analysis to the case of single minded
players, each desiring a set of size k, each item is desired by
d players, and no two players’ sets intersect in at most a
single item.

We generalize our analysis to more general examples of
these veins. In particular, these provide examples where the
mixed-Nash equilibrium is not optimal in terms of maximiz-
ing social welfare and in fact is far from being so.

Corollary – A “First Non-Welfare Theorem”: There
are profiles of valuations where a mixed-Nash equilibrium
does not maximize social welfare. There are examples where
pure equilibria (that maximize social welfare) exist and yet
a mixed Nash equilibrium achieves only O(1

√
m) fraction

of social welfare (i.e., “price of anarchy” is Ω(
√
m)). There

exist examples where all mixed-Nash equilibria achieve at
most O(

√
(logm)/m) fraction of social welfare (i.e., “price

of stability” is Ω(
√
m/(logm))).

At this point it is quite natural to ask how much efficiency
can be lost, in general, as well for interesting subclasses of
valuations, which we answer as follows.

Theorem – An “Approximate First Welfare Theo-
rem”: For every profile of valuations, every tie-breaking
rule, and every mixed-Nash equilibrium of the game we have
that the expected social welfare obtained at the equilibrium
is at least 1/α (the “price of anarchy”) times the optimal
social welfare, where

1. α ≤ 2β if all valuations β-fractionally subadditive.
(The case β = 1 correponds to fractionally subaddi-
tive valuations, also known as XOS valuations. They
include the set of sub-modular valuations.)

2. α = O(logm) if all valuations are sub-additive.

3. α = O(m), in general.



These bounds apply also to correlated-Nash equilibria and
even to coarse-correlated equilibria.

A related PoA result is that of [2] which derive PoA for
β-fractionally sub-additive bidders in a second price simul-
taneous auction under the assumption of “conservative bid-
ding.” In this work we use the first price (rather than the
second price) and do not make any assumption regarding
the bidding.

Finally we extend these results also to a Bayesian set-
ting where players have only partial information on the val-
uations of the other players. We show that for any prior
distribution on the valuations and in every Bayesian Nash
equilibrium, where each player bids only based on his own
valuation (and the knowledge of the prior), the average so-
cial welfare is lower by at most α = O(mn) than the optimal
social welfare achieved with full shared knowledge and coop-
eration of the players. For a prior which is a product distri-
bution over valuations which are β-fractionally sub-additive
we show that α = 4β, which implies a bound of 4 for sub-
modular valuations and a bound of O(logm)for sub-additive
valuations. Our proof methodology for this setting is similar
to that of [2].

1.5 Open Problems and Future Work
We consider our work as a first step in the systematic

study of notions of equilibrium in markets where price equi-
libria do not exist. Our own work focused on the mixed-Nash
equilibrium, its existence and form, and its welfare proper-
ties. It is certainly natural to consider other properties of
such equilibria such as their revenue or invariants over the
set of equilibria. One may also naturally study other no-
tions of equilibrium such as those corresponding outcomes
of natural dynamics (e.g. coarse correlated equilibria which
are the outcome of regret minimization dynamics). It is also
natural to consider richer models of markets (e.g. two-sided
ones, non-quasi-linear ones, or ones with partial informa-
tion).

Even within the modest scope of this paper, there are sev-
eral remaining open questions: the existence of mixed-Nash
equilibrium under any tie-breaking rule; the characteriza-
tion of all equilibria for the simple games we studied; and
closing the various gaps in our price of anarchy and price of
stability results.

2. MODEL
We have a set M of m heterogeneous indivisible items for

sale to a set N of n bidders. Each bidder i has a valuation
function vi where for a set of items S ⊆ M , vi(S) is his
value for receiving the set S of items. We will not make any
assumptions on the vi’s except that they are monotone non
decreasing (free disposal) and that vi(∅) = 0. We assume
that the utility of the bidders is quasi-linear, namely, if bid-
der i gets subset Si and pays pi then ui(Si, pi) = vi(Si)−pi.

We will consider this market situation as a game where
the items are sold in simultaneous first price auctions. Each
bidder i ∈ N places a bid bij on each each item j ∈ M ,
and the highest bidder on each item gets the item and pays
his bid on the item. We view this as a game with complete
information. The utility of each bidder i is given by ui(b) =
vi(Si) −

∑
j∈Si

bij where S1...Sn are a partition of the m
items with the property that each item went to the bidder
that gave the highest bid for it.

Some care is required in cases of ties, i.e., if for some bid-
ders i 6= i′ and an item j ∈ M we have that bij = bi′j are
both highest bids for item j. In these cases the previous
definition does not completely specify the allocation, and
to complete the definition of the game we must specify a
tie breaking rule that chooses among the valid allocations.
(I.e. specifies the allocation S1, . . . , Sn as a function of the
bids.) In general we allow any tie breaking rule, a rule that
may depend arbitrarily on all the bids. Even more, we allow
randomized (mixed) tie breaking rules in which some distri-
bution over deterministic tie breaking rules is chosen. We
will call any game of this family (i.e.,with any tie breaking
rule) a “first price simultaneous auction game” (for a given
profile of valuations).

3. PURE NASH EQUILIBRIUM
The usual analysis of this scenario considers a market sit-

uation and a price-based equilibrium:

Definition 3.1. A partition of the items S1...Sn and a
non-negative vector of prices p1...pm are called a Walrasian
equilibrium if for every i we have that Si ∈ argmaxS(vi(S)−∑

j∈S pi).

We consider bidders participating in a simultaneous first
price auction game, with some tie breaking rule.

Our first observation is that pure equilibria of a first price
simultaneous auction game correspond to Walrasian equili-
biria of the market. In particular the price of anarchy of
pure equilibria is 1.

Proposition 3.2. 1. A profile of valuation functions
v1...vn admits a Walrasian equilibrium with given prices
and allocation if and only if the first price simultane-
ous auction game for these valuations has a pure Nash
equilibrium for some tie breaking rule with these win-
ning prices and allocation.

2. Every pure Nash equilibrium of a first price simultane-
ous auction game achieves optimal social welfare.

Proof. Let S1, . . . , Sn and p1, . . . , pm be a Walrasian
equilibrium. Consider the bids where bij = pj for all j and
let the game break ties according to S1...Sn. Why are these
bids a pure equilibrium of this game? Since we are in a
Walrasian equilibrium, each player gets a best set for him
under the prices pj . In the game, given the bids of the other
players, he can never win any item for strictly less than pj ,
whatever his bid, and he does wins the items in Si for price
pj exactly, so his current bid is a best response to the oth-
ers2.

Now fix a pure Nash equilibrium of the game with a given
tie breaking rule. Let S1, . . . , Sn the allocation specified by
the tie breaking rule, and let pj = maxi bij for all j. We
claim that this is a Walrasian equilibrium. Suppose by way
of contradiction that some player i strictly prefers another
bundle T under these prices. This contradicts the original

2The reader may dislike the fact that the bids of loosing
players seem artificially high and indeed may be in weakly
dominated strategies. This however is unavoidable since,
as we will see in the next section, counter-intuitively some-
times there are no pure equilibria in un-dominated strate-
gies. What can be said is that minimal Walrasian equilibria
correspond to pure equilibria of the game with strategies
that are limits of un-dominated strategies.



bid of i was a best reply since the deviation bidding bij =
pj + ε for j ∈ T and bij = 0 for j 6∈ T would give player i the
utility from T (minus some ε’s) which would be more than
he currently gets from Si – a contradiction.

The allocation obtained by the game, is itself the alloca-
tion in a Walrasian equilibrium, and thus by the First Wel-
fare Theorem is a social-welfare maximizing allocation.

Two short-comings of this proposition are obvious: first is
the delicate dependence on tie-breaking: we get a Nash equi-
librium only for some, carefully chosen, tie breaking rule. In
the next section we will show that this is un-avoidable us-
ing the usual definitions, but that it is not a “real” problem:
specifically we show that for any tie-breaking rule we get
arbitrarily close to an equilibrium.

The second short-coming is more serious: it is well known
that Walrasian equilibria exist only for restricted classes of
valuation profiles3. In the general case, there is no pure
equilibrium and thus the result on the price of anarchy is
void. In particular, the result does not extend to mixed Nash
equilibria and in fact it is not even clear whether such mixed
equilibria exist at all since Nash’s theorem does not apply
due to the non-compactness of the space of mixed strategies.
This will be the subject of the the following sections.

3.1 Tie Breaking and Limits of ε-Equilibria
This subsection shows that the quantification to some tie-

breaking rule in the previous theorem is unavoidable. Nev-
ertheless we argue that it is really just a technical issue since
we can show that for every tie breaking rule there is a limit
of ε-equilibria.

A first price auction with the wrong tie breaking rule
Consider the full information game describing a first price
auction of a single item between Alice, who has a value of 1
for the item, and Bob who values it at 2, where the bids, x
for Alice and y for Bob, are allowed to be, say, in the range
[0, 10]. The full information game specifying this auction is
defined by uA(x, y) = 0 for x < y and uA(x, y) = 1 − x for
x > y, and uB(x, y) = 2− y for x < y and uB(x, y) = 0 for
x > y. Now comes our main point: how would we define
what happens in case of ties? It turns out that formally this
“detail” determines whether a pure Nash equilibrium exists.

Let us first consider the case where ties are broken in favor
of Bob, i.e., uB(x, y) = 2− y for x = y and uA(x, y) = 0 for
x = y. In this case one may verify that x = 1, y = 1 is a
pure Nash equilibrium4.

Now let us look at the case that ties are broken in favor
of Alice, i.e uA(x, y) = 1− x and uB(x, y) = 0 for x = y. In
this case no pure Nash equilibrium exists: first no x 6= y can
be an equilibrium since the winner can always reduce his bid
by ε and still win, then if x = y > 1 then Alice would rather
bid x = 0, while if x = y < 2 then Bob wants to deviate to
y + ε and to win, contradiction.

This lack of pure Nash equilibrium doesn’t seem to cap-
ture the essence of this game, as in some informal sense, the

3When all valuations are “substitutes”.
4The bid x = 1 is weakly dominated for Alice. Surpris-
ingly, however, there is no pure equilibrium in un-dominated
strategies: suppose that some y is at equilibrium with an un-
dominated strategy x < 1. If yge1 then reducing y to y = x
would still make Bob win, but at a lower price. However, if
y < 1 too, then the loser can win by bidding just above the
current winner – contradiction.

”correct” pure equilibrium is (x = 1, y = 1 + ε) (as well as
(x = 1− ε, y = 1)), with Bob winning and paying 1 + ε (1).
Indeed these are ε-equilibria of the game. Alternatively, if
we discretize the auction in any way allowing some minimal
ε precision then bids close to 1 with minimal gap would be
a pure Nash equilibrium of the discrete game. We would
like to formally capture this property: that x = 1, y = 1 is
arbitrarily close to an equilibrium.

Limits of ε-Equilibria
We will become quite abstract at this point and consider
general games with (finitely many) n players whose strategy
sets may be infinite. In order to discuss closeness we will
assume that the pure strategy set Xi of each player i has
a metric di on it. In applications we simply consider the
Euclidean distance.

Definition 3.3. (x1...xn) is called a limit (pure) equilib-
rium of a game (u1...un) if it is the limit of ε-equilibria of
the game, for every ε > 0.

Thus in the example of the first price auction, (1, 1) is
a limit equilibrium, since for every ε > 0, (1, 1 + ε) is an
ε-equilibrium. Note that if all the ui’s are continuous at
the point (x1...xn) then it is a limit equilibrium only if it
is actually a pure Nash equilibrium. This, in particular,
happens everywhere if all strategy spaces are discrete.

We are now ready to state a version of the previous propo-
sition that is robust to the tie breaking rule:

Proposition 3.4. 1. For every first price simultane-
ous auction game with any tie breaking rule, a profile
of valuation functions v1...vn admits a Walrasian equi-
librium with given prices and allocation if and only if
the game has a limit Nash equilibrium for these valua-
tions with these winning prices and allocation.

2. Every limit Nash equilibrium of a first price simulta-
neous auction game achieves optimal social welfare.

Proof. Let S1...Sn and p1...pm be a Walrasian equilib-
rium. Consider the bids where bij = pj + ε for all j ∈ Si and
bij = pj for all j 6∈ Si. Why are these bids an mε-equilibrium
of this game? Since we are in a Walrasian equilibrium, each
player gets a best set for him under the prices pj . In the
game, given the bids of the other players, he can never win
any item for strictly less than pj , whatever his bid, and
player i does win each item j in Si for price pj + ε, so his
current bid is a best response to the others up to an additive
ε for each item he wins.

Now fix a limit Nash equilibrium (bij) of the game with
some tie breaking rule and let (b′ij) be an ε-equilibrium of
the game with |bij − b′ij | ≤ ε for all i, j and with no ties; let
S1...Sn the allocation implied; and let pj = maxi bij for all j.
We claim that this is an mε-Walrasian equilibrium. Suppose
by way of contradiction that for some player i and some
bundle T 6= Si, vi(T )−

∑
j∈T pj > vi(Si)−

∑
j∈Si

pj +mε.
This would contradict the original bid of i being an ε-best
reply since the deviation bidding bij = pj + ε for j ∈ T and
bij = 0 for j 6∈ T would give player i the utility from T up
to mε which would be more than he currently gets from Si

– a contradiction.
Now let ε approach zero and look at the sequence of price

vectors ~p and sequence of allocations obtained as (b′ij) ap-
proach (bij). The sequence of price vectors converges to a



fixed price vector (since they are a continuous function of
the bids). Since there are only a finite number of different
allocations, one of them appears infinitely often in the se-
quence. It is now easy to verify that this allocation with the
limit price vector are a Walrasian equilibrium.

4. GENERAL EXISTENCE OF MIXED NASH
EQUILIBRIUM

In this section we ask whether such a game need always
even have a mixed-Nash equilibrium. This is not a corol-
lary of Nash’s theorem due to the continuum of strategies
and discontinuity of the utilities, and indeed even zero-sum
two-player games with [0, 1] as the set of pure strategies of
each player may fail to have any mixed-Nash equilibrium or
even an ε-equilibrium5. There is some economic literature
about the existence of equilibiria in such games (starting e.g.
with [7, 4]), and a theorem of Simon and Zame [8], implies
that for some (randomized) tie breaking rule, a mixed-Nash
equilibrium exists. The main example of their (more gen-
eral) theorem is the following (cf. page 864):

Suppose we are given strategy spaces Si, a dense sub-
set S∗ of S = S1 × · · · × Sn, and a bounded continuous
function ϕ : S∗ → <n. Let Cϕ : S → <n be the corre-
spondence whose graph is the closure of the graph of ϕ, and
define Qϕ(s) to be the convex hull of Cϕ(s) for each s ∈ S.
We call the correspondence Qϕ the convex completion of ϕ.
These are Simon and Zame’s motivating example of “games
with an endogenous sharing rule”, and their main theorem
is that these have a “solution”: a pair (q, α), where q is a
“sharing rule”, a Borel measurable selection from the payoff
correspondence Q and α = (α1, . . . , αn) is a profile of mixed
strategies with the property that each player’s action is a
best response to the actions of other players, when utilities
are according to the sharing rule q.

Now to how this applies in our setting: S∗ will be the
set of bids with no ties, i.e., where for all j and all i 6= i′

we have that bij 6= bi′j , which is clearly dense (since bids
with ties have measure zero). Here ϕ is simply the vector
of utilities of the players from the chosen allocation which
is fully determined and continuous in S∗ – when there are

no ties. For b 6∈ S∗, we have that Cϕ(~b) is the set of utility
vectors obtained from all possible deterministic tie-breaking

rules at ~b (each of which may be obtained as a limit of bids
with no ties), and Qϕ is the set of mixtures (randomizations)
over these. The solution thus provides a randomized tie-
breaking rule q and mixed strategies that are a mixed-Nash
equilibrium for the game with this tie-breaking rule. So we
get:

Corollary 4.1. The first price simultaneous auction game
for any profile of valuations has a mixed-Nash equilibrium
for some randomized tie-breaking rule.

We suspect that the tie-breaking rule is not that signifi-
cant and that mixed ε-Nash-equilibria (or maybe even exact
Nash-equilibria) actually exist for every tie-breaking rule,
similarly to the case of pure equilibria in this paper, or as
in the somewhat related setting of [6] where an “invariance”
in the tie-breaking rule holds.

5A well known example is having highest bidder win, as long
as his bid is strictly less than 1, in which case he looses (with
ties being ties).

5. MIXED-NASH EQUILIBRIA: EXAMPLES
In this section we study some of the simplest examples of

markets in our setting that do not have a Walresian equilib-
rium.

5.1 The AND-OR Game
We have two players an AND player and OR player. The

AND player has a value of 1 if he gets all the items in M ,
and the OR player has a value of v if he gets any item in M .
Formally, vand(M) = 1 and for S 6= M we have vand(S) = 0,
also, vor(T ) = v for T 6= ∅ and vor(∅) = 0.

When v ≤ 1/m there is a Walresian equilibrium with a
price of v per item. By Proposition 3.2 this implies a pure
Nash Equilibrium in which both players bid v on each item,
and the AND player wins all the items. Therefore, the inter-
esting case is when v > 1/m. It is easy to verify that in this
case is no Walresian equilibrium. We start with the case
that |M | = 2 and later extend it to the case of arbitrary
size. Here is a mixed Nash equilibrium for two items.

• The AND player bids (y, y) where 0 ≤ y ≤ 1/2 accord-
ing to cumulative distribution F (y) = (v−1/2)/(v−y)
(where F (y) = Pr[bid ≤ y]). In particular, There is
an atom at 0: Pr[y = 0] = 1− 1/(2v).

• The OR player bids (x, 0) with probability 1/2 and
(0, x) with probability 1/2, where 0 ≤ x ≤ 1/2 is dis-
tributed according to cumulative distribution G(x) =
x/(1− x).

Note that since the OR player does not have any mass
points in his distribution, the equilibrium would apply to
any tie breaking rule.

We start by defining a restricted AND-OR game, where
the AND player must bid the same value on both items, and
show that the above strategies are a mixed Nash equilibrium
for it.

Claim 5.1. Having the AND player bid using F and the
OR player bid using G is a mixed Nash equilibrium of the
restricted AND-OR game for two items.

Proof. Let us compute the expected utility of the AND
player from some pure bid (y, y). The AND player wins one
item for sure, and wins the second item too if y > x, i.e.,
with probability G(y). If he wins a single item he pays y,
and he wins both items he pays 2y. His expected utility
is thus G(y)(1 − y) − y = 0 for any 0 ≤ y ≤ 1/2 (and is
certainly negative for y > 1/2). Thus any 0 ≤ y ≤ 1/2 is a
best-response to the OR player.

Let us compute the expected utility of the OR player from
the pure bid (0, x) (or equivalently (x, 0)). The OR player
wins an item if x > y, i.e., with probability F (x), in which
case he pays x, for a total utility of (v−x) ·F (x) = v− 1/2,
for every 0 ≤ x ≤ 1/2 (and x > 1/2 certainly gives less
utility). Thus any 0 ≤ x ≤ 1/2 is a best-response to the
AND player.

Next we generalize the proof to the unrestricted setting.

Theorem 5.2. Having the AND player bid using F and
the OR player bid using G is a mixed Nash equilibrium of the
AND-OR game for two items.

Proof. We first show that if the AND player plays the
mixed strategy F then G is a best response for the OR



player. This holds since when the AND player is playing F ,
then all its bids are of the form (y, y) for some y ∈ [0, , 1/2].
Any bid (x1, x2) of the OR player, with x1 ≤ x2, is domi-
nated by (0, x2), since the AND player is restricted to bid-
ding (y, y). Therefore, G is a best response for the OR
player.

We now need to show that if the OR player plays the
mixed strategy G then F is a best response for the AND
player.

LetQ(x, y) be the cumulative probability of the OR player,
i.e.,

Q(x, y) = Pr[bid1 < x, bid2 < y] =
x

2(1− x)
+

y

2(1− y)
.

for x, y ∈ [0, 1
2
]. The AND utility function, given its distri-

bution P , is:

UAND = E(x,y)∼P [uand(x, y)],

where

uand(x, y) = 1 ·Q(x, y)− (xQ(x, 1) + yQ(1, y))

We show that for any x, y ∈ [0, 1
2
] we have uand(x, y) = 0.

This follows since,

uand(x, y) = 1 ·Q(x, y)− (xQ(x, 1) + yQ(1, y))

=

(
x

2(1− x)
+

y

2(1− y)

)
− x

(
x

2(1− x)
+

1

2

)
−y
(

1

2
+

y

2(1− y)

)
= (1− x)

x

2(1− x)
+ (1− y)

y

2(1− y)
− x

2
− y

2

= 0,

which completes the proof.

We now extend the result to the AND-OR game with
m items. The AND player selects y using the cumulative

probability distribution F (y) =
v− 1

m
v−y

for y ∈ [0, 1/m], and
bids y on all the items. The OR player selects x using the

cumulative probability distribution G(x) = (m−1)x
(1−x)

, where

x ∈ [0, 1/m], and an i uniformly from M , and bids x on item
i and zero on all the other items.

Theorem 5.3. Having the AND player bid using F and
the OR player with G is a mixed Nash equilibrium.

Proof. Let Q(x), for x ∈ [0, 1/m]m be the cumulative
probability distribution of the bids of the OR player. Given
that the OR player bids using G it follows that

Q(x) = Pr[∀i bidi < xi] =

m∑
i=1

xi
1− xi

(
m− 1

m

)
for x ∈ [0, 1

m
]m. Let P denote the cumulative probability

distribution of the bids of the AND player. Then the utility
of the AND player is:

UAND = Ex∼P [uand(x)],

where

uand(x) = 1 ·Q(x)−
m∑
i=1

xiQ(xi, (1/m)−i) .

We show that for any x ∈ [0, 1
m

]m we have uand(x) = 0.

uand(x) = 1 ·Q(x)−

(
k∑

i=1

xiQ(xi, (1/m)−i)

)

=

m∑
i=1

xi
1− xi

(
m− 1

m

)

−
m∑
i=1

xi

(
xi

1− xi

(
m− 1

m

)
+ (m− 1)

1

m

)

=

m∑
i=1

(1− xi)
xi

1− xi

(
m− 1

m

)

−

(
m∑
i=1

xi
m− 1

m

)
= 0.

This implies that the mixed strategy of the AND player
defined by F , is a best response to the mixed strategy of
the OR player defined by G. We now show that the mixed
strategy of the OR player defined by G, is a best response
to the mixed strategy of the AND player defined by F .

Recall that P (x), for x ∈ [0, 1/m]m is the cumulative prob-
ability distribution of the bids of the AND player, and by
the definition of the AND player it equals to

P (x) = Pr[∀i bidi < xi] =
v − 1

m

v −mini{xi}
.

(Note that, as it should be, under P the support is the set
of all identical bids, i.e., ∀i bidi = x. The probability under

P of having a vector z ≤ x is
v− 1

m
v−x

.)
The utility function of the OR player is:

UOR = Ex∼Q[uor(x)],

where

uor(x) = v · e(x)−

(
m∑
i=1

xiP (xi, (1/m)−i)

)
.

where e(x) = PrP [∃i such that Xi < xi].
We obtain that for any x ∈ [0, 1

m
] and i ∈ [1,m] uor(xi =

x, x−i = 0) = v − 1
m

since

uor(xi = x, x−i = 0) =
v − (1/m)

v − x (v − x) = v − 1

m

Furthermore, for any x ∈ [0, 1
m

]m we have uor(x) ≤ uor(y),
where y keeps only the maximal entry in x and zeros the
rest. This follows since given P , the probability of winning
under x and y is identical. Clearly the payments under y
are at most those under x (since all the bids in x are at least
the bids in y). We conclude that the OR player’s strategy
is a best response to the AND player’s strategy, and this
completes the proof.

5.2 The Triangle Game
We start with a simple case of three single minded bidders

and three items, where each bidder wants a different set of
two items, and has a value of one for this set.

Consider symmetric strategies in which each player bids
the same for the pair of items it wants, namely each player
draws their bid x from the same distribution whose cumu-
lative distribution function is F (x). Assuming F (x) has no



atoms then the utility of each player is

(1− 2x)F 2(x)− 2xF (x)(1− F (x)) = F 2(x)− 2xF (x)

Theorem 5.4. If each player draws an x from F (x) =
2x, where 0 ≤ x ≤ 1/2, and bids x on both items, then it is
a mixed Nash equilibrium.

Proof. Suppose two of the players play according to
F (x) and consider the best response of the third player. For
any value 0 ≤ x ≤ 1/2 if the third player bids (x, x), his util-
ity is zero. On the other hand, if it bids y for one item and z
for the other then its utility is F (y)F (z)·1−yF (y)−zF (z) =
−2(y − z)2 ≤ 0. Finally, bidding any number strictly above
1/2 is dominated by bidding 1/2.

Consider now a generalization of this game where each
player is single minded and is interested only in a particular
set of k items for which its utility is 1. We also make the
following assumptions.

1. Exactly d agents are interested in each item.

2. For any two bidders i 6= i′, we have |Si ∩ Si′ | ≤ 1.
(This implies that if we fix a player i and consider its
set Si of k items. The other (d− 1)k players who are
also interested in these k items are all different.)

Assume each player i draws the same bid for all items in
its set Si from the CDF G(x). If G(x) satisfies the equation

G(d−1)k(x)− kxGd−1(x) = 0 (1)

for all x then the utility of a player is zero for every bid x.
One can easily verify that the function

G(x) = (kx)
1

(d−1)(k−1) ,

satisfies Equation (1) for all x. So G(x) = (kx)
1

(d−1)(k−1) ,
0 ≤ x ≤ 1

k
, forms an equilibrium for the restricted game,

where in the restricted game a player has to bid the same
bid on all the items in his set. The following shows that
even if we do not restrict the players to bid the same then
G(x) is an equilibrium.

Theorem 5.5. If all players draw a bid for all k items

that they want from G(x) = (kx)
1

(d−1)(k−1) , 0 ≤ x ≤ 1
k

, then
it is a mixed Nash equilibrium.

Proof. Suppose all the players but one play according
to G(x) and consider the best response of the first player.
Suppose its bid is xj for the jth item in Si. Then its utility
is

Πk
j=1(kxj)

1
(k−1) −

k∑
j=1

xj(kxj)
1

(k−1) .

We claim that this utility is non-positive for every set of bids
x1, . . . , xk. Indeed this follows since

k
k

k−1

k∏
j=1

x
1

(k−1)

j ≤ k
1

k−1

k∑
j=1

x
k

(k−1)

j

by the inequality of arithmetic and geometric means:

k

√∏
x

k
k−1

i =

k∏
j=1

x
1

(k−1)

j ≤ 1

k

k∑
j=1

x
k

(k−1)

j .

6. INEFFICIENCY OF MIXED EQUILIBRIA
In this section we use our analysis of the examples given in

the previous section to construct examples where there are
large gaps between the efficiency obtained in a mixed-Nash
equilibrium and the optimal efficiency.

We first analyze the AND-OR game with m items, where
v ≥ 1/m, and hence there is no pure Nash equilibrium.
We will analyze the following parameters: value of the OR
player is v = 1/

√
m and the value of the AND player is 1.

Theorem 6.1. There is a mixed Nash equilibrium in the
AND-OR game with the parameters above whose social wel-
fare is at most 2/

√
m. I.e. for this game we have PoA ≥√

m/2.

Proof. For the PoA consider the equilibrium of Section
5.1. Assume that the value of the OR player is v = 1/

√
m

and the value of the AND player is 1. This implies that the
optimal social welfare is 1. The probability that the AND

player bids x = 0 is v−1/m
v−x

= 1 − 1/
√
m. Therefore with

probability at least 1 − 1/
√
m the OR player wins. This

implies that the social welfare is at most 2/
√
m

We now prove the following lemma regarding the support
of the AND player.

Lemma 6.2. In any Nash equilibrium the AND player does
not have in its support any bid vector band such that

∑m
i=1 band,i

> 1.

Proof. Assume that there is such a bid vector band. Since∑m
i=1 band,i > 1 the AND player can not get a positive util-

ity, and the only way it can gain a zero utility is by losing
all its non-zero bids. This implies that for any bid vector
bor of the OR player, the OR player will win all the items.
Therefore

∑m
i=1 bor,i > 1. This implies that the revenue of

the auctioneer is larger than 1 (every time). Since the ex-
pected revenue of the auctioneer is larger than 1, and the
optimal social welfare is 1, the sum of the expected utilities
of the players has to be negative. Hence one of the players
has an expected negative utility. This clearly can not occur
in equilibrium.

It turns out that for this example, not only there exist
bad equilibria, but actually all equilibria are bad!

Theorem 6.3. For any Nash equilibrium of the AND-OR
game with the parameters above the social welfare is at most
3
√

(logm)/m. I.e. the PoS ≥
√
m/ logm/3.

Proof. Assume we have a Nash equilibrium in which the
AND player wins with probability α. This implies that the
expected utility of the OR player uor is at most (1 − α)v.
Also, the social welfare of the equilibrium is (1− α)v + α ≤
v + α.

By Lemma 6.2 the AND player never plays a bid b in
which the sum of the bids is larger than 1. This implies that
the AND player can have at most half of the bids which are
larger than 2/m. Therefore, if the OR player bid 2/m on
logm random items, it will win some item with probability
at least 1−1/m. The OR player utility from such a strategy
is at least (1 − 1/m)v − (logm)/m. This implies that in
equilibrium,

(1− α)v ≥ uor ≥ (1− 1/m)v − (logm)/m.

For v =
√

(logm)/m it implies that α ≤ 2
√

(logm)/m.

Therefore the social welfare is at most 3
√

(logm)/m.



Finally we study examples in which there are multiple
equilibria, and show that they can be far apart from one
another:

Theorem 6.4. There is a set of valuations such that in
the corresponding simultaneous first price auction there is
an efficient (pure) Nash equilibrium, as well as an inefficient
one, where the inefficiency is at least by a factor of

√
m/2.

Equivalently, the corresponding auction has PoS = 1 but
PoA ≥

√
m/2.

Proof. Consider m = `2 items, which are labeled by
(i, j) for i, j ∈ [1, `]. Now we analyze 2` single minded bid-
der, where for each i ∈ [1, `] we have a bidder that wants
all the items in (i, ∗), we call those bidders row bidders. For
each j ∈ [1, `] we have a bidder that want (∗, j), and we call
them column bidders. All bidders have value ` for their set.
Note that there is no allocation where both a row and a col-
umn players are satisfied, where a player is satisfied if it is
allocated all the items in his set. The social optimum value
is `2 (satisfying all the row bidders or all the column bid-
ders). In this game there is a Walresian equilibrium, where
the price of each item is 1. Similarly, there is a pure Nash
equilibrium where all bidders bid 1 for each item and we
break the ties in favor to all the row players (or alterna-
tively, to all the column players). This implies that the PoS
is 1. Note that this game has also a mixed Nash equilibrium
(Section 5.2, Theorem 5.5). Since it is a symmetric equilib-
rium, in which every player bids the same value on all items,
the expected number of satisfied players is at most 2 (since
the probability of k satisfied players is at most 2−k). This
implies that the PoA is `/2 =

√
m/2.

7. APPROXIMATE WELFARE ANALYSIS
In this section we analyze the Price of Anarchy of the si-

multaneous first-price auction. We start with a simple proof
of an O(m) upper bound on the price of anarchy for gen-
eral valuations. Then we consider β-XOS valuations (which
are equivalent to β-fractionally subadditive valuations) and
prove an upper bound of 2β. Since subadditive valuations
are O(logm) fractionally subadditive [5, 2] we also get an
upper bound of O(logm) on the price of anarchy for subad-
ditive valuations.

Assume that in OPT player i gets set Oi and receives
value oi = vi(Oi). Let ki be |Oi|. Let ei be the expected
value player i gets in an equilibrium and let ui be the ex-
pected utility of player i in an equilibrium. Let ri be the
expected sum of payments in equilibrium over all items in
Oi (these are not necessarily won by player i in equilibrium).

Denote the total welfare, revenue, and utility in equilib-
rium by SW (eq), REV (eq), and U(eq), respectively. By
definitions we have: (1) SW (eq) =

∑
i ei, (2) SW (OPT ) =∑

i oi, (3)REV (eq) =
∑

i ri ≤ SW (eq), (4) U(eq) =
∑

i ui =
SW (eq)−REV (eq).

Theorem 7.1. For any set of buyers the PoA is at most
4m.

Proof. We first show that for each buyer i, we have
2ui ≥ oi − 4kiri.

By Markov, with probability of at least 1/2 the total sum
of prices of items in Oi is at most 2ri. Thus if player i bids
2ri for each item in Oi (and 0 elsewhere) he wins all items
with probability of at least 1/2, getting expected value of

at least oi/2, and paying at most 2kiri. Since we were in
equilibrium this utility must be at most ui. Hence, 2ui ≥
oi − 4kiri.

Summing over all buyers, and bounding
∑

i ki ≤ m, we
get that OPT ≤ 2U(eq) + 4mRev(eq) ≤ 4mSW (eq).

A function v is β-XOS, if there exists an XOS function X
such that for any set S we have v(S) ≥ X(S) ≥ v(S)/β, i.e.,
if there are numbers λj,l, j ∈ M and l ∈ L, such that for
any set S we have

v(S) ≥ max
k∈L

∑
j∈S

λj,k ≥ v(S)/β

The equivalence of β-XOS and β fractionally sub-additive
follows the same proof as in [5].

Theorem 7.2. Assume that the valuations of all the play-
ers are β-XOS. Then the PoA is 2β.

Proof. Since v is β-XOS, there is a k ∈ L such that∑
j∈Oi

λj,k ≥ vi(Oi)/β, and for any set S, we have v(S) ≥∑
j∈S λj,k. Let fj be the expected price of item j. By

Markov inequality, with probability of at least 1/2 the price
of item j is at most 2fj . Consider the deviation where player
i bids bidi,j = min{λj,k, 2fj} for each item j ∈ Oi (and 0
elsewhere). Player i wins each item j with probability αj

and if bidi,j = 2fj then αj ≥ 1/2. Let Si be the set of item
that player i wins with his deviation bids bidi,j . (Note that
Si is a random variable that depends on the random bids of
the other players.) The expected utility of player i from the
deviation is,

E[vi(Si)−
∑
j∈Si

bidi,j ] ≥
∑
j∈Oi

αj(λj,k − bidi,j)

≥
∑
j∈Oi

1

2
(λj,k − bidi,j)

≥
∑
j∈Oi

1

2
(λj,k − 2fj)

≥ 1

2β
vi(Oi)−

∑
j∈Oi

fj .

Since player i was playing an equilibrium strategy, we have
that ui ≥ E[vi(Si)−

∑
j∈Si

bidi,j ]. Summing over all players

i’s, and recalling that REV (eq) =
∑

j∈M fj , we get,

E[SW (eq)]−REV (eq) =

n∑
i=1

ui

≥ 1

2β
E[SW (OPT )]−REV (eq),

which completes the proof.

8. BAYESIAN PRICE OF ANARCHY
In a Bayesian setting there is a known prior distribution

Q over the valuations of the players. We first sample v ∼ Q
and inform each player i his valuation vi. Following that,
each player i draws his bid from the distribution Di(vi), i.e.,
given a valuation vi he bids (bi,1, . . . , bi,m) ∼ Di(vi). The
distributions D(v) = (D1(v1), . . . , Dn(vn)) are a Bayesian
Nash equilibrium if each Di(vi) is a best response of player
i, given that its valuation is vi and the valuations are drawn
from Q.



We start with the general case, where the distribution over
valuations is arbitrary and the valuations are also arbitrary.
Later we study product distributions over β-XOS valuations.

Theorem 8.1. For any prior distribution Q over the play-
ers valuations, the Bayesian PoA is at most 4mn+ 2.

Proof. Fix a Bayesian Nash equilibriumD = (D1, . . . , Dn)
as described above. Let Qvi be the distribution on v−i ob-
tained by conditioning Q on vi as the value of player i.

Let ui(vi) be the expected utility of player i when his valu-
ation is vi, i.e., ui(vi) = Ebi∼Di(vi)Ev−i∼Qvi

Eb−i∼D−i [vi(Si)−∑
j∈Si

bi,j ], where Si is the set of items that player i wins
with the set of bids b. Let ui be the expected utility of player
i, i.e., Evi∼Q[ui(vi)].

For any valuation vi for player i, consider the following de-
viation. Let Rev(vi) be the expected revenue given that the
valuation of player i is vi, i.e., Rev(vi) = Ev∼Qvi

[
∑m

j=1 maxk bk,j ].

Consider the deviation where player i bids 2Rev(vi) on each
item j ∈M . By Markov inequality, he will win all the items
M with probability at least 1/2. Therefore, his utility from
the deviation is at least

vi(M)/2− 2mRev(vi)

Since this is an equilibrium, we have that

ui(vi) ≥ vi(M)/2− 2mRev(vi)

Summing over the players and taking the expectation with
respect to v,

n∑
i=1

Ev[ui(vi)] ≥
n∑

i=1

Ev[vi(M)/2− 2mRev(vi)]

Clearly
∑n

i=1 Ev[ui(vi)] ≤ Ev(SW (D)), where Ev(SW (D))
is the expected social welfare of the Bayesian equilibrium
D. Also,

∑n
i=1Ev[vi(M)] ≥ Ev[SW (OPT (v))]. Finally,

for every player i, Ev[Rev(vi)] = Rev, where Rev is the
expected revenue. Therefore,

Ev[SW (D)] ≥ Ev[SW (OPT (v))]/2− 2mnRev

Since Rev ≤ Ev[SW (D)], we have that,

(4mn+ 2)Ev[SW (D)] ≥ Ev[SW (OPT (v))]

The following theorem show that the Bayesian PoA is at
most 4β when the valuations are limited to β-XOS and the
distribution Q over valuations is a product distribution. The
proof uses the ideas presented in [2].

Theorem 8.2. For a product distribution Q over β-XOS
valuations of the players, the Bayesian PoA is at most 4β.

Proof. Fix a Bayesian Nash equilibriumD = (D1, . . . , Dn)
as described above. Let Qvi be the distribution on v−i ob-
tained by conditioning Q on vi as the value of player i.

Consider the following deviation of player i, given its valu-
ation vi. Player i draws w−i ∼ Qvi , that is w−i are random
valuations of the other players, conditioned on player i hav-
ing valuation vi. Player i computes the optimal allocation
OPT (vi, w−i), and in particular his share OPTi(vi, w−i) in
that allocation. Player i bids 2fj(vi) on each item j ∈
OPTi(vi, w−i) , where fj(vi) is the expected maximum bid

of the other players on item j in the equilibrium D condi-
tioned on player i having valuation vi, i.e.,

fj(vi) = Ew−i∼Qvi
Eb−i∼D−i(w−i)[max

k 6=i
bk,j ] .

By Markov inequality player i wins each item j ∈ OPTi(vi,
w−i) with probability at least half. Since vi is an β-XOS val-
uation, its expected value is at least vi(OPTi(vi, w−i))/(2β)
so the utility of player i in this deviation is at least

Ew−i∼Qvi
[vi(OPTi(vi, w−i))/(2β)−

∑
j∈OPTi(vi,w−i)

2fj(vi)]

Let ui(vi) be the expected utility of player i when his valu-
ation is vi, i.e., ui(vi) = Ebi∼Di(vi)Ev−i∼Qvi

Eb−i∼D−i [vi(Si)−∑
j∈Si

bi,j ], where Si is the set of items that player i wins
with the set of bids b. Let ui be the expected utility of player
i, i.e., Evi∼Q[ui(vi)]. We get that,

ui(vi) ≥

Ew−i∼Qvi
[vi(OPTi(vi, w−i))/(2β)−

∑
j∈OPTi(vi,w−i)

2fj(vi)]

Takin the expectation with respect to vi,

ui = Evi [ui(vi)]

≥ EviEw−i∼Qvi
[vi(OPTi(vi, w−i))/(2β)

−
∑

j∈OPTi(vi,w−i)

2fj(vi)]

= Ev∼Q[vi(OPTi(v))/(2β)]

−Ev∼Q[
∑

j∈OPTi(v)

2fj(vi)]

= Ev∼Q[vi(OPTi(v))/(2β)]

−2Ev∼Q[
∑
j∈M

I(j ∈ OPTi(v))fj(vi)],

where I(X) is the indicator function for the event X. Sum-
ming over all the players

n∑
i=1

ui ≥
n∑

i=1

Ev∼Q[vi(OPTi(v))/(2β)]

−2

n∑
i=1

Ev∼Q[
∑
j∈M

I(j ∈ OPTi(v))fj(vi)]

= Ev∼Q[SW (OPT (v))/(2β)]

−2
∑
j∈M

Ev∼Q[

n∑
i=1

I(j ∈ OPTi(v))fj(vi)]

Now we use the fact that the distribution Q over the valua-
tions is a product distribution. This implies that for any val-
uation vi, we have the same value fj(vi). Let price(j) be the
expected price of item j ∈ M , i.e., price(j) = Ev∼QEb∼D[
maxk bk,j ]. Since price(j) ≥ fj(vi) for any buyer i and val-
uation vi,

n∑
i=1

ui ≥ Ev∼Q[SW (OPT (v))/(2β)]

−2
∑
j∈M

price(j)Ev∼Q[

n∑
i=1

I(j ∈ OPTi(v))]

= Ev∼Q[SW (OPT (v))/(2β)]− 2
∑
j∈M

price(j),



where the last equality follows since item j is always assigned
to some buyer, therefore, for any v, we have

∑n
i=1 I(j ∈

OPTi(v)) = 1.
Let sw(D) be the expected social welfare of the Bayesian

Nash D. Note that
∑n

i=1 ui = sw(D) −
∑

j∈M price(j).
Therefore,

sw(D)−
∑
j∈M

price(j) ≥

Ev∼Q[SW (OPT (v))/(2β)]− 2
∑
j∈M

price(j),

which implies that

2sw(D) ≥ sw(D) +
∑
j∈M

price(j) ≥ Ev∼Q[SW (OPT (v))/(2β)].

This implies that the PoA of the Bayesian equilibrium D is
at most 4β.
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