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Abstract—A widely used model in the online advertising
industry is one where advertisers pre-purchase a reservation
package of online inventory on content sites owned by publishers
(e.g., CNN, amazon, etc.). Sales representatives, acting on behalf
of publishers, sell inventory (impression) bundles of various types
(text, video, multimedia, etc.) while trying to meet advertisers’
expectations. The current process of sales is usually ad hoc
and oftentimes a publisher uncontrollably runs out of a highly
desirable inventory type, failing to meet the demand of his/her
more valuable customers (advertisers). In this specific framework
of display advertising, we propose a mathematical model for
this problem and design a simple and easy to implement online
impression allocation policy with provably revenue maximizing
performance. Our results represent fundamental extensions to
the existing theory of loss networks, given that this new applica-
tion introduces novel mathematical assumptions and operational
constraints.

I. INTRODUCTION

A widely used model in online advertising industry is the
one in which advertisers pre-purchase a reservation package of
online inventory on content sites owned by the so called pub-
lishers (for example, CNN, amazon.com, etc.). This package
consists of specified inventory bundles of various types (e.g.,
display, text, video, pop-up) that are priced differently. In this
context, inventory is counted in units known as impressions,
i.e., the number of times a certain ad appears on a Web
page when users access it. Inventory categories differ in their
properties, such as size, type (display, video, etc.), position,
as well as monitored measures of their effectiveness (one very
common example is a Click Through Rate - CTR). When
online advertisers arrive to a publisher, they have a daily bud-
get, a desirable duration of the specific advertising campaign
and a performance goal, i.e., some target ’effectiveness’ of
a purchased package of impressions. Given the requirements
and the current inventory availability, a sales person (agent)
allocates a bundle of impressions for the incoming advertiser.
The focus of this paper is a design of a simple, easy to
implement, online inventory allocation policy for which we
prove its near optimal long run performance.

The underlying dynamics of the described application bears
some similarities to bandwidth sharing in communication net-
works. The elaborate studies in the somewhat related context

of loss networks started in early ’80 and have expanded to
other domains encompassing pricing, congestion control and
bandwidth planning (see, [6], [7], [17], and a more recent work
on bandwidth sharing policies in [5], including references
therein). Recently, this work found some new applications in
the field of resource (workforce) management (see [13], [9]
and [10]). Despite the aforementioned similarities, there are
intrinsic characteristics that make the problem of impression
allocations in online advertising novel from the modeling
and analysis perspective. The key difference is a random
budget which translates into a random inventory demand. The
other, very important, property is that online advertisers do
not ask for specific a resource when purchasing the bundle
of impressions. What they are looking for is some notion
of “effectiveness” or “quality” they will experience for the
budget they invest in their advertising campaign. On the other
hand, the most effective inventory is scarce and it is of
huge importance for publishers to design inventory allocation
schemes that will keep their clients (advertisers) satisfied, and
which could potentially increase their revenue.

The policy we will propose relies on the solution of a suit-
ably constructed linear program. This provides both guidance
towards the said policy and plays a central role in establishing
performance bounds. Rather surprisingly, we show that the
LP solution itself is not sufficient for “good” planning of the
online impression allocation process. In order to amortize the
uncertainty of the incoming and overflowing demand, one must
incorporate suitable “safety stocks” of impressions designated
to handle demand overflows. We introduce a fundamentally
new techniques that allow us to properly size these safety
stocks and hence allowing us to prove the policy performance
is asymptotically optimal.

II. PROBLEM FORMULATION

Let a stream of M classes of online advertisers arrive to
a publisher according to independent Poisson processes in
time. Assume that advertisers of class 1 ≤ m ≤ M arrive at
time points {τ (m)

n }, with rate λ m = (E[τ (m)
n − τ (m)

n−1])
−1 > 0.

An advertiser of type m, 1 ≤ m ≤ M, arriving at time τ (m)
n ,

brings some daily budget he is willing to spend on impressions
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(online inventory) that we model by a random variable B(m)
n ,

B(m)
n < B < ∞ ; we assume that {B(m)

n } are mutually indepen-
dent and independent from ∪m{τ (m)

j }.
We assume that there are K < ∞ inventory (impression)

types, with the corresponding prices per impression pk, 1 ≤
k ≤ K. Price is significantly related to ’effectiveness’ of the
corresponding inventory. (For direct response advertisers who
care about clicks, effectiveness is usually measured through the
Click-Through-Rate (CTR), which represents the proportion
of impressions that are bought and result in a click.) If an
advertiser arriving at time τ (m)

n ends up buying a package
(I(m)

n,1 , . . . , I(m)
n,K ) with I(m)

n,1 impressions of type 1, . . . , and

I(m)
n,K impressions of type K, the resulting effectiveness, say

∆ (I(m)
n,1 , . . . , I(M)

n,K ), is

∆ (I(m)
n,1 , . . . , I(m)

n,K ) = ε 1I(m)
n,1 + · · ·+ ε KI(m)

n,K , (1)

where we use ε k > 0, 1 ≤ k ≤ K, to denote the effectiveness
of inventory k. (Here, we assume that effectiveness is some
given and fixed parameter.) When sold to an advertiser of
class m, impressions are reserved for some random amount of
time with cumulative distribution function G(m) and expected
value µ (m) ,

∫ ∞
0 (1 −G(m)(u))du. On the other hand, daily

impression capacities are finite, i.e., the publisher can provide
only a finite amount of impressions of type 1 ≤ k ≤ K, say
Ck = φ kC, 0 < φ k ≤ 1, per day. The process of inventory
allocation on behalf of the publisher is conducted by an
assigned sales person. When an advertiser arrives with a
daily budget B(m)

n , a sales person allocates inventory so that
B(m)

n = p1I(m)
n,1 + · · ·+ pKI(m)

n,K . Each sales agent’s goal is to
create a package of impressions that will utilize the invested
budget in a “preferred” way for the class of advertisers it is
sold to. We assume that these target budget utilizations, i.e.,
proportions of the budget that turn out to be effective (e.g., turn
into clicks), are given by ε ∗m, 1≤m≤M, for the corresponding
advertiser class. Given that a sales agent sells a package of
impressions (I(m)

1 , . . . , I(m)
K ) to an advertiser of class m and

budget B(m)
n , the proportion of the budget that gets utilized

is

E(m)
n =

ε 1 p1I(m)
n,1 + · · ·+ ε K pKI(m)

n,K

B(m)
n

.

An important constraint in the allocation process is having
“small” deviations from the target package effectiveness.

Our objective in this paper is to design a dynamic inventory
allocation policy that maximizes expected long run daily
revenue subject to constraints on deviations from the target
allocation effectiveness, i.e. |E(m)

n − ε ∗m|, and inventory capacity
constraints. This is a constrained stochastic control problem,
which even in the simplified Markovian framework (expo-
nentially distributed campaign durations) with fixed budget
values, and using dynamic programming principles, becomes
intractable due to the high dimensionality of the state space.
Instead of following that path, we first relax the original prob-
lem formulation and concentrate on maximizing the expected

net revenue rate that we define as

maxE







M

∑
m=1

∑
i∈N

(m)
n

B(m)
i −

M

∑
m=1

∑
i∈N

(m)
n

B(m)
i γ (m)(ε ∗m −E(m)

i )







,

(2)
where parameters γ (m), 1 ≤ m ≤ M, allow the publisher to
differently penalize ’under-performance’ among distinct ad-
vertiser classes based on the previous experience, revenue
goals, market focus plans, etc. We use N

(m)
n in (2) to denote

a set of still-active transactions of type m at the moment
τ n. Next, we concentrate on the relaxed objective which, in
conjunction with the inventory capacity constraints, we solve
in an approximate manner. We use a knapsack-type linear
program (LP) (explained in Section III) that provides an upper
bound on expected net revenue rate of any stationary, state-
dependent, inventory allocation policy. Furthermore, we use
the solution of the constructed LP to design a simple online
allocation policy, which we prove is asymptotic optimality in a
regime where advertiser arrival rates (demand) and inventory
capacities grow large (discussed in Sections III and IV and
VI).

III. STATIONARY ALLOCATION POLICIES

We focus on a set of stationary policies that upon an
arrival of an advertiser, make impression allocation decisions
based on her class, budget, utilization targets and the current
impression availability. For each policy π , let RC̄

π (T ) be the
net revenue rate achieved by policy π over interval [0,T ] with
inventory capacities C̄ , (C1, . . . ,CK). Then, we define the
expected long-run net revenue rate of a policy π as

R
C̄(π ) , lim

T→∞

Eπ [RC̄
π (T )]

T
, (3)

where the expectation Eπ is taken with respect to probability
measure induced by policy π .

At any time point t, the state of the system is specified by the
class of an advertiser with its campaign in process, the amount
of impressions of each inventory engaged by the specific
campaign, as well as the time that elapsed from the moment
of the corresponding advertiser/campaign arrival. Since we
focus on state-dependent policies, they can be represented
as measurable functions from the state-space defined above
to actions. Note that each state-dependent policy induces a
Markov process over the state-space. Then, using analogous
arguments as in the Appendix of [11] (which is the extended
version of [12]), we prove the specific version of Theorem
1 from [15], and show the existence of a unique stationary
distribution which is ergodic. Thus, for each state-dependent
policy π , the limit in (3) is well-defined and the expectation
in the numerator of (3) exists.

In this paper, we concentrate on a specific subset of state-
dependent policies that allocate class-dependent proportions of
advertiser’s budget on available inventory. In the case where
there is not enough of policy-prescribed inventory available
at the moment of an advertiser arrival, we propose a way to
substitute this inventory with other inventory types.
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A. Optimal Online Allocation Proportions

In this section we use a simple linear program (LP) that will
allow us to: (1) estimate an upper bound on the achievable
long-run revenue rate, and (2) provide the policy design
guidelines. The LP exploits the ergodicity discussed in the
previous section and uses the existence of the long-run aver-
ages to compute the optimal class-dependent static impression
allocation proportions. We use these proportions to design an
online policy which we prove achieves the optimal long-run
net revenue rate in the regime where advertiser arrival rates
and capacities grow large.

What makes the dynamics in this paper intrinsically differ-
ent from that of many similar loss network models is that all
online inventory is substitutable and advertiser requirements
are expressed not in terms of the amount of inventory, but
its target performance (i.e., desired effectiveness). Note that
revenue penalties (as described at the end of Section II) in
missing advertiser target effectiveness depend significantly
on the choice of inventory substitutes, which provides the
key intuition for the design of the well-performing online
allocation policy.

As we discussed before, we concentrate on a set of state-
dependent policies where any such policy induces a Markov
process on the state-space of the system with a unique station-
ary distribution that is ergodic. In particular, for each advertiser
class m, inventory k and a given state-dependent policy π , there
exists a stationary proportion α (π )

m,k of its budget that is spent
on inventory k, which is at the same time equal to the long-run
proportion of advertiser m budgets spent on inventory k. Thus,
any state-dependent policy π is associated with the stationary
proportions α (π )

m,k , 1 ≤ m ≤ M, 1 ≤ k ≤ K. Furthermore, using

Little’s law, we can use the stationary proportions α (π )
m,k to

express the average amount of resource k engaged by advertis-
ers of type m as λ (m)µ (m)

EB(m)α (π )
m,k/pk = ρ (m)

EB(m)α (π )
m,k/pk.

(Note that ρ (m) = λ (m)µ (m) is the expected number of class
m advertisers being served in the system assuming that there
is always some inventory, potentially very ineffective, that a
sales person can use to create a package to sell.) Thus, in
conjunction with (2), it follows that the expected long-run net
revenue rate of a policy π can be expressed as

M

∑
m=1

ρ (m)
EB(m) −

M

∑
m=1

ρ (m)
EB(m)γ (m)(ε ∗m − ᾱ (π )

m × ε̄ ),

where ᾱ (π )
m , (α (π )

m,1, . . . , α
(π )
m.K), ε̄ , (ε 1, ..., ε K), and × denotes

the scalar product of the two vectors. The second term follows
from EE(π ,m)

n = ∑ K
k=1 α (π )

m,k ε k = ᾱ (π )
m × ε̄ .

The physical constraints of the system that we analyze in
this paper imply that, for any feasible allocation policy, it is not
possible to find more than Ck, 1 ≤ k ≤ K, impressions being
allocated by ongoing ad campaigns. Therefore, in view of the
notation from the above, the expected amount of impressions
k allocated by active campaigns satisfies

M

∑
m=1

ρ (m)
EB(m)α (π )

m,k/pk ≤Ck.

An intrinsic property of the inventory allocation dynamics
in this paper relates to the ways of ’prioritizing’ the choice
of inventory assigned to a specific class of advertisers. More
specifically, our goal is to design a budget-proportion rule that
would be a guideline for sales people on how to allocate the
budget of an incoming advertiser. Furthermore, in the case
when there is not enough available suggested inventory (i.e.,
already engaged by the ongoing ad campaigns), there needs to
be a guideline on how to choose the “right” impression substi-
tutions. Thus, inventory 1≤ k ≤K utilization is affected by the
two sources of demand: (i) the demand that is instantaneously
allocated using the policy prescribed budget proportion, and
(ii) forwarded demand generated in the case where there is
not enough of available policy-recommended inventory and
the specific inventory is used as a substitution. We design the
rule that uses the prescribed budget proportions to allocate the
incoming advertiser requests. In the case this demand can not
be met due to limited resource availability, the rule uses a
specific substitution, as described in Subsection III-B.

Next, we introduce the linear program (LP) and use its
solution to construct a simple online impression allocation rule
that we call Waterfall Allocation (WA) policy. In view of the
previous discussion in this section, we focus on solving the
following LP relaxation that maximizes the long-run expected
net revenue rate:

max
M

∑
m=1

ρ (m)
EB(m)−

M

∑
m=1

ρ (m)
EB(m)γ (m)(ε ∗m − ᾱ (π )

m × ε̄ ) (4)

s.t.
M

∑
m=1

ρ (m)
EB(m)α (π )

m,k/pk ≤ Ĉk, 1 ≤ k ≤ K, (5)

0 ≤ α (m)
k ≤ 1, 1 ≤ k ≤ K, 1 ≤ m ≤ M;

(6)

Note that we use Ĉk ≤Ck in the capacity constraint (5) instead
of the total capacity Ck for inventory k. The role of this,
adjusted capacity value, is to amortize the variability in the
’demand’ by using ∆ Ck , Ck − Ĉk to meet the demand of the
forwarded traffic (in the case the original inventory choice can
not be met due to the non-availability). More explicit details
about the policy that we propose are presented in the next
subsection.

The LP in (4) solves for the optimal values of ᾱ (π )
m , 1 ≤

m ≤ M, and is equivalent to

max
M

∑
m=1

ρ (m)
EB(m)γ (m) ᾱ (m) × ε̄ (7)

s.t.
M

∑
m=1

ρ (m)
EB(m)α (m)

k ≤ Ĉk pk, 1 ≤ k ≤ K. (8)

0 ≤ α (m)
k ≤ 1, 1 ≤ k ≤ K, 1 ≤ m ≤ M. (9)

Then, the solution of the previous linear program is obtained
from the following lemma.

Lemma 1: Assume that advertiser classes are enumerated
in the decreasing order of γ (m), i.e.,

γ (1) ≥ γ (2) ≥ . . . , (10)
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and that inventories are enumerated in the decreasing order of
ε k, i.e.,

ε 1 ≥ ε 2 ≥ . . . . (11)

Then, the solution of the LP (7), ᾱ ∗
m, 1≤ m ≤ M, has a simple

structure described as follows:

1) Start from m = 1 and k = 1.
2) Keep setting α ∗

m,1 = 1, m = 1,2, . . . ,m∗(1), (corresponds
to spending all of the expected budget of class m on
inventory 1) until the violation of the capacity constraint,
i.e., ∑ m∗(1)

m=1 ρ (m)
EB(m) > Ĉ1 p1. Note that, in general, class

m∗(1) has the solution α ∗
m∗(1),1 ∈ [0,1], obtained by solv-

ing ∑ m∗(1)−1
m=1 ρ (m)

EB(m) + ρ (m∗(1))
EB(m∗(1))α ∗

m∗(1),1 =

Ĉ1 p1.
3) Then, start from class m = m∗, and allocate (1 −

α ∗
m∗(1),1)EB(m∗(1)), EB(m∗(1)+1), . . . budgets similarly as

before till capacity Ĉ2 is exhausted, etc.
4) Continue the same process until we exhaust the expected

budget of all M classes of advertisers.

Proof: It is straightforward to show the previous claim by
starting from any feasible point ᾱ (m), 1≤ m ≤ M, and proving
that reallocating budgets towards assignments where more
effective inventory is delivered to more penalizing advertisers
leads to the larger objective value in (7). In this regard, in
view of the orderings in (10) and (11), pick any ᾱ (m) 6= ᾱ ∗

m,
1 ≤ m ≤ M. Then, there exist advertiser classes m < n and
inventories i < j such that

α (m)
j > 0 and α (n)

i > 0. (12)

Without loss of generality, we assume that feasible pro-
portions ᾱ (m), 1 ≤ m ≤ M, incorporate the scenario where
there is available inventory n, in which case, we assign it
to some ’imaginary’ advertiser with γ (M+1) = 0. Next, if
b , min(ρ (m)

EB(m)α (m)
j , ρ (n)

EB(n)α (n)
i ), then, by exchanging

inventories i and j worth budget b between advertisers m and
n, the objective value increases by

bγ (m)(ε i − ε j)+ bγ (n)(ε j − ε i) = b(γ (m) − γ (n))(ε i − ε j) > 0.

By continuing this reallocation procedure in a similar manner,
we reach the optimal solution that follows from (1-4) in the
statement of this lemma. ♦

Remark 1: By analyzing the corresponding Lagrange dual
formulation, it is straightforward to check that the coefficients
for which the objective function reaches the maximum value
are those that maximize products γ (m)ε k, which implies the
solution we state in Lemma 1.

Remark 2: Note that the LP in (7) enforces the capacity
constraint (8) only in expectation, while in the original prob-
lem, this constraint has to hold for every sample path. It
follows that the LP defined by (7) - (9) represents a relaxation
and provides an upper bound on the optimal expected long-run
revenue rate that can be ’earned’ from capacities Ĉ1, . . . , ĈK .

B. Waterfall Allocation Policy

Finally, we propose the Waterfall Allocation (WA) policy,
that intuitively follows from the solution of the LP above.
Define K (m) to be a set of indexes of inventories 1 ≤ k ≤ K
for which α (m)

k > 0. Using the LP solution from above, it is
natural to suggest the following dynamic impression allocation
policy:

• Assume that there is an arrival of an advertiser of type m
at time τ (m)

n with budget B(m)
n .

• Then, with probability α (m)
k , a sales agent chooses in-

ventory k to allocate B(m)
n /pk impressions out of Ĉk

impressions used for meeting the ’external’ demand. If
there are enough available impressions k, the sales agent
is done.

• Otherwise, in the case there are no enough available im-
pressions of type k, i.e., ∑ M

m=1 ∑
i∈N

(m)
n,k

B(m)
i +B(m)

n > Ĉk pk,

a sales agent keeps assigning l = maxk{k : k 6∈ K (m)}+

1, l +1, . . . , until all of the budget B(m)
n is exhausted. In

meeting this, ’forwarded’, demand, the sales agent first
tries the reserved ’safety stock’ of size Cl − Ĉl , then,
in the case there are no enough available resources, the
agent tries allocating from Ĉl impressions, after which, if
necessary, she/he moves to inventory l + 1, etc.

More descriptively, the WA policy tries to assign the LP
prescribed inventory with probabilities corresponding to ᾱ (m),
1 ≤ m ≤ M, if available. If there are not enough of this
inventory, it allocates less effective inventories. Therefore, the
demand that can not be met by a prescribed inventory pool
overflows to ’other’, less effective, inventory pools until the
whole budget is exhausted. The whole process resembles a
waterfall. This overflow effect is the reason for having tighter
capacity constraints in (8). Having reserved ’safety stocks’
with the exclusive purpose of meeting the forwarded demand
amortizes overflow effects and reduces the deviation from
the mean-based capacity planning obtained from (7). More
specifically, due to the stochastic nature of the process of
advertisers’ demand, inventory availability could significantly
fluctuate and deviate from the optimal static value, especially
since the demand that can not be met by the LP prescribed
inventory is forwarded to other inventory pools. This incures
potentially large loss of the net revenue rate.

IV. ASYMPTOTIC OPTIMALITY

In this section we state and discuss the main result of this
paper. Our goal is to show that under careful sizing of the
safety stocks ∆ Ck , Ck − Ĉk, 1 ≤ k ≤ K, the performance of
the WA policy approaches the optimal in the regime where
inventory capacities Ck = φ kC, 1 ≤ k ≤ K, and arrival rates,
λ m, 1 ≤ m ≤ M, grow large with the same rate r.

The WA policy uses allocation proportions obtained from
LP (7) in making allocation decisions. The assignment rec-
ommendations are done based on deterministic, mean value
properties of incoming demand and using effective capacities
Ĉk, 1≤ k≤K, for each inventory. In general, given the intrinsic
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variability of the incoming demand, the actual inventory
usage can exceed the effective capacity, without violating the
capacity constraint (8). Thus, as explained before, (7) provides
an upper bound for the expected long-run net revenue rate
associated with any state-dependent policy π selling inventory
with capacities C1− ∆ C1, . . . ,CK − ∆ CK. In addition, given that
some extra revenue is earned from selling ’safety stocks’, the
expected long-run net revenue rate of state-dependent policy
π , RC̄(π ), can be upper bounded as

R
C̄(π ) ≤ max

π
R

Ĉ(π )+ (max
k

pk)
K

∑
k=1

∆ Ck , R̄
C̄(π ), (13)

where we use R̄(C−∆ C)(π ) to denote expected long-run net
revenue rate of a state-dependent policy with inventory capac-
ities Ĉ1, . . . ,ĈK .

In view of the previous definitions, let RC̄(WA) be the
expected long-run net revenue rate of the Waterfall Allocation
(WA) policy proposed in the previous section, and let RC̄

∗ be
the optimal achievable long-run net revenue rate among all
state dependent policies. Then, using (13), we have

R
C̄(WA) ≤ R

C̄
∗ ≤ R̄

C̄(π ).

Proving that RC̄(WA) converges to the upper bound R̄C̄(π )
as C → ∞ , implies asymptotic optimality of the WA policy.
The following theorem contains the main result of the paper.

Theorem 1: For ’safety staffing’ satisfying
∆ Ck = κ

√
C logC with appropriatelly estimated constant

κ < ∞ , the WA policy achieves the optimal long-run net
revenue rate when arrival rates λ m and impression capacities
Ck grow large, i.e.,

RC̄(WA)

RC̄∗
→ 1 as r → ∞ ;

the asympotic optimality holds in the regime where transaction
arrival rates λ (m),r, 1 ≤ m ≤ M, and capacities Cr

k , 1 ≤ k ≤ K,
grow large with a common scaling factor r (Cr

k = rCk, λ (m),r =
rλ (m)).

In the following sections we use f (x) ∼ g(x), as x → x0, to
denote limx→x0 f (x)/g(x) = 1.

V. PRELIMINARY RESULTS

In this subsection we state two technical results that we use
in Section VI to justify Theorem 1. Observe a Poisson process
of transaction arrivals for a unit amount of resource sharing a
common resource pool of infinite capacity. Let the Poisson rate
be λ and service requirements be mutually independent and
independent from the process of arrivals, as well as generally
distributed with finite mean µ = ES < ∞ . Assuming that this
M/G/∞ system is in the stationary regime, the number of active
transactions, say X , is Poisson with rate ρ = λ ES. Then, the
following asymptotic result holds:

Lemma 2: Let X be a Poisson random variable with mean
ρ . Then,

P[X > ρ + f (ρ )] ∼ ¯Φ 0

(

f (ρ )
√

ρ + f (ρ )

)

as ρ → ∞ ,

where ¯Φ 0 is the tail of the standard normal Gaussian random
variable, and f (ρ ) > 0 is an increasing function of ρ , with
f (ρ ) → ∞ as ρ → ∞ .

The key ingredient in the proof of our main result in Section
VI extends the results by Leadbetter [8], Berman [2] and
Slepian [16] to the treatment of the specific stationary Markov
sequence. To this end, we observe a stationary sequence {Xi},
where Xi represents the number of active transactions in a
M/G/∞ system at the moment τ i of ith arrival. We show
that given any positive finite number L < ∞ , under mild
conditions on service time distribution and a careful safety
stock sizing of fn(ρ ,L), the number of times process {Xi}
exceeds level ρ + fn(ρ ,L) in an interval of time (τ i, τ i+n), say
E(i)

n (ρ + fn(ρ ,L)), can be upper bounded by a Poisson random
variable for n large. Given that {Xi} is stationary, without loss
of generality, we can use En(ρ + fn(ρ ,L))≡E(i)

n (ρ + fn(ρ ,L)).
In the following analysis, we impose a mild assumption on

the residual lifetime of an ongoing contract (job) in the system,
say Se, with its excess cummulative distribution function

Ge(t) = P[Se < t] =
1
µ

∫ t

0
Gc(u)du, t ≥ 0,

where Gc(t) = 1−G(t).
Assumption: Let the residual lifetime Se satisfy

∫ ∞

0
P[Se > u]2du < ∞ .

Theorem 2: Under the Assumption above and for any pos-
itive finite number L < ∞ , there exists a sequence of functions
fn(ρ ,L) such that the number of times the process {Xi}
exceeds ρ + fn(ρ ,L) in an interval of time [τ i, τ i+n), say
En(ρ + fn(ρ )), is bounded from above by a Poisson random
variable with finite rate L < ∞ for all n large enough.
Sketch of the proof: Due to space limitations, we outline the
key elements of the proof. The result of this theorem relies on
findings from [8] extended to the specific case of the sequence
{Xi} analyzed in this paper. Define un(ρ ,L) as

P[X1 > ρ + un(ρ ,L)] =
L
n
. (14)

Then, we prove the following two conditions:
1)

n
n

∑
j=2

|P[X1 > ρ + un(ρ ,L),X j > ρ + un(ρ ,L)]

−P[X1 > ρ + un(ρ ,L)]P[X j > ρ + un(ρ ,L)]| → 0 as n → ∞ ;

2) Any subsequence Xi1 ,Xi2 , . . . ,Xil ,X j1 ,X j2 , . . . ,X js , i1 <
i2 < · · · < il < j1 < j2 < · · · < js, obtained from {Xi}
with | j1 − il| ≥ k, satisfies

|P[Xi1 ≤ ρ + un(ρ ,L), . . . ,X j1 ≤ ρ + un(ρ ,L), . . . ]

−P[Xi1 ≤ ρ + un(ρ ,L), . . . ]P[X j1 ≤ ρ + un(ρ ,L), . . . ]|
≤ α n,k → 0,

as ρ → ∞ , k → ∞ ;
If one can prove that the two previously stated conditions
hold, then the two main results, Theorems 5.1 and 5.2, of [8]
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hold, implying that En(ρ +un(ρ ,L)) converges to the Poisson
random variable with rate L as n → ∞ .

The proof of condition (1) relies on the fact that the
conditional distribution

(X j|X1 = u)

is asymptotically normal when u and ρ = EX j grow large, with
mean

µ (u, ρ ) , ρ +(u− ρ )Gc
e(τ j − τ 1), (15)

and variance

v(u, ρ ) , uGc
e(τ j − τ 1)Ge(τ j − τ 1)+ ρ Ge(τ j − τ 1); (16)

The preceding statements are the result of Theorem 1 in [4].
Then, in view of (15) and (16), we have, as ρ → ∞ ,

P[X j > ρ + un(ρ ,L)|X1 > ρ + un(ρ ,L)]

∼ ∑
u>ρ +un(ρ )

P[X1 = u]

×
{

∫ ∞

ρ +un(ρ ,L)

1
√

2π v(u, ρ )
e−(s−µ (u,ρ ))2/2v(u,ρ )ds

}

≡ ∑
u>ρ +un(ρ ,L)

P[X1 = u]Φ̄ µ (u,ρ ),v(u,ρ )(ρ + un(ρ ,L)), (17)

where ¯Φ µ (u,ρ ),v(u,ρ )(ρ + un(ρ ,L)) represents the tail of the
normally distributed random variable with mean µ (u, ρ ) and
variance v(u, ρ ), taken at value ρ + un(ρ ,L). Then, using
v(u, ρ ) ≥ ρ (1− r j−1)

2, r j−1 , Gc
e(τ j − τ 1), (17) and Lemma

2, we obtain, as ρ → ∞ ,

|P[X1 > ρ + un(ρ ,L),X j > ρ + un(ρ ,L)]

−P[X1 > ρ + un(ρ ,L)]P[X j > ρ + un(ρ ,L)]|
. |P[X∗

1 > ρ +
√

ρ ν n(ρ ,L),X∗
j > ρ +

√
ρ ν n(ρ ,L)]

−P[X∗
1 > ρ +

√
ρ ν n(ρ ,L)]P[X∗

j > ρ +
√

ρ ν n(ρ ,L)]|,
(18)

where X∗
1 and X∗

j are normally distributed random variables

with mean ρ , variance ρ , covariance
E[X∗

1 X∗
j ]−EX∗

1 EX∗
j

ρ = r j−1,
and

ν n(ρ ) ,
un

√

ρ + un(ρ )
. (19)

For more reading on jointly normal random variables, an
interested reader is referred to Section 6.4 of [14].

After normalizing normal random variables X∗
1 and X∗

j , we
derive, as ρ → ∞ ,

|P[X1 > ρ + un(ρ ,L),X j > ρ + un(ρ ,L)]

−P[X1 > ρ + un(ρ ,L)]P[X j > ρ + un(ρ ,L)]|
. |P[X ∗

1 > ν n(ρ ,L),X ∗
j > ν n(ρ ,L)]

−P[X ∗
1 > ν n(ρ ,L)]P[X ∗

j > ν n(ρ ,L)]|. (20)

Then, using Lemma 4.3 of [8], the right hand side of (20) is
bounded by

|P[X ∗
1 > ν n(ρ ,L),X ∗

j > ν n(ρ ,L)]

−P[X ∗
1 > ν n(ρ ,L)]P[X ∗

j > ν n(ρ ,L)]|

≤ H|r j−1|e
− ν n(ρ ,L)2

1+|r j−1| ,

for all ρ large and some constant H < ∞ . Finally, in conjunc-
tion with the Assumption, we obtain

∞

∑
j=1

r2
j ≤

∫ ∞

0
P[Se > u]2du < ∞ ,

which is a sufficient condition for Lemma 4.3 of [8] to hold
for the sequence {X ∗

i } and, in conjunction with (20), for the
sequence {Xi} as well for ρ large. This completes the proof of
condition (1). The proof of condition (2) is quite technical and
uses different types of arguments than the rest of the paper.
Due to space limitations, we omit it in this paper.

After showing that conditions (1) and (2) hold, we obtain
that, for all ρ large,

lim
n→∞

En(ρ + un(ρ ,L)) → P(L), (21)

where we use P(L) to denote a Poisson random variable with
mean L.

Next, we discuss the relation between ν n(ρ ,L), ρ and n
and relate it to un(ρ ,L). Using (14) and Lemma 2, as well
as ¯Φ 0(x)∼ φ (x)

x as x → ∞ for the standard normal distribution
function ¯Φ 0(x) and density φ (x) (see, for example, 26.2.13 of
[1]), we obtain, as n → ∞ ,

1
2

ν n(ρ ,L)2 + log ν n(ρ ,L) ∼− logL+ logn− log
√

2π . (22)

Note that the asymptotic behavior of ν n(ρ ,L) does not depend
on ρ and, without loss of generality, we could as well write
ν n(L) ≡ ν (ρ ,L). Thus, using (22), for any ε > 0, finite L < ∞
and ρ , n large enough

(1− ε )
√

2logn ≤ ν n(L) ≤ (1 + ε )
√

2logn. (23)

Next, by replacing (19) in (23), and solving the inequalities
with respect to un(ρ ,L), we obtain that, for any finite L, and
all n and ρ large enough, and by choosing fn(ρ ,L) which
satisfies

fn(ρ ,L)

≥ (1 + ε ) logn +
√

(1 + ε )2(logn)2 + 2(1 + ε )ρ logn

, κ (ε , ρ ,n), (24)

(25)

the number of times the process {Xi} exceeds level ρ +
fn(ρ ,L) is upper bounded by En(ρ ,un(ρ ,L)) for large ρ and
n, which, in conjunction with (21), completes the proof of the
theorem.

♦
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VI. OUTLINE OF THE PROOF OF THE MAIN RESULT

In this section, we present the outline of the analysis of the
long-run performance of the WA policy proposed in Subsec-
tion III-B. In order to show that the WA is asymptotically opti-
mal in the regime where advertiser arrival rates and inventory
capacities grow with the same rate, it is enough to prove that
the long-run proportion of demand that gets forwarded due to
the lack of the original inventory choice converges to zero in
the analyzed regime. This directly follows from the analysis
of the revenue rate generated by each inventory 1 ≤ k ≤ K,
which equals to

M

∑
m=1

α (m)
k EB(m)

i /pk(1− p(b)
m,k(Ck, ∆ Ck)), (26)

where pm,k(Ck, ∆ Ck) represents the long run proportion of
transactions m that get forwarded from inventory k. Then, if
we show that for safety sizing equal to ∆ Ck = κ

√
C logC,

max
1≤m≤M

pm,k(Ck, ∆ Ck) → 0 as C → ∞ ,

in conjunction with (26) and (13), we obtain that the per-
formance of the WA policy converges to its upper bound in
the particular regime, which means that it is asymptotically
optimal.

Let p(b)
k (Ck, ∆ Ck) be the long run proportion of incoming

transactions to inventory k that get forwarded to other inven-
tories. In view of the ergodic property discussed in Section
III, p(b)

m,k(Ck, ∆ Ck), 1 ≤ m ≤ M, is well defined and equal to
the probability that an incoming transaction gets forwarded
due to inability to meet its impression demand. We define
{taun} , ∪M

m=1{τ (m)
n } and use N

(m)
n,k , α (m)

k > 0, to denote
indices of active transactions m, arrived before τ n, that are
taking impressions k at the moment of nth arrival τ n. Let
the overflow demand, O

(m)
n,k , denote indices of the forwarded

demand m, active at time τ n, that failed to be met by ’safety
stock’ impressions of capacity ∆ Ck and ended up using a
subset of impressions from the shared pool of capacity Ĉk.
Also, let Jn(m,k) be an indicator function equal to 1 if nth
transaction is of type m; otherwise, Jn(m,k) = 0. Then, given
that the amount of delivered impressions can not be larger than
A , B/(mink pk), one can upper bound p(b)

m,k(Ck, ∆ Ck) as

p(b)
m,k(Ck, ∆ Ck) = (27)

P[
M

∑
m=1

∑
i∈N

(m)
n,k

1[α (m)
k > 0]B(m)

i /pk

+
M

∑
m=1

∑
i∈O

(m)
n,k

B(m)
i /pk + B(m)

n /pk > Ck − ∆ Ck,Jn(m,k) = 1]

≤ P[
M

∑
m=1

∑
i∈N

(m)
n,k

1[α (m)
k > 0]B(m)

i /pk

+
M

∑
m=1

∑
i∈O

(m)
n,k

B(m)
i /pk > Ck − ∆ Ck −A]. (28)

Next, we concentrate on estimating the overflow traffic
On,k ,∪M

m=1O
(m)
n,k . Note that the set of the overflow transactions

at time τ n can be enlarged if all of the transaction demand
that can not be met by the LP suggested, initial, choice of
inventory, is redirected to inventory k. Therefore,

On,k ⊂

∪i<n {i : ∑
l 6=k

M

∑
m=1

∑
j∈N

(m),∗
i,l

1[α (m)
l > 0]B(m)

j /pl

> ∑
l 6=k

[Cl − ∆ Cl]+ ∆ Ck/A−KA,∩mD(m)
i > τ n − τ i},

(29)

where we use N
(m),∗

i,l to denote a set of indices of transactions
which original choice of inventory is l 6= k, that arrived before
τ i and are still active at the moment of ith arrival τ i.

Expression (29), accumulates all of the excess demand that
is forwarded from the original LP-based inventory choice
and is active at τ n. Since the same budget translates into
different amounts of impressions depending on their price, we
further increase the overflow set by dividing the safety stock
capacity ∆ Ck by the maximum possible resource requirement
A = B/mink pk, since

B(m)
j

pk
=

B(m)
j

pl

pl

pk
≤

B(m)
j

pk
A;

The previous expression addresses the amount of impres-
sions consumed by forwarded transactions. For example, if
a transaction with budget B(m)

j is forwarded from resource l to

resource k, its demand of B(m)
j /pl impressions translates into

the demand of B(m)
j /pk impressions, and the ratio of these

two quantities is at most A. Furthermore, when we define
superset in (29), we deduct KA from the right hand side in
order to account for the potentially positive leftover capacity
in inventories l 6= k that is too small to meet the incoming
demand.

The key observation is that the sum of the transaction
demand in (29) corresponds to the overflow ’traffic’ in the
uncapacitated M/G/∞ system. Given that the resource require-
ments take values between 1 and A, and that the budget values
are mutually independent, we can rewrite the sum in (29), by
regrouping the independent Poisson streams of transactions
based on the corresponding impression requirements, i.e.,

∑
l 6=k

M

∑
m=1

∑
j∈N

(m),∗
i,l

1[α (m)
l > 0]B(m)

j /pl =
A

∑
s=1

sY (s)
i , (30)

where

Y (s)
i ,

M

∑
m=1

∑
l 6=k

∑
j∈N

(m)∗
i,l

1[α (m)
l > 0]1[B(m)

j = pls].

Next, we further enlarge On,k as

On,k ⊂ ∪i<n ∪A
s=1 {i : sY (s)

i > sEY (s)
i + ∆ Ck/A2,Di > τ n − τ i},

(31)
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where we use Di to denote the duration of the ith request for s
impressions. Finally, using the result of Theorem 2, we show
that for

∆ Ck = κ
√

C logC, (32)

where κ is a constant that depends on the system parameters
such as the maximum impression requirement A, we obtain
that for C → ∞ large enough processes

Y
(s)

n , ∪i<n{i : sY (s)
i > sEY (s)

i + ∆ Ck/A2 −K,Di > τ n − τ i},

are bounded by independent Poisson processes with finite
rate. This, in conjunction with (31), (28) and B(m)

i < B < ∞ ,
allows us to finally apply generalized Erlang formula and
show that p(b)

m,k(Ck, ∆ Ck) converges to zero as ρ → ∞ , which
completes the outline of the main proof. ♦

VII. NUMERICAL EXAMPLE

In this section we present a numerical example capturing
the phenomena we tried to analyze in this paper. We assume
that there are three inventory types: expensive ($ 10 for 1000
impressions), moderately expensive ($ 5 for 1000 impressions)
and cheap ($1 per 1000 impressions). Inventory’s price is in
correlation with its effectiveness measure, and in this case we
have ε 1 = 0.2, ε 2 = 0.05 and ε 3 = 0.0001 for the expensive,
moderately expensive and remnant inventory. Furthermore, we
assume that the most expensive inventory has the smallest
capacity, while the less expensive is usually more available
(C1 = 5× 106, C2 = 2C1 and C3 is unlimited. Similarly, we
segment advertisers by their budget into three basic groups:
high, moderate and low budget ones. We assume that most of
the advertisers have moderate budget.

The figure depicts an example of system’s performance, i.e.,
proportion of the LP-based net revenue upper bound achieved
for different scales r, in the case where inventory management
is done based on mean-value allocation, as well as when
lower order terms originating from forwarded demand are
considered. Here, we assume that γ (1) = γ (2) = γ (3) = 1. We see
that the system can achieve significant performance benefits
when allocation policy consideres variations in the amount of
forwarded traffic, i.e., provides safety stocks.
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