
Efficiently Encoding Term Co-occurrences in Inverted
Indexes

Marcus Fontoura∗
Google

Mountain View, CA
marcusf@google.com

Maxim Gurevich
Yahoo! Research
Sunnyvale, CA

maximg@yahoo-inc.com

Vanja Josifovski
Yahoo! Research
Sunnyvale, CA

vanjaj@yahoo-inc.com
Sergei Vassilvitskii

Yahoo! Research
Sunnyvale, CA

sergei@yahoo-inc.com

ABSTRACT
Precomputation of common term co-occurrences has been
successfully applied to improve query performance in large
scale search engines based on inverted indexes. The results
of such precomputations are traditionally stored as addi-
tional posting lists in the index. During query evaluation,
these precomputed lists are used to reduce the number of
query terms, as the results for multiple terms can be ac-
cessed through a single precomputed list. In this paper, we
expand this paradigm by considering an alternative method
for storing term co-occurrences in inverted indexes. For a
selected set of terms in the index, we store bitmaps that
encode term co-occurrences. A bitmap of size k for term t
augments each posting to store the co-occurrences of t with k
other terms, across every document in the index. At query
evaluation, size k bitmaps can be used to answer queries
that involve any of the 2k combinations of the additional
terms. In contrast, a precomputed list, although typically
shorter, can only be used to evaluate queries containing all
of its terms. We evaluate the bitmaps technique we pro-
pose, and the baseline of adding precomputed posting lists
and show that they are complementary, as they capture dif-
ferent aspects of the query evaluation cost. We perform an
experimental evaluation on the TREC WT10g corpus and
show that a hybrid strategy combining both methods signif-
icantly lowers the cost of query evaluation compared to each
method separately.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Selection
process
∗The work was done while the author was at Yahoo! Re-
search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

General Terms
Algorithms, Measurement

Keywords
Inverted index, precomputation, bitmaps

1. INTRODUCTION
Inverted indexes have been successfully deployed to solve

scalable retrieval problems where documents are represented
as bags of terms. Each term t is associated with a posting
list, which encodes the documents that contain t. The cost
of query evaluation depends both on the number of query
terms and the length of their posting lists. To reduce this
cost, previous approaches [16, 18] have used precomputation
of common subqueries.

This precomputation is performed in advance, during in-
dex construction, and it is then used during query evaluation
where multiple query terms are replaced with one compos-
ite term. The precomputed combinations are determined
based on their frequencies in logs of past usage of the sys-
tem. Precomputed lists are stored in the index as regular
posting lists, and thus their number is limited by the avail-
able memory. For example, terms New and York can be
substituted with the precomputed list for New York. While
this approach has been shown to be successful in reducing
the query evaluation time, it is limited by the fact that each
additional posting list can only be used for queries contain-
ing all of the pre-joined terms. Moreover, given additional
available memory, only a limited number of term combi-
nations can be precomputed. We use this precomputation
technique as a baseline.

In this paper we introduce a more flexible way to encode
term co-occurrence using bitmaps. Bitmaps are associated
with each posting and encode co-occurrence of the posting
term with a fixed set of other terms, chosen offline at in-
dex construction time. Given k bits we can encode the co-
occurrence of k different terms with the posting list term in
a list with bitmaps. This allows us to use the posting list of a
single term to resolve queries involving that term and any of
the 2k combinations of the chosen terms. Had we chosen to
represent each of these combinations by a separate posting
list, the memory cost, as well as the complexity of picking
the right combinations during query evaluation, would have
become prohibitive. As they represent many term combina-

Figure 1: An example index with bitmaps for terms

York and Hall and a precomputed list for New York (left)

and example query workload (right).

tions, bitmaps are triggered more frequently during query
evaluation, although this benefit is somewhat offset by the
fact that postings lists with bitmaps are typically longer
than precomputed lists.

In Figure 1 we present an example to illustrate the in-
tuition behind the use of bitmaps. On the left of the fig-
ure we have an index with five posting lists corresponding
to the terms New, York, City, Hall and the precomputed
list for New York. Each posting list has document identi-
fiers (docids) in sorted order. Besides docids, we represent
bitmaps inside the oval. In this example each bitmap is 2
bits long. The terms corresponding to each bit in the bitmap
are identified inside the parenthesis. An empty oval denotes
no bitmaps for that term. There are two lists with bitmaps
in this figure: York and Hall. The postings for term York
contain bits for its co-occurrence with terms New and City.
If we examine the bitmap for the posting of York in docid 2
we can see that it indicates that document 2 also contains
term New but it does not contain term City. This is also
apparent by the presence of docid 2 in New’s posting list and
by its absence in City’s posting list.

On the right side of Figure 1 we show a sample query work-
load using the terms in the index. The index bitmaps have
been optimized for this workload. We now provide some in-
tuition on how to chose which terms to be represented in
the bitmaps. Examining the workload we notice that the
terms New and York co-occur in many of the queries. Thus
it would be beneficial to place a bit for New in York’s list or
vice versa. Since the posting list of York is shorter, we chose
to place a bit for New in York’s list. As terms City and Hall
are both present in queries involving terms New and York,
we can also add a bit for these two. In this example we are
limited to bitmaps of size 2, we chose to add a bit for City
in York’s list. Now the first two queries can be evaluated by
accessing only York’s posting list. Similar reasoning is used
to store the bits for New and City into Hall’s posting list.

To contrast bitmaps with precomputed lists, consider again
the query New York. This query can be answered either
with the precomputed posting list New York or with York’s
list, which contains a bitmap that encodes co-occurrences
of term New. In both cases only one list is accessed. The
precomputed list has the advantage of being shorter, as it
only contains the documents in the intersection of the lists
for New and York. Therefore, using the precomputed list
is more efficient as it contains only the docids that belong
to the query results. On the other hand, bitmaps are more
space efficient and more flexible – York’s posting list can

be used to answer queries York, New York, York City and
New York City, while the precomputed posting list for New
York can only be used in two of these cases. In this pa-
per, we show that the bitmaps and precomputed posting
lists capture different aspects of the query evaluation cost.
These complementary properties lead to improved perfor-
mance when using both techniques simultaneously.

1.1 Contributions
To determine which terms should be listed in the bitmaps

of each posting list, we develop a model of the query eval-
uation cost as a function of the number of query terms and
the lengths of the posting lists corresponding to these query
terms. This cost model allows us to formulate the problem
of selecting bitmap terms for each posting list as an opti-
mization problem. Given a query workload (e.g., from a
historical query log) and a memory budget, the goal is to
select the optimal set of bitmap terms for all posting lists in
the index, so as to minimize the evaluation cost of the work-
load. The optimization problem is NP-hard, but we show
that the cost function is submodular, allowing for efficient
approximation [15].

In this study we focus on the analysis of Boolean eval-
uation algorithm for conjunctive (AND) queries, which are
prevalent in display advertising scenarios [24]. Boolean AND
queries are also common in the first phase selection for web
search queries, where the first phase results are reranked
by machine learning scoring methods. We experimentally
evaluate precomputed lists, bitmaps and their combination
on the TREC WT10g corpus and a query workload derived
from the AOL query log [20]. We show that the two tech-
niques are complementary, as their combination achieves
higher latency reduction than each technique individually.
Latency reduction ranges from 25% for 3% growth in index
size, to 71% for 4-fold index size increase. We also show
that both precomputation techniques benefit not only past
queries, contained in the workload used for building the in-
dex, but also new, previously unseen “long tail” queries.

In summary, the main contributions of this paper are the
following.

• We introduce the concept of bitmaps as a flexible way
to store term co-occurrences.

• We formally define the problem of selecting terms to
precompute given a query workload and a memory
budget and propose an efficient solution for it.

• We show that bitmaps and precomputed lists com-
plement each other, and that the combination signifi-
cantly outperforms each technique individually.

• We present experimental results over the TREC WT10g
corpus demonstrating the benefits of the approach in
practice.

The rest of the paper is organized as follows. Section 2
contains background on indexing and query evaluation. In
Section 3 we model the cost function of query evaluation
and discuss the trade off between index size and evaluation
time. Section 4 describes the index construction algorithms
for bitmaps and precomputed lists, while Section 5 presents
the corresponding query evaluation algorithms. Section 6
describes our experimental results. Section 7 reviews the
related work. Finally, Section 8 presents our conclusions
and future research directions.

2. PRELIMINARIES

2.1 Inverted indexes
Most search engines and information retrieval systems use

inverted indexes as their main data structure for full-text
indexing [28]. We remark that many modern applications
are geared for high-throughput and low-latency scenarios
(see, for example, [9, 24]), and consequently, the index data
structures reside in main memory and are not swapped in off
disk. There is a considerable body of literature on efficient
index construction (e.g. [3, 6, 12, 14, 19, 26, 28]) and query
evaluation (e.g. [7, 17, 26, 28]) algorithms.

In inverted indexes, the occurrence of a term t within a
document d is called a posting. A posting has the form
〈docid, payload 〉, where docid is the document identifier of d
and where the payload is used to store arbitrary information
about each occurrence of t within d. In this paper, we use
part of the payload to store the co-occurrence bitmaps. The
set of postings associated to a term t is stored in a posting
list.

Each posting list is sorted in increasing order of docid.
Often, B-trees [13] or skip lists are used to index the posting
lists [12, 19]. This facilitates searching for a particular docid
within a posting list, or for the smallest docid in the list
greater than a given docid. In this work we use the following
basic operations on posting lists:

1. first(): returns the list’s first posting;

2. next(): returns the next posting or signals the end of
list;

3. search(d): returns the first posting with docid ≥ d, or
end of list if no such posting exists. This operation
is typically implemented efficiently using the posting
lists indexes.

2.2 Query evaluation strategies
Although both precomputed lists and bitmaps can be used

with any query evaluation algorithm, in this paper, we as-
sume conjunctive Boolean queries and the document-at-a-
time query evaluation model (DAAT) [23], commonly used
in Web search engines. With Boolean queries no extra infor-
mation, such as term weights, is required in the bitmaps and
precomputed lists. In DAAT, the documents that satisfy the
query are usually obtained via a join of the posting lists of
the query terms. Given a conjunctive query q = t1t2 . . . tn,
a search algorithm returns R – the set of docids of all docu-
ments that match all terms t1t2 . . . tn.

Let L1, L2, . . . , Ln be the posting lists of terms t1, t2, . . . , tn
respectively. A naive algorithm would scan L1, L2, . . . , Ln

and return the set of documents that appear in all the lists.
Clearly, the naive algorithm accesses

∑n
i=1 |Li| postings,

where |Li| is the number of postings in Li.
A more efficient algorithm is Max Successor [8], shown in

Algorithm 1. It sorts terms in ascending order of their list
lengths and traverses them in parallel. In each iteration, the
algorithm checks whether the current candidate document
from the shortest list appears in other lists. Instead of scan-
ning over possibly numerous postings in longer lists, this
step is implemented by skipping to the first position con-
taining docid greater than or equal to the current candidate.
If all lists contain the current candidate, it is added to the
result set and the position in the shortest list is advanced

by 1. Otherwise, the algorithms advances the shortest list
to the following potentially matching document. The algo-
rithm iterates until it reaches the end of one of the lists. The
advantage of this algorithm that the number of list accesses
is proportional to the length of the shortest list. We use this
algorithm as the basis for our analysis and evaluation.

Algorithm 1 Max Successor: search(q)

1: Assume that |L1| ≤ |L2| ≤ . . . ≤ |Ln|
2: R← ∅
3: d1 ← L1.first()
4: while d1 is defined do
5: for i← 2 to n do
6: di ← Li.search(d1)
7: if d1 6= di then
8: d1 ← max(di, L1.next())
9: break

10: else if i = n then
11: R← R

⋃
d1

12: d1 ← L1.next()
13: return R

3. EVALUATION TIME VS. INDEX SIZE
Our work trades off the size of the index with the speed

with which queries are processed. Generally the perfor-
mance of the algorithm is directly correlated with the num-
ber of postings that are accessed during the evaluation of the
query. We begin by analyzing the cost of query evaluation
as a function of the lengths of the postings lists that are ac-
cessed and define an analytic cost function. We then discuss
the trade off between the size of the index and query evalu-
ation performance and show that bitmaps and precomputed
lists capture different aspects of this trade off.

3.1 The cost function
The latency of the Max Successor query evaluation algo-

rithm [8] increases both when the algorithm has to access
more lists, and when the lists accessed are themselves longer.
Understanding the exact interplay between these two param-
eters is integral to making principled decisions as to which
precomputed lists and bitmaps should be added to the in-
dex.

In each iteration of the algorithm the cursor in the short-
est list advances by at least 1, and therefore the main loop
of the algorithm (line 4) is executed at most |L1| times. For
the remaining lists, in each iteration the algorithm advances
the cursors to the next relevant docid, skipping potential
documents along the way (line 6). These skips are signifi-
cant, as the total number of accesses to these secondary lists
is sublinear in the length of the list.

With this in mind, we considered the family of functions
expressed as:

F (q) = |L1|
n∑

i=2

G(|Li|),

where G is the sublinear function quantifying the number of
accesses to the secondary lists. We validated this cost func-
tion experimentally using the TREC WT10g corpus and the
AOL query log [20], measuring the lengths of the accessed
postings lists and the evaluation time for each query. Typ-
ical implementation of skipping by B-trees or binary search

suggests the function G is logarithmic in shape. To test
this hypothesis we considered G(x) to be coming from the
parametric family:

G(x) = C1 + C2 log(x).

The best fit to the data was achieved by setting C1 = 12
and C2 = 1, which yielded an R2 (R squared correlation
coefficient) value of 0.65. Thus this simple function explains
almost 2/3 of the variation that occurs in the data. For the
remainder of the paper, we then fix the cost function for
evaluating query q to be:

F (q) = |L1|
n∑

i=2

(12 + log |Li|) .

3.2 Optimizing the cost function
We now describe how precomputed lists and bitmaps min-

imize the two components of the above cost function (1)
the shortest list length |L1| and (2) the random access cost
12 + log |Li|. Suppose terms t1 and t2 frequently occur as a
subquery and assume |L1| ≤ |L2|.

Using precomputed lists we would store the co-occurrences
of t1t2 as a new term t12. The size of t12’s list is exactly
|L1 ∩ L2| as it contains only the documents in the inter-
section of these lists. Therefore, precomputed lists reduce
not only the number of posting lists accessed during query
evaluation, but also the size of these lists, potentially im-
pacting the length of the shortest list in the query. This
technique decreases both components of the cost function
while increasing the index by |L1 ∩ L2| postings.

In the case of bitmaps, we add a bit to the payload of each
posting in L1, where the value of the bit is 1 for postings
whose document contains t2 and 0 otherwise. This allows the
query evaluation algorithm to avoid accessing L2, cutting
the second component of the cost function, 12 + log |L2|.
The extra space is a bit for each posting in L1.

To demonstrate the complementary nature of the two pre-
computation techniques we analyze their applicability to dif-
ferent queries in our evaluation dataset (described in Sec-
tion 6). For each query of at least two terms we computed
the minimum relative intersection size (MRIS) — the rela-
tive size of the shortest list resulting from an intersection
of two query terms to the shortest list of a single term:
mini,j |Li∩Lj |

|L1|
. MRIS captures the potential benefit of adding

the optimal precomputed list of two terms for this particular
query: the lower the MRIS, the lower evaluation cost can be
achieved; and, moreover, the lower is the storage cost of that
precomputed list. Figure 2 shows the cumulative distribu-
tion function of queries as a function of their MRIS. While
the majority of the queries have a low MRIS and thus can
benefit from precomputed lists, a non-negligible fraction of
queries have relatively high MRIS, where precomputed lists
are less beneficial. Indeed, in our experimental results we
show that the potential benefit of precomputed lists declines
sharply with increasing MRIS, while the benefit of bitmaps
rises moderately.

We note here that adding the bitmaps does not prevent
delta compression of the document IDs. Traditionally, for
disk based indexes, the document IDs are compressed in
compact array that is separated from the payload to pack
as many document IDs as feasible in the available memory.
Accessing the payload is done only when needed and requires
additional I/Os. For in-memory indexing, the access penalty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Minimum Relative Intersection Size

Fraction of queries (CDF)

Figure 2: CDF of fraction of queries as a function of

their minimum relative intersection size.

is a lot smaller and both options are applicable: storing
the bitmap with the compressed document IDs, as well as
using a separate payload array to store the bitmap. In either
option the added cost of accessing the payload is captured
by the C1 and C2 constants.

Given a typical query workload and additional memory
budget, our goal is to find the optimal set of bitmaps and
precomputed lists that minimizes the query evaluation cost
function based on the given workload.

4. INDEX CONSTRUCTION
At index construction time, the central question is which

bitmaps and precomputed lists should be added to the in-
dex to reduce the expected latency under the given query
load. In both of these approaches we face a tension between
the improvement in latency caused by using precomputed
objects (whether bitmaps or precomputed lists) and the ex-
tra space required for precomputed results. Moreover, the
problem does not decompose nicely, the contribution of a
particular precomputation (whether bitmap or precomputed
list) depends on the set of bitmaps and precomputed lists
already added to the index. We first consider the problems
of selecting bitmaps and precomputed lists separately, and
then propose a hybrid algorithm for selecting them simulta-
neously.

4.1 Bitmaps
In the case of bitmaps the extra space required for adding

a bitmap for term tj to term ti’s list is exactly |Li| since ev-
ery posting in Li grows by one bit. The benefit of the extra
bitmap varies. Suppose, for example, that we have terms
New, York, and City, with list lengths |LNew| ≥ |LCity| ≥
|LYork|, and the queries are New York, City York, and New
York City. Consider the benefit of adding a bitmap for
term New to City’s posting list. In the case that no pre-
vious bitmaps exist, this bitmap improves the evaluation of
query New York City from |LYork|(G(|LNew|) + G(|LCity|))
to |LYork|G(|LCity|). However, if the list York already has
bits for terms New and City, the extra bitmap provides no
additional benefit. In this case the total latency would be
|LYork| regardless of whether a bit for term New was added
to City’s list.

This leads us to formulate the bitmap selection problem
as follows. Let B be the association matrix where bij = 1 if

there is a bit for term tj in list Li’s bitmap. For example,
we set bCity New = 1 in the example above. Given a set of
bitmaps B and a query q, F (B, q) is the latency of evaluat-
ing q with the bitmaps indicated by B. Here we assume q is
evaluated using the optimal set of lists and bitmaps minimiz-
ing the evaluation cost. Finally, let S denote the total space
available for storing extra information and Q = {q1, q2, . . .}
the query workload. The problem is then:

minimize:
∑
q∈Q

F (B, q)

subject to:
∑
i

bij |Li| ≤ S

bij ∈ {0, 1}

Although the problem looks daunting, the cost function F
has extra structure which allows us to find a near optimal
solution. Consider the benefit of an extra bitmap, bij , when
a previous set B has already been selected. This is exactly
F (B∪{bij}, q)−F (B, q). Contrast this with the extra benefit

when a larger set, B̂ ⊇ B has already been selected, F (B̂ ∪
{bij}, q) − F (B̂, q). The cost function defined in Section
3.1 exhibits diminishing returns, that is, the extra benefit
of bij can only decrease as other bitmaps are added. More
formally, the function is submodular.

Lemma 1. Let F be the cost function as above, and B ⊆
B̂ be two sets of bitmaps already selected. Then for any bij,

F (B̂ ∪ {bij}, q)− F (B̂, q) ≤ F (B ∪ {bij}, q)− F (B, q).

Since the sum of submodular functions is itself submodu-
lar, we know that the objective in the mathematical problem
defined above is also submodular. We now appeal to the the-
ory of submodular function maximization subject to a bud-
get constraint. As [15] shows, the simple greedy algorithm
achieves a constant factor approximation to the optimum.
At every iteration, for every potential bitmap bij , the algo-
rithm computes the ratio of the benefit to the increase in
index size:

λij =

∑
q∈Q F (B ∪ {bij}, q)− F (B, q)

|Li|
. (1)

Then bij with the maximum λij is selected as the next
bitmap to be added, and the benefit ratios λij are recom-
puted.

Lemma 2 ([15]). The greedy algorithm finds a set B
that forms a 1/2(1 − 1/e) − ε approximation to the optimal
value of

∑
q∈Q F (B, q).

4.2 Precomputed lists
The problem and the algorithm for selecting precomputed

posting lists is similar in spirit to the one for bitmaps. Given
a set of precomputed lists P = {p}ij , where pij is the indi-
cator variable representing whether the results of query titj
were precomputed, we denote by F (P, q) the cost of evalu-
ating query q given P . We assume q is evaluated using the
optimal set of posting lists minimizing the evaluation cost.
Adding an extra precomputed list p to P can obviously only
reduce F , but at the cost of storing a new list of size |Li∩Lj |.

Note that although precomputed lists can encode conjunc-
tions of more than two terms, the utility of precomputed lists
drops sharply with each new term, as the list requires that

all of the terms be present in the query. We found that
in the AOL query log (described in Section 6) the 100 most
frequent three-term conjunctions appear in only one quarter
of the 100 most frequent two-term conjunctions. Moreover,
since the number of possible multi-term conjunctions grows
exponentially with the number of terms in a query, consider-
ing them during index construction and during query evalu-
ation becomes computationally expensive. We thus consider
only precomputed lists of two terms that capture most of the
benefit of such lists.

We can again describe the optimization problem as fol-
lows:

minimize
∑
q∈Q

F (P, q)

subject to
∑
ij

pij |Li ∩ Lj | ≤ S

pij ∈ {0, 1}

An argument similar to the one in the last section shows
that the objective function remains submodular and thus
the same submodular function optimization technique de-
scribed in [15] can be applied to quickly obtain a constant
approximation to the optimum solution. Given a set of al-
ready selected precomputed lists P , we sort the potential
precomputed lists by:

λ′ij =

∑
q∈Q F (P ∪ {pij}, q)− F (P, q)

|Li ∩ Lj |
, (2)

and select the precomputed list pij that maximizes λ′ij .

Lemma 3 ([15]). The greedy algorithm finds a set P
that forms a 1/2(1 − 1/e) − ε approximation to the optimal
value of

∑
q∈Q F (P, q).

4.3 Hybrid
Unfortunately, we cannot solve the optimization problem

for selecting both bitmaps and precomputed list as above.
The difficulty arises from the fact that while precomputed
lists can carry bitmaps, we can only add bitmaps to the pre-
computed lists that are already selected. That is, the benefit
of adding a bitmap to a precomputed list increases (becomes
positive) after adding that precomputed list, violating sub-
modularity requirement of the greedy algorithm [15]. Since
we are not aware of an alternative optimization technique for
achieving constant approximation to the optimum solution
for such a problem, we resort to a heuristic approach.

One strategy could be to partition the budget between
the two methods, and use each of the above two algorithms
to first select precomputed lists and then bitmaps (some
of which are added to the precomputed lists). However,
deciding upon the budget fraction allocated to precomputed
lists and to bitmaps may be hard, as the fraction depends
on the distribution of the posting list lengths as well as on
the query workload.

We thus use a hybrid algorithm that in each step selects a
precomputed list or a bitmap that maximizes marginal ben-
efit relative to the precomputed lists and bitmaps selected
so far. That is, at each step we select either bij or pij that
has the maximum marginal benefit given by Equations 1
and 2. To make the marginal benefit functions λij and λ′ij
directly comparable, they have to be normalized according
on the number of bits used for each bitmap and posting in

precomputed lists. Let the number of bits per posting used
for a bitmap be β1 (naturally, β1 = 1), and the number of
bits per posting in a precomputed list be β2 (β2 is the size
of the 〈docid, payload 〉 tuple, in our experiments β2 = 32
bits). Then, we divide λij by β1 and λ′ij by β2.

5. QUERY EVALUATION
Given a query q and its matching postings lists our goal is

to select a subset L of the lists to use for query evaluation.
When there are no precomputed lists or bitmaps present,
this algorithm has no choice but to use one list per query
term. However, when additional information in the form of
bitmaps or precomputed lists is available some lists may not
be necessary.

5.1 Bitmaps
In the case of bitmaps, we can formally state the problem

facing the algorithm as follows. We are given a set of query
terms t1, t2, . . . , tn and a set of postings lists associated with
each term L1, L2, . . . , Ln. In addition, the algorithm has
access to the association matrix B where bij = 1 if there is
a bit for term tj in list Li’s bitmap. Our goal is to find a
subset of the lists that minimizes the query cost, yet covers
all of the terms. Formally, let L ⊆ {L1, L2, . . . , Ln} be the
set of lists that we will be using for query evaluation. L
covers the query q if and only if:

∀ti ∈ q,∃j such that Lj ∈ L ∧ (bji = 1 ∨ j = i)

Then the goal is to find L that covers q and minimizes
F (B, q). Finding the optimum subset of lists is an NP-
complete problem, which follows via a simple reduction from
the set cover problem. We therefore use a greedy algorithm
to select the best subset of the lists (Algorithm 2).

Algorithm 2 Query rewrite algorithm using bitmaps

1: Assume that |L1| ≤ |L2| ≤ . . . ≤ |Ln|
2: Unmark terms t1, t2, . . . , tn
3: L ← ∅
4: for i← 1 to n do
5: if ti is unmarked then
6: L ← L ∪ {Li}
7: Mark ti
8: for j ← i+ 1 to n do
9: if bij = 1 then

10: Mark tj
11: return L

The algorithm begins with all of the query terms un-
marked. It proceeds by examining lists in increasing order
of their lengths, since our cost function (Section 3.1) has a
monotone dependence on the length of the lists – processing
longer lists takes more time. If a given list L is unmarked, it
is marked and added to L. The algorithm then checks to see
if any of the longer unmarked lists are present in the bitmap
of L (and can hence be evaluated using only the information
in L). It marks all of the lists that satisfy this condition and
continues with the next longest unmarked list. Although
this greedy heuristic carries no formal optimization guaran-
tees, it performed well in practice.

5.2 Precomputed lists

In the case of precomputed lists, the approach is nearly
identical to the one described in the previous section. Our
goal is to find the set of lists that minimize the cost func-
tion and jointly cover all of the query terms. Algorithm 3
begins with all of the query terms unmarked and examines
the posting lists in increasing order of their lengths. If a
given list for term ti is unmarked, the algorithm marks it
and looks for a precomputed list of term ti and another un-
marked term tj . If found, the precomputed list Lij is added
to L, otherwise Li is added.

Algorithm 3 Query rewrite algorithm using precomputed
lists
1: Assume that |L1| ≤ |L2| ≤ . . . ≤ |Ln|
2: Unmark terms t1, t2, . . . , tn
3: L ← ∅
4: for i← 1 to n do
5: if ti is unmarked then
6: L← Li

7: Mark ti
8: for j ← i+ 1 to n do
9: if pij = 1 ∧ tj is unmarked then

10: L← Lij

11: Mark tj
12: break
13: L ← L ∪ {L}
14: return L

5.3 Hybrid
When both bitmaps and precomputed lists are available,

we use a hybrid algorithm that first invokes Algorithm 3 to
identify precomputed lists and then invokes Algorithm 2 for
removing some of these lists that are covered by bitmaps
in shorter lists. The rationale for first looking for precom-
puted lists is the higher potential benefit of identifying a pre-
computed list that becomes the shortest list for the query,
therefore minimizing |L1| (the first component of our cost
function defined in Section 3.1).

6. EXPERIMENTAL RESULTS
We conducted series of experiments to evaluate our algo-

rithms. All experiments were performed on a Linux-based 8-
core 1.8GHz server with 16GB memory. Our index construc-
tion and retrieval algorithms were implemented as single-
threaded Java applications. We report in memory list access
latencies measured after query rewrite and after preloading
all posting lists into memory, averaged over several runs. We
focus on the evaluation of in memory indexes since the strict
requirements of very high-throughput and low-latency, com-
bined with the fact that today’s commodity server machines
have main memory that can exceed the disk capacities of
a decade ago, makes disk-based indexes rarer for the large
scale applications such as web search [9] or online advertis-
ing platforms that are the focus of our work. In the latency
oriented setting we consider, an index exceeding memory ca-
pacity is partitioned across several machines, and our tech-
nique is applicable to each index partition (shard).

We indexed the TREC WT10g corpus consisting of 1.68
million web pages. We extracted the textual content of the
documents and discarded HTML tags. We built an inverted
index where each posting contains a docid of four bytes and

variable size payload containing bitmaps. Bitmap sizes vary
from 0 to 32 bits, rounded up to the next byte boundary.
The size for the basic index (with no precomputed lists or
bitmaps) was 1.5GB. In our experiments we allowed for pre-
computation budget of up to three times the index size,
which means that our largest index of 6GB (with 4.5GB
for precomputed results) still fits in memory. Although web
search indexes are much larger than that, they are typically
divided into many partitions so that each partition fits into
memory. The intent of our experiments is to highlight the
benefits of precomputation in a single index partition.

The average query latency we measure directly translates
to hardware costs of serving a query stream. The average
latency of a query over the original index was 2.5 millisec-
onds. This latency corresponds to 1 on the y-axis in the
figures showing query latency.

For query workload, we used the AOL query log [20]. We
sorted all of the queries according to their timestamps and
discarded queries containing non-alphanumeric characters,
as well as all additional information contained in the log be-
yond query strings. The resulting 23.6M queries were split
into training and testing sets. The training set consists of the
first 21M queries from the AOL log, spanning 2.5 months.
The testing set is a sample of 50K queries from the remain-
ing 2.6M queries, spanning the following two weeks. The
training set was used for creating indexes while the testing
set was used for query evaluation.

Using the (properly anonymized) AOL query log has be-
come very common in the research community, despite the
controversy surrounding its release and subsequent with-
drawal, as it is the largest and the most recent of the publicly
available query logs. To make our results reproducible, we
have chosen to use the AOL log, and not a proprietary query
log.

6.1 Bitmaps and precomputed lists
We first examine the effects of each of the two precom-

putation techniques alone and then we study their combi-
nation. We allowed for a memory budget equal to the size
of 25% of the original index, for precomputed results. We
then evaluated the benefit of allocating this budget for (1)
bitmaps only, (2) the baseline – precomputed lists, and (3)
both bitmaps and precomputed lists using the hybrid algo-
rithm (Section 4.3). The ratio between the average query
latency when using the index with precomputed results and
the average latency using the original index is depicted in
Figure 3. The figure shows that the baseline reduces the
average query latency by 32% while the bitmap precompu-
tation technique we propose by 41%. A combination of the
two techniques achieves an even better result of 53% latency
reduction.

We note that the above is not a completely fair compar-
ison, as our algorithm only allows for pairwise intersection
lists, while a bitmap may contain information about multiple
terms. In order to demonstrate that this is not a limitation,
we observe that going from pairwise intersections to triples
does not reduce the size of the most frequently accessed lists
significantly. The total number of postings in the lists for
the top 1000 most frequent bigrams is 173.9 million, whereas
the total number of postings in the top 1000 trigram lists is
169.9 million, a reduction of only 2.4%. At the same time,
the top 1000 trigram lists cover less than one third of the
queries covered by the top 1000 bigram lists. Thus, not al-

lowing for larger intersection lists is not a major limitation.
Furthermore, this data suggests that the top trigrams have
a significant overlap with each other, and, we find this to
be the case. Of the top 1000 trigrams 92.5% share a bigram
with at least one other trigram in the list. This is exactly the
situation where the bitmap approach is superior to simple
intersection lists.

We next evaluated two strategies of allocating a shared
memory budget for bitmaps and precomputed lists: (1) al-
locating a fixed fraction of memory budget for bitmaps and
precomputed lists, first selecting precomputed lists and then
bitmaps using algorithms described in sections 4.1 and 4.2;
and (2) bitmaps and precomputed lists simultaneously us-
ing the hybrid algorithm (Section 4.3). The ratio between
the average query latency when using the index with pre-
computed results and the average latency using the original
index is depicted in Figure 4. It is evident that the hybrid
index construction algorithm successfully finds the optimal
allocation without the need to decide on how to partition the
memory budget between bitmaps and precomputed lists.

Finally, we use the index constructed using the hybrid
algorithm and compare the fraction of queries that benefit
from at least one precomputed list or at least one bitmap as
a function of query MRIS (defined in Section 3.2). Figure 5
shows that while queries with low MRIS are effectively opti-
mized using precomputed lists, as MRIS increases their effec-
tiveness drops to almost zero. The effectiveness of bitmaps,
on the other hand, is independent of the MRIS, thus their
marginal benefit (captured by the hybrid algorithm) rises
with MRIS.

6.2 Memory budget
We next evaluate the marginal benefit of allocating mem-

ory for precomputed results using the hybrid algorithm. Fig-
ure 6 shows the average query latency as a function of the
precomputation budget, from 0% (the original index without
precomputation) to 300% (precomputed results occupy 3/4
of the index). The figure shows that allocating as little as
3% of additional memory for precomputed results decreases
average query latency by 25%. As the index grows to twice
the original size, the latency decreases by almost 2/3. The
benefit of further increasing precomputation budget is rela-
tively low.

Note that although we experimented with encoding term
co-occurrences with single bits (β1 = 1), the results indicate
that using multiple-bit encodings (e.g., to indicate terms
proximity or term weights) would yield lower but still favor-
able index size vs. latency tradeoff. For example, for β1 = 4
(i.e., 4 bits instead of 1), the index size cost of achieving
25% latency decrease would grow by the factor of 4, that is,
the index would increase by 12% only.

6.3 Coverage of new queries
Many query streams, such as user queries to search en-

gines, follow a “heavy tail” distribution – queries that have
never been seen before comprise as much as half of all ar-
riving queries [2]. It is thus important to not overfit the
training data. To evaluate the effect of precomputation on
long tail queries, we identify all queries in the test set that
did not appear in the training set. These queries comprise
46% of our test set. Figure 7 shows the latency of all queries
and compares it to that of the long tail queries, with and
without precomputation. Note that without precomputa-

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Bitmaps only Precomputed lists only Hybrid

Average query latency

Figure 3: Query latency reduction with different pre-

computation techniques. Precomputation budget is 25%

the size of the original index size.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0% 20% 40% 60% 80% 100%

Percent of memory budget allocated for bitmaps

Average query latency

Fixed partitioning

Hybrid

Figure 4: Query latency reduction as a function of mem-

ory sharing between bitmaps and precomputed lists. To-

tal precomputation budget is 25% the size of the original

index size.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Minimum Relative Intersection Size

Fraction of queries

Precomputed list used

Bitmap used

Figure 5: Fraction of queries optimized by at least one

precomputed list or one bitmap, by query MRIS.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 3% 13% 25% 50% 100% 200% 300%

Precomputation budget

Average query latency

Figure 6: Query latency reduction with increasing pre-

computation budget (in percents of the original index

size).

tion the average latency of long tail queries is lower by 22%
than the average latency of all queries, since the posting lists
of terms in long tail queries tend to be shorter than aver-
age. This could possibly happen due to higher fraction of
rare terms (e.g., names, foreign words, misspellings) in these
queries. Yet, although the potential benefit from precompu-
tation is lower for long tail queries, and these exact queries
did not appear in the training set, precomputation reduces
their average latency by 33%.

To further demonstrate that precomputed results do not
overfit the training we examine the average query latency
time using a fixed index while examining the query latency
over a two week period of time. Figure 8 shows that the av-
erage latency does not change, indicating that in this time-
frame, while the query mix might change, the common sub-
queries stay the same and thus there is no degradation in
performance. We conclude that for web search query logs,
precomputation successfully captures common subqueries
submitted in the future.

6.4 Query rewrite performance

We evaluate how well the greedy query rewrite algorithm
performs compared to the optimal. We identify the optimal
query rewrite by evaluating our cost function on all possible
rewrites given the index and selecting the one with the lowest
cost. Table 1 summarizes the results for different precompu-
tation budgets (“Avg. lists” stands for the average number
of posting lists used to compute query results). Expect-
edly, as the precomputation budget increases, the quality of
our heuristic approximation goes down, albeit only slightly.
Even when half of the index contains precomputed results,
the evaluation cost due to heuristic approximation is only
two percent higher than with the optimal rewrite.

6.5 Index construction overhead
While in this work we focus on query evaluation costs, and

not on efficient index construction, we report index construc-
tion overhead using straightforward batch implementation of
the algorithms we describe. We used a single-threaded code
that used up to 16G of memory.

Recall that the TREC WT10g corpus we index consists
of 1.68 million documents of average length 217 (after dis-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All queries New queries only

Average query latency

No precomputation

25% precomputation budget

Figure 7: Query latency reduction of long tail queries

compared to all queries. Precomputation budget is 25%

of the original index size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 days 13 days
Time

Average latency vs. time

Figure 8: Query latency reduction as a function of time

after the last query appearing in the training set. Pre-

computation budget is 25% of the original index size.

Metric \ Budget 3% 25% 100%
Avg. lists before rewrite 2.83 2.83 2.83

Avg. lists after heuristic rewrite 2.49 2.13 1.92
Avg. lists after optimal rewrite 2.48 2.12 1.90

Fraction of rewritten queries 28% 50% 60%
Heuristic rewrite is optimal 97% 91% 87%
Heuristic cost over optimal 0.2% 0.8% 1.7%

Table 1: Query rewrite performance for precompu-
tation budget of 3%, 25%, and 100% of the original
index size.

carding non-textual content), corresponding to 365 million
postings. Index inversion takes about 50 minutes. For se-
lecting bitmaps, precomputed lists, and the hybrid approach
we used the same code that could be configured to imple-
ment either approach. For precomputation budget of 25%,
the analysis of the query log (21M training queries) and the
greedy submodular optimization take about 160 minutes,
while adding the selected precomputation lists and bitmaps
to the index takes additional 13 minutes. Thus, the total
overhead of adding precomputed results to the index is of
the order of the time it take to construct the original index
(factor of 3.76 for precomputation budget of 25%). Ob-
viously, for a partitioned index, index construction can be
parallelized across partitions.

7. RELATED WORK
To the best of our knowledge, this is the first work that

uses the posting list payloads to encode term co-occurrence.
In [25] the authors propose to index phrase queries using
a combination of a nextword and a phrase index, achiev-
ing significant reduction in the query evaluation latency at
the expense of small increase of the index size. In [11] the
authors explore the use of the posting payloads to improve
processing of phrase queries by using algebraic signatures of
the content preceding the current posting. Based on the ad-
ditive properties of the hash function, a phrase query can be
processed by traversing only the posting lists of the first and
last words in the phrase query. Documents for which these
words do not appear at a correct distance and the hash sig-
nature indicates that the content between the first and last

words cannot be the search phrase are filtered out. In [27]
the authors propose to precompute and store in the index
term proximity information, and then use it to speed-up re-
trieval.

There is an extensive line of works on list intersection
techniques, [4, 5, 8, 10] to name a few. These works mainly
focus on the worst-case complexity of computing intersec-
tions of arbitrary lists. Conversely, in this paper our goal is
optimizing query performance for a given index and typical
query workload, exploiting the fact that some lists are more
likely to be intersected than the others.

One of the first papers that explored the use of precom-
puted posting lists was Long and Suel [18]. They proposed a
three-level caching strategy, where the second level consisted
of precomputed posting lists frequently occurring pairs of
terms. A similar strategy was also proposed in the context
of P2P search [22]. In [16], the authors further extended the
work by using precomputed posting lists together with early
termination in order to improve the query performance of in-
formation retrieval systems. The contribution of this work
is to combine these two techniques using rigorous theoretical
analysis. In addition, they performed empirical tests on the
TREC GOV2 data set and on real web queries showing the
performance gains of their early termination method.

Several authors have focused on improving top-k query
performance through optimized DAAT and TAAT query
evaluation algorithms (e.g. [7, 23]). These algorithms fo-
cus on vector space model queries and use upper bounds
on term weights to skip posting entries that are guaran-
teed to not influence query results. Turtle and Flood [23]
propose both TAAT and DAAT versions of the max score
algorithm. Broder et. al [7] propose the WAND (Weighted
AND) DAAT algorithm, which uses upper bounds to reduce
the number of full score computations. In [1] weight quan-
tization is used to reduce the evaluation cost at the expense
of slight decrease in accuracy.

Another related line of work is the use of fancy lists to
improve query performance [17, 21]. Fancy lists are small
posting lists that contain the documents with the highest
score for each term in the dictionary. In [21], for instance,
a new DAAT algorithm that improves upon the DAAT max
score [23] is proposed. This algorithm uses fancy lists to set a

better initial threshold for DAAT max score. The fancy lists
are processed before DAAT max score starts, to set a tighter
initial threshold (and therefore increase index skips).

8. CONCLUSIONS
In this paper we introduced the concept of bitmaps for

optimizing query evaluation over inverted indexes. Bitmaps
allow for a flexible way of storing information about term
co-occurrences and complement the traditional approach of
precomputed lists. We proposed a greedy procedure for the
problem of selecting bitmaps and precomputed lists that is
a constant approximation to the optimal algorithm. The
analysis of bitmaps and precomputed lists over the TREC
WT10g corpus shows that the hybrid approach achieves 25%
query performance improvement for 3% growth in index size
and 71% for 4-fold index size increase. An interesting future
work is exploring the application of bitmaps to non-Boolean
top-k retrieval. In this case one needs to store extra infor-
mation in the bitmaps, such as weights in the case of vec-
tor space queries and term positions in the case of phrase
queries.

9. REFERENCES
[1] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space

ranking with effective early termination. In SIGIR,
pages 35–42, 2001.

[2] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. The impact of caching
on search engines. In Proc. 30th SIGIR, pages
183–190, 2007.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999.

[4] R. A. Baeza-Yates. A fast set intersection algorithm
for sorted sequences. In CPM, pages 400–408, 2004.

[5] J. Barbay, A. López-Ortiz, and T. Lu. Faster adaptive
set intersections for text searching. In Experimental
Algorithms, volume 4007 of Lecture Notes in
Computer Science, pages 146–157. Springer Berlin /
Heidelberg, 2006.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. In WWW, 1998.

[7] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level
retrieval process. In CIKM, 2003.

[8] J. S. Culpepper and A. Moffat. Compact set
representation for information retrieval. In SPIRE,
pages 137–148, 2007.

[9] J. Dean. Challenges in building large-scale information
retrieval systems: invited talk. In WSDM, page 1,
2009.

[10] B. Ding and A. C. König. Fast set intersection in
memory. Proc. VLDB Endow., 4:255–266, January
2011.

[11] C. du Mouza, W. Litwin, P. Rigaux, and T. Schwarz.
As-index: a structure for string search using n-grams

and algebraic signatures. In CIKM 2009, pages
295–304, New York, NY, USA, 2009. ACM.

[12] M. Fontoura, E. J. Shekita, J. Y. Zien,
S. Rajagopalan, and A. Neumann. High performance
index build algorithms for intranet search engines. In
VLDB, 2004.

[13] H. Garcia-Molina, J. Ullman, and J. Widom. Database
System Implementation. Prentice Hall, 2000.

[14] S. Heinz and J. Zobel. Efficient single-pass index
construction for text databases. JASIST, 54(8), 2003.

[15] A. Krause and C. Guestrin. A note on the budgeted
maximization of submodular functions. Technical
Report CMU-CALD-05-103, Carnegie Mellon
University, 2005.

[16] R. Kumar, K. Punera, T. Suel, and S. Vassilvitskii.
Top-k aggregation using intersections of ranked
inputs. In WSDM 2009, pages 222–231, New York,
NY, USA, 2009. ACM.

[17] X. Long and T. Suel. Optimized query execution in
large search engines with global page ordering. In
VLDB, 2003.

[18] X. Long and T. Suel. Three-level caching for efficient
query processing in large web search engines. In
WWW 2005, pages 257–266, New York, NY, USA,
2005. ACM.

[19] S. Melnik, S. Raghavan, B. Yang, and
H. Garcia-Molina. Building a distributed full-text
index for the web. In WWW, 2001.

[20] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. In Proc. 1st InfoScale, 2006.

[21] T. Strohman, H. R. Turtle, and W. B. Croft.
Optimization strategies for complex queries. In SIGIR,
pages 219–225, 2005.

[22] B. B. Sudarshan, S. Chawathe, V. Gopalakrishnan,
P. Keleher, and B. Silaghi. Efficient peer-to-peer
searches using result-caching. In In Proc. of the 2nd
Int. Workshop on Peer-to-Peer Systems, 2003.

[23] H. Turtle and J. Flood. Query evaluation: strategies
and optimizations. Inf. Process. Manage., 31(6), 1995.

[24] S. Whang, C. Brower, J. Shanmugasundaram,
S. Vassilvitskii, E. Vee, R. Yerneni, and
H. Garcia-Molina. Indexing boolean expressions.
PVLDB, 2(1):37–48, 2009.

[25] H. E. Williams, J. Zobel, and D. Bahle. Fast phrase
querying with combined indexes. ACM Trans. Inf.
Syst., 22(4):573–594, 2004.

[26] I. Witten, A. Moffat, and T. Bell. Managing
Gigabytes. Morgan Kaufmann, 1999.

[27] H. Yan, S. Shi, F. Zhang, T. Suel, and J.-R. Wen.
Efficient term proximity search with term-pair
indexes. In Proc. 19th CIKM, pages 1229–1238, 2010.

[28] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Computing Surveys, 38(2), 2006.

