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Abstract. This paper presents a series of new results for domain adaptation in
the regression setting. We prove that the discrepancy is a distance for the squared
loss when the hypothesis set is the reproducing kernel Hilbert space induced by a
universal kernel such as the Gaussian kernel. We give new pointwise loss guaran-
tees based on the discrepancy of the empirical source and target distributions for
the general class of kernel-based regularization algorithms. These bounds have
a simpler form than previous results and hold for a broader class of convex loss
functions not necessarily differentiable, including Lq losses and the hinge loss.
We extend the discrepancy minimization adaptation algorithm to the more sig-
nificant case where kernels are used and show that the problem can be cast as
an SDP similar to the one in the feature space. We also show that techniques
from smooth optimization can be used to derive an efficient algorithm for solving
such SDPs even for very high-dimensional feature spaces. We have implemented
this algorithm and report the results of experiments demonstrating its benefits for
adaptation and show that, unlike previous algorithms, it can scale to large data
sets of tens of thousands or more points.

1 Introduction

A standard assumption in learning theory and applications is that training and test points
are drawn according to the same distribution. But, a more challenging problem of do-
main adaptation arises in a variety of applications, including natural language pro-
cessing, speech processing, or computer vision [7, 3, 9, 10, 17, 18, 12]. This problem
occurs when little or no labeled data is available from the target domain, but labeled
data from a source domain somewhat similar to the target, as well as large amounts of
unlabeled data from the target domain, are accessible. The domain adaptation problem
then consists of using the source labeled and target unlabeled data to learn a hypothesis
performing well on the target domain.

The theoretical analysis of this problem has been the topic of some recent publica-
tions. An analysis of adaptation was initiated by Ben-David et al. [1]. Several issues of
that paper were later corrected by Blitzer et al. [4]. These authors gave VC-dimension
bounds for binary classification based on a dA distance between distributions that can
be estimated from finite samples, and a term λH depending on the distributions and the
hypothesis set H , which cannot be estimated from data. In [11], we presented alterna-
tive learning bounds which hold in particular in the classification setting and depend
on the optimal classifiers in the hypothesis set for the source and target distributions.



Our bounds are in general not comparable to those of [1, 4] but we showed that un-
der some plausible assumptions they are superior to those of [1, 4] and that in many
cases the bounds of [1, 4] have a factor of 3 of the error that can make them vacuous.
The assumptions made in the analysis of adaptation were more recently discussed by
Ben-David et al. [2] who also presented several negative results for this problem. These
negative results hold only for the 0-1 loss used in classification.

This paper deals with the problem of adaptation in regression, for which many
of the observations made in the case of the 0-1 loss do not hold. In [11], we intro-
duced a distance between distributions specifically tailored to domain adaptation, the
discrepancy distance, which generalizes the dA distance to arbitrary loss functions,
and presented several theoretical guarantees based on that discrepancy, including data-
dependent Rademacher complexity generalization bounds. In this paper we present a
series of novel results for domain adaptation in regression extending those of [11] and
making them more significant and practically applicable.

In Section 2, we describe more formally the learning scenario of domain adaptation
in regression and briefly review the definition and key properties of the discrepancy. We
then present several theoretical results in Section 3. For the squared loss, we prove that
the discrepancy is a distance when the hypothesis set is the reproducing kernel Hilbert
space of a universal kernel, such as a Gaussian kernel. This implies that minimizing
the discrepancy to zero guarantees matching the target distribution, a result that does
not hold in the case of the 0-1 loss. We further give pointwise loss guarantees depend-
ing on the discrepancy of the empirical source and target distributions for the class of
kernel-based regularization algorithms, including kernel ridge regression, support vec-
tor machines (SVMs), or support vector regression (SVR). These bounds have a simpler
form than a previous result we presented in the specific case of the squared loss in [11]
and hold for a broader class of convex loss functions not necessarily differentiable,
which includes all Lq losses (q ≥ 1), but also the hinge loss used in classification.

When the magnitude of the difference between the source and target labeling func-
tions is small on the training set, these bounds provide a strong guarantee based on the
empirical discrepancy and suggest an empirical discrepancy minimization algorithm
[11]. In Section 4, we extend the discrepancy minimization adaptation algorithm with
the squared loss to the more significant case where kernels are used. We show that the
problem can be cast as a semi-definite programming (SDP) problem similar to the one
given in [11] in the feature space, but formulated only in terms of the kernel matrix.

Such SDP optimization problems can only be solved practically for modest sample
sizes of a few hundred points using existing solvers, even with the most efficient pub-
licly available one. In Section 5, we prove, however, that an algorithm with significantly
better time and space complexities can be derived to solve these SDPs using techniques
from smooth optimization [14]. We describe the algorithm in detail. We prove a bound
on the number of iterations and analyze the computational cost of each iteration.

We have implemented that algorithm and carried out extensive experiments show-
ing that it can indeed scale to large data sets of tens of thousands or more points. Our
kernelized version of the SDP further enables us to run the algorithm for very high-
dimensional and even infinite-dimensional feature spaces. Section 6 reports our empir-
ical results demonstrating the effectiveness of this algorithm for domain adaptation.



2 Preliminaries

This section describes the learning scenario of domain adaptation and reviews the key
definitions and properties of the discrepancy distance between distributions.

2.1 Learning Scenario

Let X denote the input space and Y the output space, a measurable subset of R, as
in standard regression problems. In the adaptation problem we are considering, there
are different domains, defined by a distribution over X and a target labeling function
mapping from X to Y . We denote by Q the distribution over X for the source domain
and by fQ : X → Y the corresponding labeling function. Similarly, we denote by P the
distribution over X for the target domain and by fP the target labeling function. When
the two domains share the same labeling function, we simply denote it by f .

In the domain adaptation problem in regression, the learning algorithm receives
a labeled sample of m points S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y )m from the
source domain, that is x1, . . . , xm are drawn i.i.d. according to Q and yi = fQ(xi)
for i ∈ [1,m]. We denote by Q̂ the empirical distribution corresponding to x1, . . . , xm.
Unlike the standard supervised learning setting, the test points are drawn from the target
domain, which is based on a different input distribution P and possibly different label-
ing function fP . The learner is additionally provided with an unlabeled sample T of
size n drawn i.i.d. according to the target distribution P . We denote by P̂ the empirical
distribution corresponding to T .

We consider a loss function L : Y × Y → R+ that is symmetric and convex with
respect to each of its argument. In particular L may be the squared loss commonly used
in regression. For any two functions h, h′ : X → Y and any distribution D over X , we
denote by LD(h, h′) the expected loss of h(x) and h′(x):

LD(h, h′) = E
x∼D

[L(h(x), h′(x))]. (1)

The domain adaptation problem consists of selecting a hypothesis h out of a hypothesis
set H with a small expected loss according to the target distribution P , LP (h, fP ).

2.2 Discrepancy Distance

A key question for adaptation is a measure of the difference between the distributions
Q and P . As pointed out in [11], a general-purpose measure such as the L1 distance is
not helpful in this context since the L1 distance can be large even in some rather favor-
able situations for adaptation. Furthermore, this distance cannot be accurately estimated
from finite samples and ignores the loss function. Instead, the discrepancy provides a
measure of the dissimilarity of two distributions that is specifically tailored to adapta-
tion and is defined based on the loss function and the hypothesis set used.

Observe that for a fixed hypothesis h∈H , the quantity of interest in adaptation is
the difference of expected losses |LP (fP , h)−LQ(fP , h)|. A natural distance between
distributions in this context is thus one based on the supremum of this quantity over all
h∈H . The target hypothesis fP is unknown and could match any hypothesis h′. This
leads to the following definition [11].



Definition 1. Given a hypothesis set H and loss function L, the discrepancy distance
disc between two distributions P and Q over X is defined by:

disc(P,Q) = max
h,h′∈H

∣∣LP (h′, h)− LQ(h′, h)
∣∣. (2)

The discrepancy is by definition symmetric and verifies the triangle inequality for any
loss function L. But, in general, it does not define a distance since we may have
disc(P,Q) = 0 for P 6= Q. We shall prove, however, that for a large family of kernel-
based hypothesis set, it does verify all the axioms of a distance.

3 Theoretical Analysis

In what follows, we consider the case where the hypothesis set H is a subset of the
reproducing kernel Hilbert space (RKHS) H associated to a positive definite symmetric
(PDS) kernel K: H = {h ∈ H : ‖h‖K≤Λ}, where ‖ · ‖K denotes the norm defined by
the inner product on H and Λ ≥ 0. We shall assume that there exists R > 0 such that
K(x, x)≤R2 for all x ∈ X . By the reproducing property, for any h ∈ H and x ∈ X ,
h(x)=〈h, K(x, ·)〉K , thus this implies that |h(x)|≤‖h‖K

√
K(x, x)≤ΛR.

3.1 Discrepancy with universal kernels

We first prove that for a universal kernel K, such as a Gaussian kernel [20], the discrep-
ancy defines a distance. Let C(X) denote the set of all continuous functions mapping
X to R. We shall assume that X is a compact set, thus the functions in C(X) are also
bounded. A PDS kernel K over X×X is said to be universal if it is continuous and if
the RKHS H it induces is dense in C(X) for the norm infinity ‖ · ‖∞.

Theorem 1. Let L be the squared loss and let K be a universal kernel. Then, for any
two distributions P and Q, if disc(P,Q) = 0, then P = Q.

Proof. Consider the function Ψ : C(X) → R defined for any h ∈ C(X) by Ψ(h) =
Ex∼P [h2] − Ex∼Q[h2]. Ψ is continuous for the norm infinity over C(X) since h 7→
Ex∼P [h2] is continuous. Indeed, for any h, h′∈H ,

|E
P
[h′2]− E

P
[h2]| = |E

P
[(h′ + h)(h′ − h)]| ≤ (‖h‖∞ + ‖h′‖∞)‖h′ − h‖∞,

and similarly with h 7→Ex∼Q[h2]. If disc(P,Q)=0, then, by definition,

∀h, h′ ∈ H,
∣∣ E

x∼P
[(h′(x)− h(x))2]− E

x∼Q
[(h′(x)− h(x))2]

∣∣ = 0.

Thus, EP [h′′2]−EQ[h′′2] = 0 for any h′′ = h′ − h∈H with ‖h′′‖K ≤ 2ΛR, therefore
for any h′′ ∈ H with ‖h′′‖K ≤ 2ΛR, hence for any h′′ ∈ H regardless of the norm.
Thus, Ψ =0 over H. Since K is universal, H is dense in C(X) for the norm ‖ · ‖∞ and
by continuity of Ψ for ‖ · ‖∞, for all h ∈ C(X), EP [h2]−EQ[h2] = 0. Let f be any
non-negative function in C(X), then

√
f is well defined and is in C(X), thus,

E
P
[(

√
f)2]− E

Q
[(

√
f)2] = E

P
[f ]− E

Q
[f ] = 0.

It is known that if EP [f ] − EQ[f ] = 0 for all f ∈C(X) with f ≥ 0, then P = Q (see
[8][proof of lemma 9.3.2]). This concludes the proof. ut



Thus, the theorem shows that if we could find a source distribution Q that would reduce
to zero the discrepancy in the case of the familiar Gaussian kernels, then that distribution
would in fact match the target distribution P .

3.2 Guarantees for kernel-based regularization algorithms

We now present pointwise loss guarantees in domain adaptation for a broad class of
kernel-based regularization algorithms, which also demonstrate the key role played
by the discrepancy in adaptation and suggest the benefits of minimizing that quantity.
These algorithms are defined by the minimization of the following objective function:

F bQ(h) = R̂ bQ(h) + λ‖h‖2K , (3)

where λ ≥ 0 is a trade-off parameter and R bQ(h) = 1
m

∑m
i=1 L(h(xi), yi) the empirical

error of hypothesis h ∈ H. This family of algorithms includes support vector machines
(SVM) [6], support vector regression (SVR) [21], kernel ridge regression (KRR) [19],
and many other algorithms. We shall assume that the loss function L is µ-admissible for
some µ>0: that is, it is symmetric and convex with respect to both of its arguments and
for all x ∈ X and y ∈ Y and h, h′ ∈ H , it verifies the following Lipschitz condition:

|L(h′(x), y)− L(h(x), y)| ≤ µ|h′(x)− h(x)|.

µ-admissible losses include the hinge loss and all Lq losses with q ≥ 1, in particular
the squared loss, when the hypothesis set and the set of output labels are bounded.

The labeling functions fP and fQ may not coincide on the training set supp(Q̂).
But, for adaptation to be possible, the difference between the labels received for the
training points and their target values should be assumed to be small, even if the input
space distributions P and Q are very close.

When the magnitude of the difference between the source and target labeling func-
tions is small on the training set, that is η =max{L(fQ(x), fP (x)) : x∈ supp(Q̂)} �
1, the following theorem gives a strong guarantee on the pointwise difference of the
loss between the hypothesis h returned by the algorithm when training on the source
domain and the hypothesis h′ returned when training on a sample drawn from the target
distribution in terms of the empirical discrepancy disc(P̂ , Q̂). The theorem holds for all
µ-admissible losses and has a simpler form than a previous result we presented in [11].

Theorem 2. Let L be a µ-admissible loss. Assume that fp ∈ H and let η denote
max{L(fQ(x), fP (x)) : x∈supp(Q̂)}. Let h′ be the hypothesis returned by the kernel-
based regularization algorithm (3) when minimizing F bP and h the one returned when
minimizing F bQ. Then, for all x ∈ X and y ∈ Y ,∣∣L(h′(x), y)− L(h(x), y)

∣∣ ≤ µR

√
disc(P̂ , Q̂) + µη

λ
. (4)

Proof. The proof makes use of a generalized Bregman divergence, which we first in-
troduce. For a convex function F : H → R, we denote by ∂F (h) the subgradient of F
at h: ∂F (h) = {g ∈ H : ∀h′ ∈ H, F (h′)−F (h) ≥ 〈h′ − h, g〉}. ∂F (h) coincides with
∇F (h) when F is differentiable at h. Note that at a point h where F is minimal, 0 is



an element of ∂F (h). Furthermore, the subgradient is additive, that is, for two convex
function F1 and F2, ∂(F1 + F2)(h) = {g1 + g2 : g1 ∈ ∂F1(h), g2 ∈ ∂F2(h)}. For any
h ∈ H, fix δF (h) to be an (arbitrary) element of ∂F (h). For any such choice of δF , we
can define the generalized Bregman divergence associated to F by:

∀h′, h ∈ H, BF (h′‖h) = F (h′)− F (h)− 〈h′ − h, δF (h)〉 . (5)

Note that by definition of the subgradient, BF (h′‖h) ≥ 0 for all h′, h ∈ H. Let N
denote the convex function h → ‖h‖2K . Since N is differentiable, δN(h) = ∇N(h)
for all h ∈ H, and δN and thus BN are uniquely defined. To make the definition of
the Bregman divergences for F bQ and R̂ bQ compatible so that BF bQ = B bR bQ + λBN , we

define δR̂ bQ from δF bQ by: δR̂ bQ(h) = δF bQ(h)− λ∇N(h) for all h ∈ H. Furthermore,
we choose δF bQ(h) to be 0 for any point h where F bQ is minimal and let δF bQ(h) be an
arbitrary element of ∂F bQ(h) for all other hs. We proceed in a similar way to define the

Bregman divergences for F bP and R̂ bP so that BF bP = B bR bP + λBN .
Since the generalized Bregman divergence is non-negative and since BF bQ = B bR bQ +

λBN and BF bP = B bR bP + λBN , we can write

BF bQ(h′‖h) + BF bP (h‖h′) ≥ λ
(
BN (h′‖h) + BN (h‖h′)

)
.

Observe that BN (h′‖h)+BN (h‖h′) = −〈h′ − h, 2h〉− 〈h− h′, 2h′〉 = 2‖h′−h‖2K .
Thus, BF bQ(h′‖h)+BF bP (h‖h′) ≥ 2λ‖h′−h‖2K . By definition of h′ and h as minimizers
and our choice of the subgradients, δF bP (h′) = 0 and δF bQ(h) = 0, thus, this inequality
can be rewritten as follows:

2λ‖h′ − h‖2K ≤ R̂ bQ(h′)− R̂ bQ(h) + R̂ bP (h)− R̂ bP (h′).

Now, rewriting this inequality in terms of the expected losses gives:

2λ‖h′ − h‖2K ≤
(
L bP (h, fP )− L bQ(h, fQ)

)
−

(
L bP (h′, fP )− L bQ(h′, fQ)

)
=

(
L bP (h, fP )− L bQ(h, fP )

)
−

(
L bP (h′, fP )− L bQ(h′, fP )

)
+

(
L bQ(h, fP )− L bQ(h, fQ)

)
−

(
L bQ(h′, fP )− L bQ(h′, fQ)

)
.

Since fP is in H , by definition of the discrepancy, the first two terms can both be
bounded by the empirical discrepancy:˛̨̨`
L bP (h, fP )− L bQ(h, fP )

´˛̨̨
≤ disc( bP , bQ) and

˛̨̨`
L bP (h′, fP )− L bQ(h′, fP )

´˛̨̨
≤ disc( bP , bQ).

The last two terms can be bounded using the µ-admissibility of L since for any h′′ ∈ H ,∣∣∣(L bQ(h′′, fP )−L bQ(h′′, fQ)
)∣∣∣≤µ E

x∼ bQ[|fP (x)−fQ(x)|]≤µη.

Thus, 2λ‖h′ − h‖2K ≤ 2disc(P̂ , Q̂) + 2µη. (6)

By the reproducing property, for any x ∈X , h′ − h(x) = 〈h′ − h, K(x, ·)〉, thus, for
any x ∈X and y ∈ Y ,

∣∣L(h′(x), y) − L(h(x), y)
∣∣ ≤ µ|h′ − h(x)| ≤ µR‖h′ − h‖K .

Upper bounding the right-hand side using (6) directly yields the statement (4). ut



A similar theorem can be proven when only fQ ∈ H is assumed. These theorems
can be extended to the case where neither the target function fP nor fQ is in H

by replacing in Theorem 2 η with η′′ = max{L(h∗P (x), fQ(x)) : x ∈ supp(Q̂)} +
max{L(h∗P (x), fP (x)) : x ∈ supp(P̂ )}, where h∗P ∈ argminh∈H LP (h, fP ). They
show the key role played by the empirical discrepancy disc(P̂ , Q̂) in this context when
η′′ � 1. Note that η = 0 when fP = fQ = f as in the sample bias correction setting
or other scenarios where the so-called covariate-shift assumption hold. Under the as-
sumptions η � 1 or η′′ � 1, these theorems suggest seeking an empirical distribution
q∗, among the family Q of all distributions with a support included in that of Q̂, that
minimizes that discrepancy [11]:

q∗ = argmin
q∈Q

disc(P̂ , q). (7)

Using q∗ instead of Q̂ amounts to reweighting the loss on each training point. This
forms the basis of our adaptation algorithm which consists of: (a) first computing q∗;
(b) then modifying (3) using q∗:

Fq∗(h) =
1
m

m∑
i=1

q∗(xi)L(h(xi), yi) + λ‖h‖2K , (8)

and finding a minimizing h. The minimization of Fq∗ is no more difficult than that of
F bQ and is standard. Thus, in the following section, we focus on the first stage of our
algorithm and study in detail the optimization problem (7).

4 Optimization Problems

Let X be a subset of RN , N >1. We denote by SQ the support of Q̂, by SP the support
of P̂ , and by S their union supp(Q̂) ∪ supp(P̂ ), with |SQ| = m ≤ m and |SP | =
n ≤ n. The unique elements of SP are denoted by x1, . . . ,xm and those of SP by
xm+1, . . . ,xq, with q = m+n. For a vector z ∈ Rm, we denote by zi its ith coordinate.
We also denote by ∆m the simplex in Rm: ∆m = {z ∈ Rm : zi ≥ 0 ∧

∑m
i=1 zi = 1}.

4.1 Discrepancy minimization in feature space

We showed in [11] that the problem of minimizing the empirical discrepancy for the
squared loss and the hypothesis space H = {x 7→ w>x : ‖w‖≤Λ} of bounded linear
functions can be cast as the following convex optimization problem:

min
z∈∆m

‖M(z)‖2, (9)

where M(z) ∈ SN is a symmetric matrix that is an affine function of z:

M(z) = M0 −
m∑

i=1

ziMi, (10)

with M0 =
∑q

j=m+1 P̂ (xj)xjx>j and for i ∈ [1,m] Mi = xix>i, xi ∈ SQ. The minimal
discrepancy distribution q∗ is given by q∗(xi) = zi, for all i ∈ [1,m]. Since ‖M(z)‖2 =



max{λmax(M(z)), λmax(−M(z))}, the problem can be rewritten equivalently as the
following semi-definite programming (SDP) problem:

min
z,t

t (11)

subject to
[

tI M(z)
M(z) tI

]
� 0 ∧ 1>z = 1 ∧ z ≥ 0.

This problem can be solved in polynomial time using interior point methods. The time
complexity for each iteration of the algorithm is in our notation [16][pp.234-235] :
O(m3 + mN3 + m2N2 + nN2). This time complexity as well as its space complexity,
which is in O((m + N)2), make such algorithms impractical for relatively large or
realistic machine learning problems.

4.2 Discrepancy minimization with kernels

Here, we prove that the results of the previous section can be generalized to the case
of high-dimensional feature spaces defined implicitly by a PDS kernel K. We denote
by K = [K(xi,xj)]ij ∈ Rq×q the kernel matrix associated to K for the full sample
S = SQ ∪ SP and for any z ∈ Rm by D(z) the diagonal matrix

D(z) = diag(−z1, . . . ,−zm, P̂ (xm+1), . . . , P̂ (xm+n)).

Theorem 3. For any Q̂ and P̂ , the problem of determining the discrepancy minimizing
distribution q∗ for the squared loss L2 and the hypothesis set H can be cast as an SDP
of the same form as (9) but that depends only on the Gram matrix of the kernel K:

min
z∈∆m

‖M′(z)‖2 (12)

where M′(z) = K1/2D(z)K1/2 = M′
0 −

∑m
i=1 ziM′

i, with M′
0 = K1/2D0K1/2

and M′
i = K1/2DiK1/2 for i ∈ [1,m], and D0,D1, . . . ,Dm ∈ Rq×q defined by

D0 = diag(0, . . . , 0, P̂ (xm+1), . . . , P̂ (xm+n)), and for i ≥ 1, Di is the diagonal
matrix of the ith unit vector.

Proof. Let Φ : X → F be a feature mapping associated to K, with dim(F) = N ′. Let
q = m + n. The problem of finding the optimal distribution q∗ is equivalent to solving

min
‖z‖1=1
z≥0

{λmax(M(z)), λmax(−M(z))}, (13)

where the matrix M(z) is defined by

M(z)=
q∑

i=m+1

P̂ (xi)Φ(xi)Φ(xi)>−
m∑

i=1

ziΦ(xi)Φ(xi)>,

with q∗ given by: q∗(xi) = zi for all i ∈ [1,m]. Let Φ denote the matrix in RN ′×q

whose columns are the vectors Φ(x1), . . . , Φ(xm+n). Then, observe that M(z) can be
rewritten as

M(z) = ΦD(z)Φ>.



Algorithm 1
for k ≥ 0 do
vk ← TC(uk)
wk ← argminu∈C

˘
L
σ

d(u) +
Pk

i=0
i+1
2

[F (ui) + 〈∇F (ui),u− ui〉]
¯

uk+1 ← 2
k+3

wk + k+1
k+3

vk

end for

Fig. 1. Convex optimization algorithm.

It is known that for any two matrices A ∈ RN ′×q and B ∈ Rq×N ′
, AB and BA

have the same eigenvalues. Thus, matrices M(z) = (ΦD(z))Φ> and Φ>(ΦD(z)) =
KD(z) have the same eigenvalues. KD(z) is not a symmetric matrix. To ensure that
we obtain an SDP of the same form as (9) minimizing the spectral norm of a symmetric
matrix, we can instead consider the matrix M′(z) = K1/2D(z)K1/2, which, by the
same argument as above has the same eigenvalues as KD(z) and therefore M(z). In
particular, M′(z) and M(z) have the same maximum and minimum eigenvalues, thus,
‖M(z)‖2 = ‖M′(z)‖2. Since D = D0 −

∑m
i=1 ziDi, this concludes the proof. ut

Thus, the discrepancy minimization problem can be formulated in both the original
input space and in the RKHS defined by a PDS kernel K as an SDP of the same form.
In the next section, we present a specific study of this SDP and use results from smooth
convex optimization as well as specific characteristics of the SDP considered in our
case to derive an efficient and practical adaptation algorithm.

5 Algorithm

This section presents an algorithm for solving the discrepancy minimization problem
using the smooth approximation technique of Nesterov [14]. A general algorithm was
given by Nesterov [13] to solve convex optimization problems of the form

minimizez∈CF (z), (14)

where C is a closed convex set and F admits a Lipschitz continuous gradient over C
in time O(1/

√
ε), which was later proven to be optimal for this class of problems. The

pseudocode of the algorithm is given in Figure 1. Here, TC(u) ∈ C denotes for any
u ∈ C, an element of argminv∈C 〈∇F (u),v − u〉+ 1

2L‖v−u‖2 (the specific choice
of the minimizing v is arbitrary for a given u). d denotes a prox-function for C, that is
d is a continuous and strongly convex function over C with respect to the norm ‖ · ‖
with convexity parameter σ > 0 and d(u0) = 0 where u0 = argminu∈C d(u). The
following convergence guarantee was given for this algorithm [14].

Theorem 4. Let z∗ be an optimal solution for problem (14) and let vk be defined as in
Algorithm 1, then for any k ≥ 0, F (vk)− F (z∗) ≤ 4Ld(z∗)

σ(k+1)(k+2) .

Algorithm 1 can be further used to solve in O(1/ε) optimization problems of the same
form where F is a Lipschitz-continuous non-smooth convex function [15]. This can
be done by finding a uniform ε-approximation of F by a smooth convex function G



Algorithm 2
u0 ← argminu∈C u>Ju
for k ≥ 0 do
vk ← argminu∈C

2p−1
2

(u− uk)>J(u− uk) +∇Gp(M(uk))>u

wk ← argminu∈C
2p−1

2
(u− u0)

>J(u− u0) +
Pk

i=0
i+1
2
∇Gp(M(ui))

>u
uk+1 ← 2

k+3
wk + k+1

k+3
vk

end for

Fig. 2. Smooth approximation algorithm.

with Lipschitz-continuous gradient. This is the technique we consider in the following.
Recall the general form of the discrepancy minimization SDP in the feature space:

minimize ‖M(z)‖2 (15)

subject to M(z) =
m∑

i=0

ziMi ∧ z0 = −1 ∧
m∑

i=1

zi = 1 ∧ ∀i ∈ [1,m], zi ≥ 0,

where z∈Rm+1 and where the matrices Mi∈SN
+ , i∈ [0,m], are fixed SPSD matrices.

Thus, here C = {z ∈ Rm+1 : z0 = −1 ∧
∑m

i=1 zi = 1 ∧ ∀i ∈ [1,m], zi ≥ 0}.
We further assume in the following that the matrices Mi are linearly independent since
the problem can be reduced to that case straightforwardly. The symmetric matrix J =
[〈Mi,Mj〉F ]i,j ∈ R(m+1)×(m+1) is then PDS and we will be using the norm x 7→√
〈Jx,x〉=‖x‖J on Rm+1.

A difficulty in solving this SDP is that the function F : z 7→ ‖M(z)‖2 is not dif-
ferentiable since eigenvalues are not differentiable functions at points where they co-
alesce, which, by the nature of the minimization, is likely to be the case precisely at
the optimum. Instead, we can seek a smooth approximation of that function. One nat-
ural candidate is the function z 7→ ‖M(z)‖2F . However, the Frobenius norm can lead
to a very coarse approximation of the spectral norm. As suggested by Nesterov [15],
the function Gp: M 7→ 1

2 Tr[M2p]
1
p , where p ≥ 1 is an integer, can be used to give a

smooth approximation. Indeed, let λ1(M)≥ λ2(M)≥· · ·≥ λN (M) denote the list of
the eigenvalues of a matrix M∈SN in decreasing order. By the definition of the trace,

for all M∈SN , Gp(M)= 1
2

[∑N
i=1 λ2p

i (M)
] 1

p , thus

1
2
λ2 ≤ Gp(M) ≤ 1

2
(rank(M)λ2p)

1
p ,

where λ = max{λ1(M),−λN (M)}= ‖M‖2. Thus, if we choose r as the maximum
rank, r = maxz∈C rank(M(z)) ≤ max{N,

∑n
i=0 rank(Mi)}, then for all z∈C,

1
2
‖M(z)‖22 ≤ Gp(M(z)) ≤ 1

2
r

1
p ‖M(z)‖22. (16)

This leads to a smooth approximation algorithm for solving the SDP (15) derived from
Algorithm 1 by replacing the objective function F with Gp. Choosing the prox-function
d : u 7→ 1

2‖u − u0‖2J leads to the algorithm whose pseudocode is given in Figure 2,
after some minor simplifications. The following theorem guarantees that its maximum
number of iterations to achieve a relative accuracy of ε is in O(

√
r log r/ε).
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Fig. 3. Performance improvement of the RMSE for the 12 adaptation tasks as a function of the
size of the unlabeled data used. Note that the figures do not make use of the same y-scale.

Theorem 5. For any ε>0, Algorithm 2 solves the SDP (15) with relative accuracy ε in
at most 4

√
(1 + ε)r log r/ε iterations using the objective function Gp with p∈ [q0, 2q0)

and q0 =(1 + ε)(log r)/ε.

Proof. The proof follows directly [14], it is given in Appendix A for completeness. ut

The first step of the algorithm consists of computing the vector u0 by solving the
simple QP of line 1. We now discuss in detail how to efficiently compute the steps of
each iteration of the algorithm in the case of our discrepancy minimization problems.

Each iteration of the algorithm requires solving two simple QPs (lines 3 and 4). To
do so, the computation of the gradient∇Gp(M(uk)) is needed. This will therefore rep-
resent the main computational cost at each iteration other than solving the QPs already
mentioned since, clearly, the sum

∑k
i=0

i+1
2 ∇Gp(M(ui))>u required at line 4 can be

computed in constant time from its value at the previous iteration. Since for any z ∈ Rm

Gp(M(z)) = Tr[M2p(z)]1/p = Tr
[
(

m∑
i=0

ziMi)2p
]1/p

,

using the linearity of the trace operator, the ith coordinate of the gradient is given by

[∇Gp(M(z))]i =〈M2p−1(z),Mi〉F Tr[M2p(z)]
1
p−1, (17)

for all i ∈ [0,m]. Thus, the computation of the gradient can be reduced to that of the
matrices M2p−1(z) and M2p(z). When the dimension of the feature space N is not
too large, both M2p−1(z) and M2p(z) can be computed via O(log p) matrix multipli-
cations using the binary decomposition method to compute the powers of a matrix [5].
Since each matrix multiplication takes O(N3), the total computational cost for deter-
mining the gradient is then in O((log p)N3). The cubic-time matrix multiplication can
be replaced by more favorable complexity terms of the form O(N2+α), with α = .376.
Alternatively, for large values of N , that is N � (m + n), in view of Theorem 3, we
can instead solve the kernelized version of the problem. Since it is formulated as the
same SDP, the same smooth optimization technique can be applied. Instead of M(z),
we need to consider the matrix M′(z) = K1/2D(z)K1/2. Now, observe that

M′2p(z) =
[
K1/2D(z)K1/2

]2p = K1/2
[
D(z)K

]2p−1
D(z)K1/2.



Table 1. RMSE results obtained for the 12 adaptation tasks. Each field of the table has three
results: from training only on the source data (top), from the adaptation task (middle), and from
training only on the target data (bottom).

books dvd elec kitchen

books .273± .004
.450± .005
.362± .004
.252± .004

.544± .002

.407± .009

.246± .003

.331± .001

.324± .006

.315± .003

dvd

.546± .007

.506± .010

.273± .004
.252± .004

.505± .004

.371± .006

.246± .003

.383± .003

.369± .004

.315± .003

elec

.412± .005

.399± .012

.273± .004

.429± .006

.325± .005

.252± .004
.246± .003

.345± .004

.331± .003

.315± .003

kitchen

.360± .003

.352± .008

.273± .004

.412± .002

.319± .008

.252± .004

.330± .003

.287± .007

.246± .003
.315± .003

Thus, by the property of the trace operator,

Tr[M′2p(z)] = Tr[D(z)K1/2K1/2[D(z)K]2p−1] = Tr[[D(z)K]2p]. (18)

The other term appearing in the expression of the gradient can be computed as follows:

〈M′2p−1(z),M′
i〉F =Tr[[K1/2D(z)K1/2]2p−1K1/2DiK1/2]

=Tr[K1/2
[
D(z)K

]2p−2
D(z)K1/2K1/2DiK1/2]

=Tr[K[D(z)K]2p−1Di],

for any i ∈ [1,m]. Observe that multiplying a matrix A by Di is equivalent to zeroing
all of its columns but the ith one, therefore Tr[ADi] = Aii. In view of that,

〈M′2p−1(z),M′
i〉F = [K[D(z)K]2p−1]ii. (19)

Therefore, the diagonal of the matrix K[D(z)K]2p−1 provides all these terms. Thus,
in view of (18) and (19), the gradient given by (17) can be computed directly from the
(2p)th and (2p−1)th powers of the matrix D(z)K. The iterated powers of this matrix,
[D(z)K]2p(z) and [D(z)K]2p−1(z), can be both computed using a binary decomposi-
tion in time O((log p)(m+n)3). This is a significantly more efficient computational cost
per iteration for N� (m + n). It is also substantially more favorable than the iteration
cost for solving the SDP using interior-point methods O(m3 + mN3 + m2N2 + nN2).
Furthermore, the space complexity of the algorithm is only in O((m + n)2).

6 Experiments

This section reports the results of extensive experiments demonstrating both the effec-
tiveness of discrepancy minimization in adaptation when using kernel ridge regression
and the efficiency of our optimization algorithm. Our results show that the adapta-
tion algorithm presented is practical even for relatively large data sets and for high-
dimensional feature spaces.

For our experiments, we used the multi-domain sentiment dataset (version 1.0) of
Blitzer et al. [3]. This data set has been used in several publications [4, 11], but despite



the ordinal nature of the star labeling of the data, it has always been treated as a clas-
sification task, and not as a regression task which is the focus of this work. We are not
aware of any other adaptation datasets that can be applied to the regression task.

To make the data conform with the regression setting discussed in the previous sec-
tions, we first convert the discrete labels to regression values by fitting all the data for
each of the four tasks books, dvd, elec, and kitchen a Gaussian kernel ridge regres-
sion with a relatively small width σ = 1 as feature vectors the normalized counts of the
top 5,000 unigrams and bigrams, as measured across all four tasks. These regression
values are used as target values for all subsequent modeling.

We then define 12 adaptation problems for each pair of distinct tasks (task, task′),
where task and task′ are in {books, dvd, elec, kitchen}. For each of these prob-
lems, the source empirical distribution is a mixture defined by 500 labeled points from
task and 200 from task′. This is intended to make the source and target distributions
reasonably close, a condition for the theory developed in this paper, but the algorithm
receives of course no information about this definition of the source distribution. The
target distribution is defined by another set of points all from task′.

Figure 3 shows the performance of the algorithm on the 12 adaptation tasks between
distinct domains plotted as a function of the amount of unlabeled data received from
the target domain. The optimal performance obtained by training purely on the same
amount of labeled data from the target domain is also indicated in each case. The input
features are again the normalized counts of the top 5,000 unigrams and bigrams, as
measured across all four tasks, and for modeling we use kernel ridge regression with
the Gaussian kernel of the same width σ = 1. This setup guarantees that the target
labeling function is in the hypothesis space, a condition matching one of the settings
analyzed in our theoretical study. The results are mean values obtained from 9-fold
cross validation and we plot mean values± one standard deviation. As can be seen from
the figure, adaptation improves, as expected, with increasing amounts of data. One can
also observe that not all data sets are equally beneficial for adaptation. The kitchen
task primarily discusses electronic gadgets for kitchen use, and hence the kitchen and
elec data sets adapt well to each other, an observation also made by Blitzer et al. [3].

Our results on the adaptation tasks are also summarized in Table 1. The row name
indicates the source domain and the column name the target domain. Due to lack of
space, we only list the results for adaptation with 1,000 unlabeled points from the target
domain. In this table, we also provide for reference the results from training purely with
labeled data from the source or target domain. We are not aware of any other adaptation
algorithms for the regression tasks with which we can compare our performance results.

Algorithm 2 requires solving several QPs to compute u0 and uk+1, k ≥ 0. Since
uk+1 ∈ Rm+1, the cost of these computations only depends on the size of the labeled
sample m, which is relatively small. Figure 4 displays average run times obtained for m
in the range 500 to 10, 000. All experiments were carried out on a single processor of an
Intel Zeon 2.67GHz CPU with 12GB of memory. The algorithm was implemented in R
and made use of the quadprog optimization package. As can be seen from the figure,
the run times scale cubically in the sample size, reaching roughly 10s for m = 1, 000.

The dominant cost of each iteration of Algorithm 2 is the computation of the gra-
dient ∇Gp(M(uk)), as already pointed out in Section 5. The iterated power method
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Fig. 4. The left panel shows a plot reporting run times measured empirically (mean ± one stan-
dard deviation) for the QP optimization and the computation of∇Gp as a function of the sample
size (log-log scale). The right panel compares the total time taken by Algorithm 2 to compute the
optimization solution, to the one taken by SeDuMi (log-log scale).

provides a cost per iteration of O((log p)(m + n)3), and thus depends on the com-
bined size of the labeled and unlabeled data. Figure 4 shows typical timing results ob-
tained for different samples sizes in the range m + n = 500 to m + n = 10, 000 for
p = 16, which empirically was observed to guarantee convergence. For a sample size
of m + n = 2, 000 the time is about 80 seconds. With 5 iterations of Algorithm 2 the
total time is 5× (80 + 2 ∗ 10) + 10 = 510 seconds.

In contrast, even the most efficient SDP solvers publicly available, SeDuMi, cannot
solve our discrepancy minimization SDPs for more than a few hundred points in the
kernelized version. In our experiments, SeDuMi (http ://sedumi.ie.lehigh.edu/)
simply failed for set sizes larger than m + n = 750! In Figure 4, typical run times for
Algorithm 2 with 5 iterations are compared to run times using SeDuMi.

7 Conclusion

We presented several theoretical guarantees for domain adaptation in regression and
proved that the empirical discrepancy minimization can also be cast as an SDP when
using kernels. We gave an efficient algorithm for solving that SDP using results from
smooth optimization and specific characteristics of these SDPs in our adaptation case.
Our adaptation algorithm is shown to scale to larger data sets than what could be af-
forded using the best existing software for solving such SDPs. Altogether, our results
form a complete solution for domain adaptation in regression, including theoretical
guarantees, an efficient algorithmic solution, and extensive empirical results.
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A Proof of Theorem 5
Proof. Let ‖M∗‖2 be the optimum of the SDP (15), Gp(M′∗) that of the SDP with F
replaced with its smooth approximation Gp, and z∗ ∈ C a solution of that SDP with
relative accuracy ε. Then, for p ≥ (1+ε) log r

ε , in view of (16), z∗ is a solution of the
original SDP (15) with relative accuracy ε:

‖M(z∗)‖2
‖M∗‖2

≤ r
1
2p

√
GP (M(z∗))√
Gp(M′∗)

≤ r
1
2p (1 + ε)1/2 ≤ (1 + ε).

Gp can be shown to admit a Lipschitz gradient with Lipschitz constant L = (2p −
1) with respect to the norm ‖ · ‖J and the prox-function d can be chosen as d(u) =
1
2‖u − u0‖2J, with u0 = argminu∈C ‖u‖J and convexity parameter σ = 1. It can be

shown that d(z∗) ≤ rGp(M′∗). Thus, in view of Theorem 4, Gp(M(zk))−Gp(M′∗)
Gp(M′∗) ≤

4(2p−1)r
(k+1)(k+2) . Choosing p such that 2p < 4 (1+ε) log r

ε , and setting the right-hand side to
ε > 0, gives the following maximum number of iterations to achieve a relative accuracy
of ε using Algorithm 2: k∗ =

√
(16r(1 + ε) log r)/ε2 = 4

√
(1 + ε)r log r/ε. ut


