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Abstract— For the vast majority of local problems on graphs
of small treewidth (where by local we mean that a solution can
be verified by checking separately the neighbourhood of each ver-
tex), standard dynamic programming techniques give ctw|V |O(1)

time algorithms, where tw is the treewidth of the input graph
G = (V,E) and c is a constant. On the other hand, for problems
with a global requirement (usually connectivity) the best–known
algorithms were naive dynamic programming schemes running in
at least twtw time.

We breach this gap by introducing a technique we named
Cut&Count that allows to produce ctw|V |O(1) time Monte Carlo
algorithms for most connectivity-type problems, including HAMIL-
TONIAN PATH, STEINER TREE, FEEDBACK VERTEX SET and
CONNECTED DOMINATING SET. These results have numerous
consequences in various fields, like parameterized complexity,
exact and approximate algorithms on planar and H-minor-free
graphs and exact algorithms on graphs of bounded degree. The
constant c in our algorithms is in all cases small, and in several
cases we are able to show that improving those constants would
cause the Strong Exponential Time Hypothesis to fail.

In contrast to the problems aiming to minimize the number
of connected components that we solve using Cut&Count as
mentioned above, we show that, assuming the Exponential Time
Hypothesis, the aforementioned gap cannot be breached for some
problems that aim to maximize the number of connected compo-
nents like CYCLE PACKING.

Keywords-treewidth; fixed parameter tractability; randomized
algorithms; exact algorithms;

1. INTRODUCTION AND NOTATION

The notion of treewidth was introduced independently by
Rose in 1974 [40] (under the name of partial k-tree) and in
1984 by Robertson and Seymour [39], and in many cases
proved to be a good measure of the intrinsic difficulty of
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various NP-hard problems on graphs, and a useful tool for
attacking those problems. Many of them can be efficiently
solved through dynamic programming if we assume the
input graph to have bounded treewidth. For example, an
expository algorithm to solve VERTEX COVER and INDE-
PENDENT SET running in time 4tw(G)|V |O(1) is described in
the algorithms textbook by Kleinberg and Tardos [30], while
the book of Niedermeier [37] on fixed-parameter algorithms
presents an algorithm with running time 2tw(G)|V |O(1).

The interest in algorithms for graphs of bounded treewidth
stems from their utility: such algorithms are used as sub-
routines in a variety of settings. Amongst them promi-
nent are approximation algorithms [2], [7], [12], [18]
and parametrized algorithms [16], [20] for a vast number
of problems on planar, bounded-genus and H-minor-free
graphs, including VERTEX COVER, DOMINATING SET and
INDEPENDENT SET; there are applications for parametrized
algorithms in general graphs [35], [42] for problems like
CONNECTED VERTEX COVER and CUTWIDTH; and ex-
act algorithms [20], [44] such as MINIMUM MAXIMAL
MATCHING and DOMINATING SET.

In many cases, where the problem to be solved is “lo-
cal” (loosely speaking this means that the property of the
object to be found can be verified by checking separately
the neighbourhood of each vertex), matching upper and
lower bounds for the runtime of the optimal solution are
known. For instance for the aforementioned 2tw(G)|V |O(1)

algorithm for VERTEX COVER there is a matching lower
bound — unless the Strong Exponential Time Hypothesis
(see [26]) fails, there is no algorithm for VERTEX COVER
running faster than (2− ε)tw(G) for any ε > 0 (see [32]).

On the other hand, when the problem involves some
sort of a “global” constraint — e.g., connectivity — the
best known algorithms usually have a runtime on the order



of 2O(tw(G) log tw(G))|V |O(1). In these cases the typical
dynamic programming routine has to keep track of all the
ways in which the solution can traverse the corresponding
separator of the tree decomposition, that is Ω(ll) on the size
l of the separator, and therefore of treewidth. This obviously
implies weaker results in the applications mentioned above.
This problem was observed, for instance, by Dorn, Fomin
and Thilikos [16], [15] and by Dorn et al. in [17], and
the question whether the known 2O(tw(G) log tw(G))|V |O(1)

parametrized algorithms for HAMILTONIAN PATH, CON-
NECTED VERTEX COVER and CONNECTED DOMINATING
SET are optimal was explicitly asked by Lokshtanov, Marx
and Saurabh [33].

The 2O(tw(G) log tw(G)) dynamic programming routines
for connectivity problems were thought to be optimal,
because in these routines the dynamic programming table
reflects the whole information that needs to be memoized
in order to continue the computation. For every two distinct
tables at some bag of the tree decomposition there exists
a possible future on which the algorithm should behave
differently. This resembles the notion of Myhill-Nerode
equivalence classes [25], which, in a variety of settings,
define the minimal automaton for a given problem. Hence,
shrinking the size of the dynamic programming table would
be, in some sense, trying to reduce the size of the minimal
automaton. From this point of view the results of this paper
come as a significant surprise.

1.1. Our results

In this paper we introduce a technique we named
“Cut&Count”. Briefly stated, we first reduce the original
problem to the task of counting possibly disconnected ”cut
solutions” modulo 2 by (i) making sure that the number
of disconnected cut solutions is always even and (ii) using
randomization to make sure that the number of connected
cut solutions is odd iff there is a solution. The reduction
is performed in such a way that counting cut solutions is a
local problem and can be done sufficiently fast by standard
dynamic programming.

For most problems involving a global constraint our
technique gives a randomized algorithm with runtime
ctw(G)|V |O(1). In particular we are able to give such algo-
rithms for the three problems mentioned in [33], as well
as for all the other sample problems mentioned in [15].
Moreover, the constant c is in all cases well defined and
small. The randomization we mention comes from the usage
of the Isolation Lemma [36]. This gives us Monte Carlo
algorithms with a one-sided error. The formal statement of
a typical result is as follows:

Theorem 1.1. There exists a randomized algorithm, which
given a graph G = (V,E), a tree decomposition of G of
width t and a number k in 3t|V |O(1) time either states that
there exists a connected vertex cover of size at most k in

G, or that it could not verify this hypothesis. If there indeed
exists such a cover, the algorithm will return “unable to
verify” with probability at most 1/2.

We call an algorithm as in Theorem 1.1 an algorithm
with false negatives. We see similar results for a number
of other global problems. As the exact value of c in the
ctw(G) expression is often important and highly non-trivial
to obtain, we gather the results in the second column of
Table I.

For a number of these results we have matching lower
bounds, such as the following one:

Theorem 1.2. Unless the Strong Exponential Time Hypoth-
esis is false, there do not exist a constant ε > 0 and an
algorithm that given an instance (G = (V,E), T, k) together
with a path decomposition of the graph G of width p solves
the STEINER TREE problem in (3− ε)p|V |O(1) time.

Since each path decomposition is also a tree decomposi-
tion a lower bound for pathwidth is at least as strong as for
treewidth. We have such matching lower bounds for several
other problems presented in the third column of Table I.
We feel that the results for CONNECTED VERTEX COVER,
CONNECTED DOMINATING SET, CONNECTED FEEDBACK
VERTEX SET and CONNECTED ODD CYCLE TRANSVER-
SAL are of particular interest here and should be compared to
the algorithms and lower bounds for the analogous problems
without the connectivity requirement.

We have found Cut&Count to fail for two maximization
problems: CYCLE PACKING and MAX CYCLE COVER. We
believe this is an example of a more general phenomenon —
problems that ask to maximize (instead of minimizing) the
number of connected components in the solution seem more
difficult to solve than the problems that ask to minimize
(including problems where we demand that the solution
forms a single connected component). As evidence we
present lower bounds for the time complexity of solutions
to such problems, proving that ctw(G) solutions of these
problems are unlikely:

Theorem 1.3. Unless the Exponential Time Hypothesis is
false, there does not exist a 2o(p log p)|V |O(1) algorithm
solving CYCLE PACKING or MAX CYCLE COVER (either
in the directed and undirected setting). The parameter p
denotes the width of a given path decomposition of the input
graph.

To further verify this intuition, we investigated an artificial
problem (the MAXIMALLY DISCONNECTED DOMINATING
SET), in which we ask for a dominating set with the largest
possible number of connected components, and indeed we
found a similar phenomenon.

1.2. Previous work
The Cut&Count technique has two main ingredients. The

first is an algebraic approach, where we assure that objects



Problem name algorithms param. lower bounds algorithms param. previous best algorithms
by treewidth by solution size param. by solution size

STEINER TREE 3tw(G) 3pw(G)

FEEDBACK VERTEX SET 3tw(G) 3pw(G) 3k 3.83k [10]
CONNECTED VERTEX COVER 3tw(G) 3pw(G) 2k 2.4882k [3]
CONNECTED DOMINATING SET 4tw(G) 4pw(G)

CONNECTED FEEDBACK VERTEX SET 4tw(G) 4pw(G) 3k 46.2k [34]
CONNECTED ODD CYCLE TRANSVERSAL 4tw(G) 4pw(G)

UNDIRECTED/DIRECTED MIN CYCLE COVER 4tw(G)/6tw(G)

UNDIRECTED/DIRECTED LONGEST PATH (CYCLE) 4tw(G)/6tw(G)

EXACT k-LEAF SPANNING TREE 4tw(G) 4pw(G)

EXACT k-LEAF OUTBRANCHING 6tw(G)

MAXIMUM FULL DEGREE SPANNING TREE 4tw(G)

GRAPH METRIC TRAVELLING SALESMAN PROBLEM 4tw(G)

(DIRECTED) CYCLE PACKING 2Ω(pw(G) log pw(G))

(DIRECTED) MAX CYCLE COVER 2Ω(pw(G) log pw(G))

MAXIMALLY DISCONNECTED DOMINATING SET 2Ω(pw(G) log pw(G))

Table I
SUMMARY OF OUR RESULTS. FOR THE SAKE OF PRESENTATION IN EACH ENTRY WE SKIP THE |V |O(1) MULTIPLICATIVE TERM.

we are not interested in are counted an even number of
times, and then do the calculations in Z2 (or for example
any other field of characteristic 2), which causes them to
disappear. This line of reasoning goes back to Tutte [43],
and was recently used by Björklund [4] and Björklund et.
al [6].

The second is the idea of defining the connectivity re-
quirement through cuts, which is frequently used in approx-
imation algorithms via linear programming relaxations. In
particular cut based constraints were used in the Held and
Karp relaxation for the TRAVELLING SALESMAN PROBLEM
problem from 1970 [23], [24] and appear up to now in the
best known approximation algorithms, for example in the
recent algorithm for the STEINER TREE problem by Byrka
et al. [9]. To the best of our knowledge the idea of defining
problems through cuts was never used in the exact and
parameterized settings.

A number of papers circumvent the problems stemming
from the lack of single exponential algorithms parametrized
by treewidth for connectivity–type problems. For instance
in the case of parametrized algorithms, sphere cuts [16],
[17] (for planar and bounded genus graphs) and Catalan
structures [15] (for H-minor-free graphs) were used to
obtain 2O(

√
k)|V |O(1) algorithms for a number of prob-

lems with connectivity requirements. To the best of our
knowledge, however, no attempt to attack the problem
directly was published before; indeed the non-existence
of 2o(tw(G) log tw(G))|V |O(1) algorithms was deemed to be
more likely.

1.3. Consequences of the Cut&Count technique

As already mentioned, algorithms for graphs with a
bounded treewidth have a number of applications in various
branches of algorithmics. Thus, it is not a surprise that the
results obtained by our technique give a large number of
corollaries. In this extended abstract we do not explore all

possible applications, but only give sample applications in
various directions.

We would like to emphasize that the strength of the
Cut&Count technique shows not only in the quality of the
results obtained in various fields, which are frequently better
than the previously best known ones, achieved through a
plethora of techniques and approaches, but also in the ease
in which new strong results can be obtained.

1.3.1. Consequences for FPT algorithms: Let us recall
the definition of the FEEDBACK VERTEX SET problem:

FEEDBACK VERTEX SET Parameter: k
Input: An undirected graph G and an integer k
Question: Is it possible to remove k vertices from G
so that the remaining vertices induce a forest?

This problem is on Karp’s original list of 21 NP-complete
problems [29]. It has also been extensively studied from the
parametrized complexity point of view. Let us recall that in
the fixed-parameter setting (FPT) the problem comes with
a parameter k, and we are looking for a solution with time
complexity f(k)|V |O(1), where n is the input size and f is
some function (usually exponential in k). Thus, we seek to
move the intractability of the problem from the input size
to the parameter.

There is a long sequence of FPT algorithms for FEED-
BACK VERTEX SET. The best — so far — result in this
series is the 3.83kk|V |2 result of Cao, Chen and Liu [10].
Our technique gives an improvement of their result:

Theorem 1.4. There exists a Monte Carlo algorithm with
constant one-sided error probability that solves the FEED-
BACK VERTEX SET problem in a graph G = (V,E) in
3k|V |O(1) time and polynomial space.

We give similar improvements for CONNECTED VERTEX
COVER (from the 2.4882k|V |O(1) of [3] to 2k|V |O(1))
and CONNECTED FEEDBACK VERTEX SET (from the



46.2k|V |O(1) of [34] to 3k|V |O(1)).

1.3.2. Parametrized algorithms for H-minor-free graphs:
A large branch of applications of algorithms parametrized
by treewidth is the bidimensionality theory, used to find
subexponential algorithms for various problems in H-minor-
free graphs. In this theory we use the theorem of Demaine et
al. [13], which ensures that any H-minor-free graph either
has treewidth bounded by C

√
k, or a 2

√
k × 2

√
k grid as

a minor. In the latter case we are assumed to be able to
answer the problem in question (for instance a 2

√
k× 2

√
k

grid as a minor guarantees that the graph does not have a
VERTEX COVER or CONNECTED VERTEX COVER smaller
than k). Thus, we are left with solving the problem with
the assumption of bounded treewidth. In the case of for
instance VERTEX COVER, a standard dynamic programming
algorithm suffices, thus giving us a 2O(

√
k) algorithm to

check whether a graph has a vertex cover no larger than k.
In the case of CONNECTED VERTEX COVER, however, the
standard dynamic programming routine gives a 2O(

√
k log k)

complexity — thus, we lose a logarithmic factor in the
exponent.

There were a number of attempts to deal with this
problem, taking into account the structure of the graph, and
using it to deduce some properties of the tree decomposition
under consideration. The latest and most efficient of those
approaches is due to Dorn, Fomin and Thilikos [15], and
exploits the so-called Catalan structures. The approach deals
with most of the problems mentioned in our paper, and is
probably applicable to the remaining ones. Thus, the gain
here is not in improving the running times (though our
approach does improve the constants hidden in the big-O
notation these are rarely considered to be important in the
bidimensionality theory), but rather in simplifying the proof
— instead of delving into the combinatorial structure of each
particular problem, we are back to a simple framework of ap-
plying the Robertson-Seymour theorem and then following
up with a dynamic programming algorithm on the obtained
tree decomposition.

1.3.3. Consequences for Exact Algorithms for graphs of
bounded degree: Another application of our methods can
be found in the field of solving problems with a global
constraint in graphs of bounded degree. The problems that
have been studied in this setting are mostly local in nature
(such as VERTEX COVER, see, e.g., [8]); however global
problems such as the TRAVELLING SALESMAN PROBLEM
(TSP) and HAMILTONIAN CYCLE have also received con-
siderable attention [5], [19], [22], [27].

Throughout the following we let n denote the number
of vertices of the given graph. The starting point is the
following theorem by Fomin et al. [20]:

Theorem 1.5 ([20]). For any ε > 0 there exists an integer

nε such that for any graph G with n > nε vertices,

pw(G) ≤ 1

6
n3 +

1

3
n4 +

13

30
n5 + n≥6 + εn,

where ni is the number of vertices of degree i in G for any
i ∈ {3, . . . , 5} and n≥6 is the number of vertices of degree
at least 6.

This theorem is constructive, and the corresponding path
decomposition (and, consequently, tree decomposition) can
be found in polynomial time. Combining this theorem with
our results gives algorithms running in faster than 2n time
for graphs of maximum degree 3, 4 and (in the case of
the 3tw(G) and 4tw(G) algorithms) 5. Furthermore in the
full version of the paper we improve the general 4tw(G)

algorithm for HAMILTONIAN CYCLE to 3pw(G) in case of a
path decomposition of cubic graphs. Consequently we prove
the following theorem which improves over previously best
results for maximum degree three O(1.251n) algorithm of
Iwama and Nakashima [27] and for degree four O(1.657n)
algorithm of Björklund [4].

Corollary 1.6. There exists a Monte Carlo algorithm
with constant one-sided error probability that solves the
HAMILTONIAN CYCLE problem in O(1.201n) time for cubic
graphs and O(1.588n) for graphs of maximum degree 4.

1.3.4. Consequences for exact algorithms on planar
graphs: Recall from the previous section that n denotes the
number of vertices of the given graph. Here we begin with
a consequence of the work of Fomin and Thilikos [21]:

Proposition 1.7. For any planar graph G, tw(G) + 1 ≤
3
2

√
4.5n ≤ 3.183

√
n. Moreover a tree decomposition of such

width can be found in polynomial time.

Using this we immediately obtain O(c
√
n) algorithms

for solving problems with a global constraint on planar
graphs with good constants. For the HAMILTONIAN CYCLE
problem on planar graphs we obtain the following result:

Corollary 1.8. There exists a Monte Carlo algorithm
with constant one-sided error probability that solves the
HAMILTONIAN CYCLE problem on planar graphs in
O(43.183

√
n) = O(26.366

√
n) time.

To the best of our knowledge the best algorithm known
so far was the O(26.903

√
n) of Bodlaender et al. [17].

Similarly, we obtain an O(26.366
√
n) algorithm for

LONGEST CYCLE on planar graphs (compare to the
O(27.223

√
n) of [17]), and — as in the previous subsections

— well-behaved c
√
n algorithms for all mentioned problems.

1.4. Organization of the paper

Section 2 is devoted to presenting the background material
for our algorithms; in particular we recall the notion of
treewidth and in Subsection 2.2 we introduce the Isolation
Lemma. In Section 3 we present the Cut&Count technique



on two examples: the STEINER TREE problem and the
DIRECTED MIN CYCLE COVER problem. In Section 4 we
give the 3k|V |O(1) algorithm for FEEDBACK VERTEX SET
when parameterized by the solution size, whereas in Section
5 we move to lower bounds. We finish the paper with a
number of conclusions and open problems in Section 6.

As the reader might have already noticed, there is a quite
a large amount of material covered in this paper and due
to space limitations a considerable number of proofs and
analyses was postponed to the full version of the paper which
is available online [11].

2. PRELIMINARIES AND NOTATION

2.1. Notation

Just as G[X] for X ⊆ V (G) denotes a subgraph induced
by the set X of vertices, we use G[X] for X ⊆ E(G) for
the graph (V,X), where G = (V,E). Note that in the graph
G[X] for an edge set X the set of vertices remains the same
as in the graph G.

By a cut of a set X we mean a pair (X1, X2), with X1∩
X2 = ∅, X1 ∪X2 = X . We refer to X1 and X2 as to the
(left and right) sides of the cut.

In a directed graph G by weakly connected components
we mean the connected components of the underlying undi-
rected graph. For a (directed) graph G, we let cc(G) denote
the number of (weakly) connected components of G.

We denote the symmetric difference of two sets A and B
by A4B. For two integers a, b we use a ≡ b to indicate that
a is even if and only if b is even. If ω : U → {1, . . . , N},
we shorthand ω(S) :=

∑
e∈S ω(e) for S ⊆ U .

Definition 2.1 (Tree Decomposition, [39]). A tree decom-
position of a (undirected or directed) graph G is a tree T
in which each vertex x ∈ T has an assigned set of ver-
tices Bx ⊆ V (called a bag) with the following properties:
(i)

⋃
x∈T Bx = V , (ii) for any uv ∈ E, there exists

an x ∈ T such that u, v ∈ Bx, and (iii) if v ∈ Bx and
v ∈ By , then v ∈ Bz for all z on the path from x to y in T.

The treewidth tw(T) of a tree decomposition T is the
size of the largest bag of T minus one, and the treewidth
of a graph G is the minimum treewidth over all possible
tree decompositions of G. A path decomposition is a tree
decomposition that is a path. The pathwidth of a graph is
the minimum width of all path decompositions. Since a path
decomposition is a special tree decomposition, the pathwidth
is at least the treewidth of a graph.

2.2. Isolation lemma

An important ingredient of our algorithms is the Isolation
Lemma:

Definition 2.2. A function ω : U → Z isolates a set
family F ⊆ 2U if there is a unique S′ ∈ F with ω(S′) =
minS∈F ω(S).

Lemma 2.3 (Isolation Lemma, [36]). Let F ⊆ 2U be a
set family over a universe U with |F| > 0. For each u ∈
U , choose a weight ω(u) ∈ {1, 2, . . . , N} uniformly and
independently at random. Then prob[ω isolates F] ≥ 1 −
|U |/N .

The Isolation Lemma allows us to count objects modulo
2, since with a large probability it reduces a possibly large
number of solutions to some problem to a unique one (with
an additional weight constraint imposed).

An alternative method to a similar end is obtained by
using Polynomial Identity Testing [14], [41], [45] over a field
of characteristic two. This second method has been already
used in the field of exact and parameterized algorithms
[4], [31]. The two methods do not differ much in their
consequences: Both use the same number of random bits,
and the challenge of giving a full derandomization seems to
be equally difficult for both methods [1], [28]. The usage
of the Isolation Lemma gives greater polynomial overheads,
however we choose to use it because it requires less prelim-
inary knowledge and it simplifies the presentation.

3. CUT&COUNT: ILLUSTRATION OF THE TECHNIQUE

In this section we present the Cut&Count technique by
demonstrating how it applies to the STEINER TREE and
DIRECTED MIN CYCLE COVER problems. We go through
all the important details in an expository manner, as we aim
not only to show the solutions to these particular problems,
but also to show the general workings.

The Cut&Count technique applies to problems with cer-
tain connectivity requirements. Let S ⊆ 2U be a set of solu-
tions; we aim to decide whether it is empty. Conceptually,
Cut&Count can naturally be split in two parts:
• The Cut part: Relax the connectivity requirement

by considering the set R ⊇ S of possibly connected
candidate solutions. Furthermore, consider the set C of
pairs (X,C) where X ∈ R and C is a consistent cut
(to be defined later) of X .

• The Count part: Compute |C| modulo 2 using a sub-
procedure. Non-connected candidate solutions X ∈ R\
S cancel since they are consistent with an even number
of cuts. Connected candidates x ∈ S remain.

Note that we need the number of solutions to be odd
in order to make the counting part work. For this we use
the Isolation Lemma (Lemma 2.3): We introduce uniformly
and independently chosen weights ω(v) for every v ∈ U
and compute |CW | modulo 2 for every W , where CW =
{(X,C) ∈ C|ω(X) = W}. Let us recall that for two integers
a, b we use a ≡ b to indicate that a is even if and only if
b is even. The general setup can thus be summarized as in
Algorithm 1.

The following corollary that we use throughout the paper
follows from Lemma 2.3 by setting F = S and N = 2|U |:



Function cutandcount(U,T, CountC)
Input Set U ; tree decomposition T; Procedure CountC

accepting a ω : U → {1, . . . , N}, W ∈ Z and T.
1: for every v ∈ U do
2: Choose ω(v) ∈ {1, . . . , 2|U |} uniformly at random.
3: for every 0 ≤W ≤ 2|U |2 do
4: if CountC(ω,W,T) ≡ 1 then return yes
5: return no

Algorithm 1: cutandcount(U,T, CountC)

Corollary 3.1. Let S ⊆ 2U and C ⊆ 2U × (2V × 2V ).
Suppose that for every W ∈ Z:

1) |{(X,C) ∈ C|ω(X) = W}| ≡ |{X ∈ S|ω(X) =
W}|,

2) CountC(ω,W,T) ≡ |{(X,C) ∈ C|ω(X) = W}|.
Then Algorithm 1 returns no if S is empty and yes with
probability at least 1

2 otherwise.

When applying the technique, both the Cut and the Count
part are non-trivial: In the Cut part one has to find the proper
relaxation of the solution set, and in the Count part one has
to show that the number of non-solutions counted is even for
each W and provide an algorithm CountC. In the next two
subsections, we illustrate both parts by giving two specific
applications.

3.1. Steiner Tree

STEINER TREE
Input: An undirected graph G = (V,E), a set of
terminals T ⊆ V and an integer k.
Question: Is there a set X ⊆ V of cardinality k such
that T ⊆ X and G[X] is connected?

The Cut part. Let us first consider the Cut part of the
Cut&Count technique, and start by defining the objects
we are going to count. Suppose we are given a weight
function ω : V → {1, . . . , N}. For any integer W , let
RW be the set of all such subsets X of V that T ⊆ X ,
ω(X) = W and |X| = k. Also, define SW = {X ∈
RW | G[X] is connected}. The set

⋃
W SW is our set of

solutions — if for any W this set is nonempty, our problem
has a positive answer. The set RW is the set of candidate
solutions, where we relax the connectivity requirement. In
this easy application the only requirement that remains
is that the set of terminals is contained in the candidate
solution.

Definition 3.2. A cut (V1, V2) of an undirected graph G =
(V,E) is consistent if u ∈ V1 and v ∈ V2 implies uv /∈ E.
A consistently cut subgraph of G is a pair (X, (X1, X2))
such that (X1, X2) is a consistent cut of G[X].

Similarly for a directed graph D = (V,A) a cut (V1, V2)
is consistent if (V1, V2) is a consistent cut in the underlying
undirected graph. A consistently cut subgraph of D is a pair

(X, (X1, X2)) such that (X1, X2) is a consistent cut of the
underlying undirected graph of D[X].

Let v1 be an arbitrary terminal. Define CW to be the set
of all consistently cut subgraphs (X, (X1, X2)) such that
X ∈ RW and v1 ∈ X1. Before we proceed with the Count
part, let us state the following easy combinatorial identity:

Lemma 3.3. Let G = (V,E) be a graph and let X be a
subset of vertices such that v1 ∈ X ⊆ V . The number of
consistently cut subgraphs (X, (X1, X2)) such that v1 ∈ X1

is equal to 2cc(G[X])−1.

Proof: By definition, we know for every consistently
cut subgraph (X, (X1, X2)) and connected component C of
G[X] that either C ⊆ X1 or C ⊆ X2. For the connected
component containing v1, the choice is fixed, and for all
cc(G[X]) − 1 other connected components we are free to
choose a side of a cut, which gives 2cc(G[X])−1 possibilities
leading to different consistently cut subgraphs.
The Count part. The following lemma shows that the first
condition of Corollary 3.1 is indeed met:

Lemma 3.4. Let G,ω,CW , SW and RW be as defined
above. Then for every W , |SW | ≡ |CW |.

Proof: By Lemma 3.3, we know that
|CW | =

∑
X∈RW

2cc(G[X])−1. Thus |CW | ≡
∣∣{X ∈

RW |cc(G[X]) = 1}
∣∣ = |SW |.

Now the only missing ingredient left is the sub-procedure
CountC. This sub-procedure, which counts the cardinality
of CW modulo 2, is a standard application of dynamic
programming and the details are omitted.

Lemma 3.5. Given G = (V,E), T ⊆ V , an integer k,
ω : V → {1, . . . , N} and a tree decomposition of G, there
exists an algorithm that can determine |CW | modulo 2 for
every 0 ≤W ≤ kN in 3tN2|V |O(1) time.

We conclude this section with the following theorem.

Theorem 3.6. There exists a Monte-Carlo algorithm that
given a tree decomposition of width t solves STEINER TREE
in 3t|V |O(1) time. The algorithm cannot give false positives
and may give false negatives with probability at most 1/2.

Proof: Run Algorithm 1 by setting U = V , and CountC

to be the algorithm implied by Lemma 3.5. The correctness
follows from Corollary 3.1 by setting S =

⋃
W SW and

C =
⋃

W CW and Lemma 3.4. It is easy to see that the
timebound follows from Lemma 3.5.

3.2. Directed Min Cycle Cover

DIRECTED MIN CYCLE COVER
Input: A directed graph D = (V,A), an integer k.
Question: Can the vertices of D be covered with at most
k vertex disjoint directed cycles?



This problem is significantly different from the one con-
sidered in the previous section, since the aim is to maximize
connectivity in a more flexible way: in the previous section
the solution induced one connected component, while it
may induce at most k weakly connected components in the
context of the current section. Note that with the Cut&Count
technique as introduced above, the solutions we are looking
for cancel modulo 2.

We introduce a concept called markers. A set of solutions
consists of pairs (X,M), where X ⊆ A is a cycle cover
and M ⊆ X, |M | = k is a set of marked arcs, such
that each cycle in X contains at least one marked arc.
Since |M | = k, this ensures that for every solution (X,M)
the cycle cover X consists of at most k cycles. Note that
distinguishing two different sets of marked arcs of a single
cycle cover is considered to induce two different solutions.
For this reason, with each arc of the graph we associate
two random weights: the first contributes to the weight of
a solution, when an arc belongs to X , while the second
contributes additionally, when it belongs to M as well.
When we relax the requirement that in the pair (X,M)
each cycle in X contains at least one vertex from M , we
obtain a set of candidate solutions. The objects we count
are pairs consisting of (i) a pair (X,M), where X ⊆ A
is a cycle cover and M ⊆ X is a set of k markers, (ii) a
cut consistent with D[X], where all the marked arcs from
M have both endpoints on the left side of the cut. We will
see that candidate solutions that contain a cycle without any
marked arc cancel modulo 2. Formal definition follows.
The Cut part. As said before, we assume that we are given a
weight function ω : U = A×{X}∪A×{M} → {1, . . . , N},
where N = 2|U | = 4|A|. The arguments A × {X}
correspond to the contribution of choosing an arc to belong
to X , while A×{M} correspond to additional contribution
of choosing it to M as well.

Definition 3.7. For an integer W we define:
1) RW to be the family of candidate solutions, that is,

RW is the family of all pairs (X,M), such that X ⊆
A is a cycle cover, i.e., outdegX(v) = indegX(v) =
1 for every vertex v ∈ V ; M ⊆ X , |M | = k and
ω(X × {X} ∪M × {M}) = W ;

2) SW to be the family of solutions, that is, SW is the
family of all pairs (X,M), where (X,M) ∈ RW and
every cycle in X contains at least one arc from the
set M ;

3) CW as all pairs ((X,M), (V1, V2)) such that
(X,M) ∈ RW , (V1, V2) is a consistent cut of D[X]
and V (M) ⊆ V1.

Observe that the graph D admits a cycle cover with at
most k cycles if and only if there exists W such that SW is
nonempty.
The Count part. We proceed to the Count part by showing
that candidate solutions that contain an unmarked cycle

cancel modulo 2.

Lemma 3.8. Let D,ω,CW and SW be defined as above.
Then, for every W , |SW | ≡ |CW |.

Proof: For subsets M ⊆ X ⊆ A, let cc(M,X) denote
the number of weakly connected components of D[X] not
containing any arc from M . Then,

|CW | =
∑

(X,M)∈RW

2cc(M,X).

To see this, note that for any ((X,M), (V1, V2)) ∈ CW and
any vertex set C of a cycle from X not containing arcs from
M , we have ((X,M), (V14C, V24C)) ∈ CW — we can
move all the vertices of C to the other side of the cut, also
obtaining a consistent cut. Thus, for any set of choices of a
side of the cut for every cycle not containing a marker, there
is an object in CW . Hence (analogously to Lemma 3.3) for
any W and (M,X) ∈ RW there are 2cc(M,X) cuts (V1, V2)
such that ((X,M), (V1, V2)) ∈ CW and the lemma follows,
because:

|CW | ≡ |{((X,M), (V1, V2)) ∈ CW : cc(M,X) = 0}|,

which equals |SW | by the definition. Now, it suffices to
present a dynamic programming routine counting |CW | mod-
ulo 2 in a bottom-up fashion. The details are postponed to
the full version of the paper. Combining all the observations
in the same way as in the proof of Theorem 3.6, we can
conclude the following:

Theorem 3.9. There exists a Monte-Carlo algorithm that,
given a tree decomposition of width t, solves DIRECTED
MIN CYCLE COVER in 6t|V |O(1) time. The algorithm can-
not give false positives and may give false negatives with
probability at most 1/2.

4. FEEDBACK VERTEX SET PARAMETERIZED BY
SOLUTION SIZE

In this section we sketch a proof of Theorem 1.4. Re-
call the definition of FEEDBACK VERTEX SET from Sec-
tion 1.3.1. Defining a solution candidate with a relaxed con-
nectivity condition to work with our technique is somewhat
more tricky here, as there is no explicit connectivity require-
ment in the problem. To overcome this, we reformulate the
problem using the following simple lemma:

Lemma 4.1. A graph G = (V,E) with n vertices and
m edges is a forest iff G has at most n − m connected
components.

Now we use the Cut&Count technique. Instead of looking
for the feedback vertex set we look for its complement, being
a forest. Let U = V × {F,M}, where V × {F} is used
to assign weights to vertices from the chosen forest and
V × {M} for markers. We also assume that we are given



a weight function ω : U → {1, ..., N}, where N = 2|U | =
4|V |.
The Cut part. For integers A,B,W , we define:

1) R
A,B
W to be the family of pairs (X,M), where X ⊆ V ,
|X| = A, G[X] contains exactly B edges, M ⊆ X ,
|M | = n−k−B, and ω(X×{F})+ω(M×{M}) =
W ;

2) S
A,B
W to be the family of pairs (X,M), where

(X,M) ∈ R
A,B
W , and G[X] is a forest containing at

least one marker from the set M in each connected
component;

3) C
A,B
W to be the family of pairs ((X,M), (X1, X2)),

where (X,M) ∈ R
A,B
W , M ⊆ X1, and (X1, X2) is a

consistent cut of G[X].
Observe that by Lemma 4.1 the graph G admits a feed-

back vertex set of size k if and only if there exist integers
B, W such that the set Sn−k,BW is nonempty.
The Count part. Similarly as in the case of MIN CYCLE
COVER (analogously to Lemma 3.8), note that, for any A,
B, (X,M) ∈ R

A,B
W , there are 2cc(M,G[X]) cuts (X1, X2)

such that ((X,M), (X1, X2)) ∈ C
A,B
W , where cc(M,G[X])

denotes the number of connected components of G[X]
which do not contain any marker from the set M . Hence, we
have |SA,B

W | ≡ |CA,B
W | for every A,B and W by Lemma 4.1.

It remains to show how to count |Cn−k,B
W | modulo 2 for

every W and B in 3k|V |O(1) time and polynomial space.
For this we will combine the Cut & Count approach with
iterative compression [38]. The idea of iterative compression
is to break the given task down in compression steps: we
assume we are given a solution of size at most k+1 and use
it to find a solution of size at most k, or conclude that none
exists. Here, we apply iterative compression by showing that,
given a feedback vertex set of size k + 1, we can compute
|Cn−k,B

W | modulo 2 in 3k|V |O(1) time and polynomial space.
Let V = {v1, . . . , vn} and Gi = G[{v1, . . . , vi}]. Given a
feedback vertex set Si of Gi of size at most k, observe
that S′ = Si ∪ {vi+1} is a feedback vertex set of Gi+1

of size at most k + 1. The compression step can be used
to find a feedback vertex set Si+1 of Gi+1 of size at most
k or to conclude that none exists in 3k|V |O(1) time and
polynomial space. In the latter case, it is easy to see we can
return no; otherwise the original problem can be solved using
n compression steps. In each compression step, |Cn−k,B

W |
modulo 2 is counted by guessing, for every element in Si,
whether it is in X1, X2, or neither of them, counting in how
many ways these vertices can be marked, and using dynamic
programming on the remaining forest. If |Cn−k,B

W | ≡ 1,
then the corresponding feedback vertex set is constructed by
using a standard self-reduction. The full algorithm and its
analysis can be found in the full version of the paper [11].

5. LOWER BOUNDS

In this section we briefly describe a bunch of negative
results concerning the possible time complexities for algo-

rithms for connectivity problems parameterized by treewidth
or pathwidth. Due to space limitations we postpone the
proofs to the full version [11]. Our goal is to complement
our positive results by showing that in some situations
the known algorithms (including ours) probably cannot be
further improved.

First, let us introduce the complexity assumptions made
in this section. Let ck be the infimum of the set of the
positive reals c that satisfy the following condition: there
exists an algorithm that solves k-SAT in O(2cn) time, where
n denotes the number of variables in the input formula. The
Exponential Time Hypothesis (ETH for short) asserts that
c3 > 0, whereas the Strong Exponential Time Hypothesis
(SETH) asserts that limk→∞ ck = 1. It is well known that
SETH implies ETH [26].

The lower bounds presented below are of two different
types. In Section 5.1 we discuss several problems that,
assuming ETH, do not admit an algorithm running in
2o(p log p)|V |O(1) time, where p denotes the pathwidth of the
input graph. In Section 5.2 we state that, assuming SETH,
the base of the exponent in some of our algorithms cannot
be improved further.

5.1. Lower bounds assuming ETH

We have shown that a lot of well-known algorithms run-
ning in 2O(t)|V |O(1) time can be turned into algorithms that
keep track of the connectivity issues, with only small loss in
the base of the exponent. The problems solved in that man-
ner include CONNECTED VERTEX COVER, CONNECTED
DOMINATING SET, CONNECTED FEEDBACK VERTEX SET
and CONNECTED ODD CYCLE TRANSVERSAL. Note that
using the markers technique introduced in Section 3.2 we
can solve similarly the following artificial generalizations:
given a graph G and an integer r, what is the minimum
size of a vertex cover (dominating set, feedback vertex set,
odd cycle transversal) that induces at most r connected
components?

We provide evidence that problems in which we would
ask to maximize (instead of minimizing) the number of
connected components are harder: they probably do not
admit algorithms running in 2o(p log p)|V |O(1) time, where
p denotes the pathwidth of the input graph.

In the CYCLE PACKING problem we are asked whether
a given graph contains at least ` vertex-disjoint cycles,
whereas in the MAX CYCLE COVER we additionally want
those cycles to cover all the vertices of the graph. The
third problem is an artificial problem defined by us that
should be compared to CONNECTED DOMINATING SET. An
instance of MAXIMALLY DISCONNECTED DOMINATING
SET consists of an undirected graph G and integers `, r.
The question is whether G contains a dominating set of size
at most ` that induces at least r connected components?

Using the framework introduced by Lokshtanov et al. [33]
we prove the following theorem:



Theorem 5.1. Assuming ETH, there is no 2o(p log p)|V |O(1)

time algorithm for CYCLE PACKING, MAX CYCLE COVER
(both in the directed and undirected setting) nor for MAXI-
MALLY DISCONNECTED DOMINATING SET. The parameter
p denotes the width of a given path decomposition of the
input graph.

5.2. Lower bounds assuming SETH

Following the framework introduced by Lokshtanov et
al. [32], we prove that an improvement in the base of the
exponent in a number of our algorithms would contradict
SETH. Formally, we prove the following type of a theorem
for problems marked in the third column of Table I.

Theorem 5.2. Unless the Strong Exponential Time Hypoth-
esis is false, there do not exist a constant ε > 0 and an
algorithm that given an instance (G = (V,E), k) together
with a path decomposition of the graph G of width p solves
CONNECTED VERTEX COVER in (3− ε)p|V |O(1) time.

Note that VERTEX COVER (without a connectivity re-
quirement) admits a 2t|V |O(1) algorithm whereas DOMI-
NATING SET, FEEDBACK VERTEX SET and ODD CYCLE
TRANSVERSAL admit 3t|V |O(1) algorithms and those al-
gorithms are optimal (assuming SETH) [32]. To use the
Cut&Count technique for the connected versions of these
problems we need to increase the base of the exponent
by one to keep the side of the cut for vertices in the
solution. Our results show that this is not an artifact of the
Cut&Count technique, but rather an intrinsic characteristic
of these problems.

6. CONCLUDING REMARKS

For several years it was known that most of the local
problems (where by local we mean that a solution can
be verified by checking separately the neighbourhood of
each vertex), standard dynamic programming techniques
give ctw|V |O(1) time algorithms for a constant c. The main
consequence of the Cut&Count technique as presented in
this work is that problems which can be formulated as
a local constraint with an additional upper bound on the
number of connected components also admit ctw|V |O(1)

time algorithms. Moreover, many problems cannot be solved
faster unless the Strong Exponential Time Hypothesis fails.
We have chosen not to pursue a general theorem in the above
spirit, as the techniques required to get optimal constants
seem varied and depend on the particular problem.

We have also shown that several problems in which one
aims to maximize the number of connected components
are not solvable in 2o(p log p)|V |O(1) unless the Exponential
Time Hypothesis fails. Hence, assuming the Exponential
Time Hypothesis, there is a marked difference between the
minimization and maximization of the number of connected
components in this context.

Finally, we leave the reader with some interesting open
questions:

• Can Cut&Count be derandomized? For example, can
CONNECTED VERTEX COVER be solved deterministi-
cally in ct|V |O(1) on graphs of treewidth t for some
constant c?

• Since general derandomization seems hard, we ask
whether it is possible to derandomize the presented
FPT algorithms parameterized by the solution size
for FEEDBACK VERTEX SET, CONNECTED VERTEX
COVER or CONNECTED FEEDBACK VERTEX SET?
Note that the tree decomposition considered in these
algorithms is of a very specific type, which could
potentially make this problem easier than the previous
one.

• Do there exist algorithms running in time ct|V |O(1) on
graphs of treewidth t that solve counting or weighted
variants? For example can the number of Hamiltonian
paths be determined, or the Traveling Salesman Prob-
lem solved in ct|V |O(1) on graphs of treewidth t?

• Can exact exponential time algorithms be improved us-
ing Cut&Count (for example for CONNECTED DOMI-
NATING SET, STEINER TREE and FEEDBACK VERTEX
SET)?

• All our algorithms for directed graphs run in time
6t|V |O(1). Can the constant 6 be improved? Or maybe
it is optimal (again, assuming SETH)?
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