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ABSTRACT
We present a method to extract elevated road structures,
typically overpassing other roads, transit lines, and water-
courses. The technique uses a digital surface model (DSM)
and roughly aligned vector road data and outputs geome-
try approximating the shape and elevation of the elevated
road deck. Our method is robust against noise in DSM el-
evations and can recover elevated roads partially obscured
by trees and other overpasses. We demonstrate our method
parallelized over city-wide DSMs, and formulate a confidence
metric ranking the fidelity of the reconstruction.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Object Recognition; I.4.6 [Image Processing and
Computer Vision]: Segmentation—Edge and feature de-
tection; I.4.7 [Image Processing and Computer Vi-
sion]: Feature Measurement—Feature representation

1. INTRODUCTION
Overpass structures are an important part of realistically
and accurately representing roadways. Without overpass
structures in a terrain model, roadways in bare digital ter-
rain models (DTMs) such as in Figure 1 appear unrealistic
and do not clearly convey the absence of an intersection be-
tween the crossroads. Though these artifacts may have some
artistic merit [10], they can be visually distracting, difficult
to parse visually, and break an immersive experience.

The shapes of elevated road structures are also useful in the
generation of DTMs, since they are often misclassified [8].
These structures serve not only as a mask for non-terrain
elements, but may also assume roadways not classified as
elevated are likely on the ground, which can serve as the
local terrain elevation [1].

With the relative infrequency of overpass structures across
terrain, we wish to derive results from existing data instead
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Figure 1: Realism is lost without overpass struc-
tures, and it is less clear if these roads intersect.

of collecting new overpass-specific data. Our method recon-
structs overpass structures from 2-meter resolution DSMs
and aligned vector road paths.

2. RELATED WORK
Several methods have been published to extract overpasses
from geospatial data. Using LIDAR instruments mounted to
terrestrial vehicles [7], overpass structures can be detected.
This differs from our approach of using a DSM, which has
wider and more thorough coverage than just those over-
passes over drivable, accessible roadways.

Work extracting elevated roadways solely from panchromatic
texture [5][4][9] successfully recovers structure over hetero-
geneous regions, though it fails to identify if two roads of
similar constitution cross.

Topographic vector data can be given elevations by fitting
them to a LIDAR-derived segmentation [6]. Our datasets
lack a complete object segmentation. Though this would
greatly assist in measuring roads, they are limited in avail-
ability over the breadth of terrain we wish to process. In-
stead, we measure the road shape as a part of extraction.
While this means road geometry may be less accurate, it
does permit extraction in regions where only road contours
exist.

Among other properties, the geometry of elevated road struc-
tures can be reconstructed solely from LIDAR and multi-
spectral imagery [3]. The results are tuned for urban en-
vironments, where stretches of continuous flat terrain are



extracted as roads. It is unclear how the algorithm per-
forms in windy, hilly roads, and results demonstrate some
tracking limitations without vector road data.

3. METHOD
Our method can be divided into four sequential steps, out-
lined in Figures 2 and 5. First, vector road data is used to
measure road spans by finding drop-offs perpendicular to the
road direction. Next, road spans are clustered by a distance
metric defined in Section 3.2. These clusters are merged
to form continuous overpass structures in Section 3.3. Fi-
nally, the road spans are rebuilt into a geometric model in
Section 3.4.

3.1 Span Measurement
For all road segments, we sample a 1-dimensional cross sec-
tion perpendicular to the road direction to find a drop-off
and determine if this segment could be part of an overpass.
We express our surface model as DSM : R2 7→ R, mapping a
two-dimensional surface coordinate to its surface elevation.
In our implementation, this function bilinearly interpolates
a 2-meter grid. We sample a new cross section maximally at
every DSM grid cell along a road segment. This sampling
rate can be reduced for efficiency at the cost of modeling
robustness.

Road span quantities are illustrated in Figure 3. We define
the elevation cross section originating from a road point x
as:

f+(t) = DSM(x + nt), 0 < t < bmax (1)

f−(t) = DSM(x− nt), 0 < t < bmax (2)

where n is a unit direction perpendicular to the road, and
bmax is a practical maximum overpass breadth. We ob-
serve height discontinuities from the moving average with
the function:

g(t) = f(t)− 1

t

∫ t

0

f(s) ds. (3)

With j as a user-tunable drop-off threshold, we attempt to
minimize t for Equations 1 and 2 such that −j > g(t), where
t is bounded 0 < t < bmax, and there exists no u < t such
that j < g(u), representing a height discontinuity from the
rolling average upwards. In addition, this measurement may
be rejected early by testing if x lies within a cell classified
as vegetation1. This avoid misinterpreting the canopies of
tree-lined streets as the deck of an elevated road.

Finding a minimal t for f+ and f− gives us values t+ and t−,
from which we compute approximate span breadth in grid
space:

b = t+ + t− (4)

a revised road span midpoint:

m = x + n (t+ − t−) (5)

and elevation:

h =
1

b

∫ t+

−t−
DSM(x + ns) ds. (6)

1We classify vegetative cells as having a high normalized
difference vegetation index (NDVI), computed from existing
aerial imagery.

(a) Sample points in A along road vectors.

(b) Road spans with measured drop-offs M .

(c) Clustered and extended road spans C.

Figure 2: Stages of road span processing.



Figure 3: Road span quantities. A point x along
a road vector (dashed, yellow) has a perpendicular
vector n. If drop-offs (solid, gray) are found along
x + nt for t+ and t−, breadth b and midpoint m can
be computed.

These measurements are attempted for all road spans A,
constructing a subset of spans M where t+ and t− are suc-
cessfully found.

3.2 Span Clustering
The next step is to divide the set of measured road spans M
into subsets C where the spans form a continuous length. We
achieve this with single-linkage clustering: Beginning with
every road span in its own set, sets Cφ and Cθ are merged
if the minimum distance between any two elements of either
set is less than 1:

min{d(cφ, cθ) : cφ ∈ Cφ, cθ ∈ Cθ} < 1 (7)

Our distance metric measures difference in position, direc-
tion, and breadth from the terms of Section 3.1:

dcluster(φ, θ) = max {dm, dn, db} (8)

dm = qm
∥∥mφ −mθ

∥∥ (9)

dn = qn |1− nφ · nθ| (10)

db = qb (bφ − bθ) (11)

The q scalars adjust the sensitivity of each of these compo-
nents. Ideally qn is small enough to avoid clustering with
intersecting roads heading other directions, yet large enough
to follow the road as it curves. Similarly, qb is small enough
to avoid merging ramps with wide freeway decks, yet large
enough to accommodate some minor width fluctuation.

We formulate the distance Equation 8 without road network
connectivity to combine disjoint roadways sharing a common
overpass structure. This is the case in divided bridges, as
illustrated in Figure 4.

Noise, misclassified vegetation, and other elevation errors
can produce erroneous road spans. Our distance metric pre-
vents outlying spans from polluting our cluster trend, and
will usually be left in sets with low cardinality. After clus-
tering, we cull sets |Cξ| < ε, erasing its spans’ measures and
removing them from M , but still remaining as members of
A. This permits these spans to still contribute to the path
of the overpass in Section 3.3 without affecting its breadth,
offset, and elevation measures.

Figure 4: Vector roadways are reconstructed from
DSM measurements instead of the original vector
data because multiple vector thoroughfares may be
sharing the same structure. Here, vehicular (yel-
low) and pedestrian (red) traffic disjointly share the
Colorado Boulevard Bridge in Pasadena, California.

3.3 Overpass Growing
After clustering measured road spans, we grow each subset
C to include certain road spans from outgoing edges. From
an outgoing edge {cγ , a} cγ ∈ Cγ , a ∈ A \Cγ , a road span a
is added to Cγ if its direction is similar by Equation 10, and
the path along the vertices Cγ to the nearest member of M
is within a growth threshold, qg. This criterion can be ex-
pressed as single-linkage clustering using a distance function
of:

dgrow(cγ , a) =max {dm, dg} (12)

dg =min{w(Cγ , a, cm) : cm ∈M ∩ Cγ}/qg (13)

where w is graph length using the Euclidean distance of
source points x between directly-connected vertices. We
consider road span a a continuation of Cγ and add it to
that set when dgrow < 1.

As per single-linkage clustering, if a candidate span a be-
longs to another cluster Cβ , sets Cγ and Cβ are merged.
The scalar qg adjusts how far overpass segments will grow,
not only to connect broken regions of a common overpass
structure, but to extend these structures into berms. This
is a useful result to connect overpasses into terrain where a
clear drop-off will not be observed.

3.4 Geometric Reconstruction
Each set C now contain all the road spans we consider com-
posing that overpass. We choose a subset of spans to con-
struct simple geometry approximating the shape of the over-
pass as seen in Figure 5. Since the spans are more dense
than necessary, we choose a target density, τ spans per me-
ter. Our process is simply to traverse the road spans from
one end to the other, choosing a span every 1/τ units. Un-
fortunately, since spans can originate from a collection of
disjoint roads, we lack an obvious traversal order.

To construct a traversal order, we begin a sequence with the
furthest span from a randomly selected span in the set. We



Figure 5: Overpass geometry is approximated with
a rectangular prism. Orientation, breadth and ele-
vation are derived from road spans, while the road
depth is defined by the user.

then eliminate all spans within 1/τ units, and enqueue the
next closest. We continue the process until all the spans
have been eliminated or enqueued.

Recall that not all spans belong to set M , which has valid
breadth and elevation measurements, and a corrected mid-
point. Because constant width is an assumption of our
model, the road geometry’s breadth is simply the average
of the breadths measured in C ∩M . All of the geometry’s
elevations are spline-fit to suppress any noise and interpo-
late missing elevation values in C \M . To approximate the
midpoints for spans in C \M , we interpolate the value of
m− x from the neighboring spans C ∩M .

3.5 Confidence Metric
Though it is sufficient for a majority of our input, our over-
pass model is unrealistically limited for a variety of overpass
structures. We attempt to characterize the overpasses that
fit poorly in our model so that we might consider the better
fits first in a quantity of output. We linearly combine several
measurements to formulate an objective function:

• Standard deviation in b: An overpass with a range
of breadths will not be realistically approximated as
constant by our model.

• Range of orientations in n: Our span ordering algo-
rithm is not robust against structures that turn tightly
such that endpoints are not the furthest-distanced from
any random span.

• Length of overpass relative to breadth: We limit un-
usually long or short overpasses, weighted by breadth.
Longer elevated roads will likely be wider (such as large
bridges), while shorter structures will likely be nar-
rower (such as pedestrian overpasses).

4. RESULTS
We scale our algorithm by dividing the work over many ma-
chines, each processing a small tile of a large DSM. To avoid
the complexity of sharing road networks and stitching geom-
etry between tiles, we impose a maximum overpass length

which we use as an overlapping margin between DSM tiles.
This guarantees overpass structures will be completely con-
tained within a tile.

Spatially sorting the road network to overlapping DSM tiles
adapts well to a MapReduce framework [2]. A collection
of map workers traverse the entire road network emitting
key/value pairs, where the key is a DSM tile index, and the
value is a road segment. Note a road segment may be emit-
ted multiple times with different indices where tiles overlap.

A reduce worker iterates over all the values of a single key.
This means a reduce worker only needs to load a single DSM
tile for its road segments, populating its local set A. Once
all the road segments for a key are consumed, the reducer
runs our algorithm. The results of overpass extraction over
several metropolitan areas using 2000 machines are summa-
rized in Table 1. We threshold against the metric described
in Section 3.5 to filter reconstructions of sufficient quality for
2D segmentation and 3D models. These thresholds results
in only a few false positives, but at the expense of as much
as 50% false negatives.

The following figures demonstrate our algorithm, untextured
for illustrative purposes. Figure 6 demonstrates faithful re-
construction of multiple overlapping overpasses. Though
portions of overpasses could not be measured, our algorithm
reconstructs the completed structures.

Figure 7 illustrates realistic extraction with vector data that
does not precisely conform to the overpass structure. Here,
Interstate 5’s overpass over Artesia Boulevard was widened,
but vector data was previously aligned to the older struc-
ture. Our clustering algorithm reconstructs the road deck
by aligning structures measured directly from the DSM.

Our algorithm fails to produce representative geometry where
elevated roads vary in width, or vector lines fall outside
the road in the DSM. Figure 8 shows such a failure where
where multiple overpass structures connect. Because the
road decks vary in width where lanes bifurcate and merge,
our road growth algorithm constructs separate sets at these
junctions. Though our confidence metric assists in identify-
ing these poor fits, we aspire to capture these structures in
future work.

5. CONCLUSIONS AND FUTURE WORK
We present a scalable algorithm to extract and geometrically
approximate elevated road structures using a basic vector
road network and 2-meter DSM. Although our road model
is limited, it captures a majority of elevated road structures.

A confidence score indicates when our model or support-
ing data is insufficient to accurately capture an overpass.
This helps us adjust how conservatively we accept models
depending on our application.
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Metro Area Coverage Wall Time # Extracted Segmentation 3D Modeling
Chicago 4,231 sqkm 4.46 min. 1,054 689 (65%) 476 (45%)
Denver 4,350 sqkm 4.26 min. 1,233 814 (66%) 505 (41%)

Houston 7,183 sqkm 6.64 min. 2,218 1,564 (70%) 1,226 (55%)
Las Vegas 1,206 sqkm 3.45 min. 496 317 (64%) 218 (44%)

Los Angeles 4,087 sqkm 4.47 min. 3,882 2,270 (58%) 1,398 (36%)
Salt Lake City 3,297 sqkm 4.74 min. 617 417 (69%) 261 (43%)

San Diego 2,810 sqkm 4.55 min. 1,319 901 (68%) 564 (43%)
Seattle 1,792 sqkm 3.52 min. 1,096 627 (57%) 410 (37%)

Table 1: Overpass extraction statistics using Mapreduce with 2,000 machines. We filter the structures
sufficient for 2D segmentation and 3D modeling by a confidence metric in Section 3.5.

Figure 6: Successful reconstruction of multiple over-
lapping overpasses of the I-105/I-710 Interchange in
Compton, California.

Figure 7: Geometric reconstruction of expanded I-
5/Artesia Boulevard overpass structure from older
vector road data.

Figure 8: Overpasses that abruptly change width at
the I-5/California State Route 91 interchange are
poorly captured by our method.
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