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Abstract

We consider the problem of content-based automated
tag learning. In particular, we address semantic varia-
tions (sub-tags) of the tag. Each video in the training set is
assumed to be associated with a sub-tag label, and we treat
this sub-tag label as latent information. A latent learning
framework based on LogitBoost is proposed, which jointly
considers both the tag label and the latent sub-tag label.
The latent sub-tag information is exploited in our frame-
work to assist the learning of our end goal, i.e., tag predic-
tion. We use the cowatch information to initialize the learn-
ing process. In experiments, we show that the proposed
method achieves significantly better results over baselines
on a large-scale testing video set which contains about 50
million YouTube videos.

1. Introduction
On the Internet, the term “tag” refers to keywords as-

signed to an article, image, or video. With the rapid devel-
opment of social sharing websites (i.e., Flickr, Picasa, and
YouTube), the tags help organize, browse and search rele-
vant items within these massive multimedia collections. In
this paper, we are particularly interested in the problem of
content-based automated tag learning/prediction. Given a
video, an automated tag learning/prediction system would
be able to predict the tags associated to the video based on
its content. Such a system would ensure that videos are
properly tagged, and therefore enforce uniformity in tag-
ging. Uniformity is useful since users tend to not tag ev-
ery possible aspect of the media, leading to a large num-
ber of undertagged objects. Having a uniform, automated
tagging system would allow users to specify queries based
on the known tag vocabulary and have an increased con-
fidence that the results retrieved should be consistent, and
more complete than otherwise possible, while allowing cur-
rently undertagged media to be considered for retrieval. An-
other application of the tag learning could be verifying that

*This work was done while Weilong Yang was an intern at Google,
Inc.

Figure 1. For the rather specific tag “transformers”, the videos of
this tag have large variations in video types and contexts. Those
videos can be roughly grouped as video games, two different types
of animations, toys, and movies. We use the notation “sub-tags”
to refer to those semantic variants and treat them as latent infor-
mation in our learning framework.

the users have typed a specific tag with the intent of anno-
tating the video as opposed to simply spamming the index
of the search engine.

Our work is under a similar framework to [1]. We gen-
erate a set of tags by counting the unique user-supplied tags
and n-grams in the title for each video on YouTube. For
each given tag, a classifier model is trained over a positive
training set containing the videos (20K-100K) whose user-
provided metadata text contains the given tag. The nega-
tive training set is sampled randomly from videos which do
not contain the tag in their metadata. In this way, both of
the tag set and the training data are automatically generated
from the online video corpora. In particular, since the tag
set is generated from user-provided title/tags, the tags can
better reflect the overall user tagging behaviors compared
to a manually pre-defined tag set. In the tag set, we ob-
serve that some tags are too general (e.g., “video”, “music”,
“youtube”), and some others are too specific (e.g., the name
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of the video uploader). Those tags do not contain any use-
ful information. Therefore we discard those tags which are
either too frequent or too infrequent.

After examining the remaining tags, we observe that for
most of tags, there is a large variation within the videos
which have such a tag, though those tags are rather specific.
Interestingly, for a particular tag, the variation of its associ-
ated videos is not trivial, and those videos can be clustered
into a few groups which may have some semantic meanings.
For example, as shown in Fig. 1, the videos with tag “trans-
formers” consists of “video games”, “animations”, “toys”
and “movies”. Although all those videos contain the tag
“transformers”, the video types and contexts are different.
Another example is the tag “bike”, which is a simple object.
As shown in Fig. 2, the “bike” videos may consist of videos
about “mountain bike”, “falling from bike”, “pocket bike”,
and “motorbike”. The variations among “bike” videos in-
clude scene variation (mountain vs. road), object variation
(bicycle vs. motorbike vs. pocket bike), and event variation
(falling from bike vs. riding a bike). In this paper, we use
the notation of sub-tag to refer to the semantic variants of
the given tag label. For example, the sub-tag set of “bike” is
{mountain bike, falling from bike, pocket bike, motorbike}.
In the context of video analysis, we suspect that off-the-
shelf classifiers cannot handle these non-trivial variations.
In this paper, we propose a novel framework that can jointly
learn both tag label and its sub-tag labels in a unified frame-
work. We believe introducing the sub-tag label to the learn-
ing process will help to capture more of the variations of the
tag, thereby improving the quality of the final classifier.

Sub-tags are conceptually related to a hierarchy in which
the parent tag would have a general meaning and the child
sub-tag is more specific. However, unlike such hierarchies
(e.g., ImageNet or WordNet), the sub-tag does not neces-
sarily need to be related by a relationship which can be
expressed in terms of rigid ontology. Besides, it is very
difficult and costly to define (or name) the sub-tag set for
all possible tag labels, especially for the YouTube videos.
Naming sub-tags requires a comprehensive knowledge of
video types, and user behaviors on YouTube. Moreover, in
a dynamic video collection, more and more new tags may
be invented and become popular, while the meanings of ex-
isting tags may vary as well.

The main contributions of this paper are two-fold. First,
instead of explicitly defining the sub-tags, we propose to
treat sub-tags as latent information and use it to assist the
task of tag learning. Inspired by latent SVM [9], we pro-
pose a novel latent learning framework based on Logit-
Boost, which jointly considers both the latent sub-tag label
and the tag label. In LogitBoost, we use decision stumps
as the weak learner, which introduce the non-linearity into
the model and also allow us to handle complex feature vec-
tors that consist of different feature types. To deal with the
noisy samples in our training data, we use a bootstrapping

scheme which can be naturally combined into our learning
framework. In each iteration, the model is only trained on
a training subset that contains “trustworthy” positive sam-
ples. Secondly, likewise to other non-convex learning prob-
lems, a proper initialization of the latent sub-tag label is
very crucial to our learning framework. We propose to
use the cowatch-based clustering scheme for initialization.
The similarity between two videos is measured by cowatch
statistics. Conceptually, if two videos are watched one af-
ter the other in a short period of time (cowatched), they are
usually related and likely to be similar. However, our learn-
ing framework is general, and it is not limited to this type
of initialization scheme.

2. Related Work
In the computer vision literature, we can roughly catego-

rize the “tag”-related work into two lines: (1) leveraging the
tagged image/video content on the Internet to improve the
performance of learning-based image or object recognition
systems; (2) content-based image/video tag prediction.

With the help of image search engines and photo host-
ing websites, researchers built more and more computer vi-
sion datasets by downloading images or videos, e.g., Ima-
geNet [6], and 80 Million Tiny Images [23]. To decrease
the label noise, additional human annotations are employed
in most datasets to prune out the noisy samples. It is inter-
esting to note that in [23], a reasonable recognition perfor-
mance is obtained despite the high labeling noise. Fan et
al. [8] also show that more effective classifiers can be ob-
tained after pruning out the noisy tags by an image clus-
tering approach based on both visual and tagging similar-
ities between images. Hwang and Grauman [11] assume
that the prominence of an object in an image can be re-
vealed by its order of mention in the tag list. They show
that leveraging the information of tag ordering can improve
the performance of object detection. In this paper, we also
train our tag models on the videos collected from YouTube.
For simplicity, we train a model for each tag and ignore the
structure information among tags.

Recently, there has been an increased interest in auto-
mated image/video tagging. A variety of methods are pro-
posed for image tagging, e.g., Kernel Canonical Correlation
Analysis [21], hierarchical generative models [14], latent
SVM [26, 12], etc. There is also a lot of research work
about video tagging (e.g., [20]), and the proposed methods
have been evaluated on the TRECVID dataset for the task
of semantic indexing. A list of papers can be found in [16].
A few systems are built for the automated YouTube video
tagging based on video content. Ulges et al. [24] predict the
conceptual tags for the keyframes of the video by the com-
bination of three different classifiers. Toderici et al. [22] and
Aradhye et al. [1] learn the tags of a video using AdaBoost
based on both video and audio features. In this paper, our
work is based on [22, 1], but we are more interested in the
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problem of semantic variations (sub-tags) in the YouTube
videos that share the same tag. A latent learning framework
is proposed to address this issue and we treat sub-tag labels
as latent variables in our system.

3. Model Formulation
Given a tag label z and a training set T which consists

of N training samples T = {(V n, yn)}Nn=1, our goal is to
learn a scoring function for the tag label z: fz(V ), which
can return a confidence score of z being assigned to the
video V . y ∈ {+1,−1} takes value 1 if the video V has
the tag label z, and −1 otherwise. In our model, each video
is associated with a sub-tag label h, where h ∈ Hz and Hz

is the set of sub-tags for the original tag z. We treat h as la-
tent information since we do not have sub-tag labels during
training. We assume the scoring function takes the follow-
ing form:

fz(V ) = max
h∈Hz

Ψ(V, h;Fz);

Ψ(V, h;Fz) =
∑
b∈Hz

1b(h) · Fb(V ), (1)

where 1b(h) is an indicator that takes the value 1 if h =
b, and 0 otherwise. Fb(·) is a LogitBoost [18] classifier
learned from the training samples which share the same sub-
tag label h = b. We denote Fz as a set of LogitBoost clas-
sifiers for the tag z, i.e., Fz = {Fb : b ∈ Hz}. The details
concerning training Fz will be discussed in Sec. 4.

Given Fz and a testing video V , we need to solve an
inference problem of finding the best sub-tag label h∗ as
follows:

h∗ = arg max
h∈Hz

Ψ(V, h;Fz). (2)

This inference problem can be easily solved by enumerating
all the possible sub-tag labels h ∈ Hz . In this paper, we
are more interested in improving the performance of video
classification at tag level, though we do obtain the sub-tag
label h∗ as a by-product for each testing video.

4. Learning
Different from other learning algorithms with structured

output, we simply assume each tag label is independent of
each other and we train a model for each tag label. The
optimal F∗z could be learned as follows:

F∗z = arg min
Fz

N∑
n

l(yn, max
h∈Hz

Ψ(V n, h;Fz)), (3)

where l(·) is the loss function. We choose to use the convex
logistic loss l(y,Ψ) = log(1 + exp(−2yΨ)) in this paper.
Similar to the latent SVM [9], this problem is not convex but

we could use an iterative algorithm to solve it by alternating
the estimation of latent variable h and the optimization of
Fz . This iterative procedure can be summarized as follows:

1. Holding Fz fixed, compute the latent variable hn for
each training sample as follows:

hn = arg max
h∈Hz

Ψ(V, h;Fz); (4)

2. Holding hn fixed, optimize Fz by solving the follow-
ing problem:

F∗z = arg min
Fz

N∑
n

l(yn,Ψ(V n, hn;Fz)). (5)

Eqn. (4) can be easily solved by enumerating all possible
h ∈ Hz . Note that in Eqn. (5), the latent variable h has
been fixed to a single choice. Fz is a set of classifiers Fz =
{Fb : b ∈ Hz}. The optimization problem in Eqn. (5) can
be written as

L = min
Fz

∑
b∈Hz

∑
n:hn=b

l(yn,Ψ(V n, hn;Fz))

=
∑
b∈Hz

min
Fb

∑
n:hn=b

l(yn, Fb(V
n)). (6)

Then, Eqn. (5) can be solved by minimizing L(Fb) =∑
n:hn=b l(y

n, Fb(V
n)) ∀b ∈ Hz independently. In prac-

tice, this can be simply achieved by a regular Logit-
Boost solver which learns a classifier Fb(·) over the train-
ing samples whose latent sub-tag label hn = b, i.e.,
{(V n, yn)}n:hn=b.

4.1. Implementation Details
LogitBoost: The implementation of LogitBoost used in

the optimization of Fz uses decision stumps as the weak
learner. This allows it to handle complex feature vectors
that consist of different feature categories, and also intro-
duce the non-linearity to our model. However, one disad-
vantage of this boosting algorithm is that it takes a long
time to train. It is particularly undesirable if we use boost-
ing in an iterative training algorithm. To address this issue,
in the training of Fb(·), we first run a linear SVM to filter
out the feature dimensions that are assigned small weights.
In other words, we use linear SVM as a feature selection
step to select a subset of discriminative features. Then Log-
itBoost will be only used on this subset of features. This
trick can significantly speed up the training process. Simi-
lar tricks are also introduced in [10]. To further improve the
efficiency, for each LogitBoost classifier, we use only 256
decision stumps as weak learners.

Reweighting of classifiers: Due to the above feature
selection trick and the early stopping scheme (only 256
stumps), the learned LogitBoost classifiers may have not
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converged. For the same testing example, it is possible
that a well converged classifier will output a higher deci-
sion score than a classifier which has not converged, though
both classifiers would classify this example as positive.
This may cause problems when estimating the latent vari-
able (Eqn. (4)), since we need to compare the decision
scores from different LogitBoost classifiers. To address
this issue, we train a linear SVM to calibrate the decision
scores from different classifiers with respect to the hinge-
loss l(yn,xn) = max(0, 1 − yn(wTxn)), where xn is the
feature vector of V n and w is the model parameters. xn

is represented as a sparse vector, and |xn| = |Hz|. If the
latent variable of V n is equal to b, then the b-th element
in xn is equal to the decision score Fb(V

n), and the rest
of the elements are all 0. The linear SVM is trained over
all pairs of (V n, yn) in the training set. After the train-
ing, the scoring function in Eqn. (4) can be re-written as
Ψ(V, h;Fz) =

∑
b∈Hz

wb · 1b(h) · Fb(V ), where wb is the
b-th element in w. This calibration step is motivated by
the mixture-model representation in [9]. The intuition is to
re-weight each classifier based on its discriminative ability
over the tag label y.

Bootstrapping: In this paper, the tag labels of the train-
ing samples are extracted from user-provided meta-data,
such as the video title, and user-provided tags. These tag
labels are often irrelevant to the video content. In partic-
ular, we observe that the “hard” positive examples during
learning are usually the videos with noisy training labels.
Including those noisy video examples will likely deteriorate
the learning performance. Instead, we would like to “re-
move” those positive samples that have the lowest decision
scores and thus more likely to be outliers. In our learning
algorithm, we maintain a set of training samples S that is
a subset of the entire training set T , i.e., S ⊂ T . In each
iteration of our learning algorithm, instead of using all train-
ing samples, we optimize the model Fz only on the train-
ing subset S which contains the most “trustworthy” positive
examples. Since we have a very large number of negative
samples (100K) that is difficult to fit into the memory, in
each iteration, we only include the “hard” negative samples
into the training subset S.

Learning procedure: First, we initialize the training
set S and the latent variable hn of each training sample in
S (Sec. 5). Based on the latent sub-tag label, we can de-
note S = ∪b∈Hz

Sb, where Sb contains the training samples
that have the sub-tag label b. Then, we repeat the following
steps for a fixed number of iterations.

1. Train a LogitBoost classifier Fb(·) for each sub-tag la-
bel b ∈ Hz over the training subset Sb, then obtaining
the model Fz = {Fb : b ∈ Hz}. We train a linear
SVM to re-weight those classifiers;

2. Holding Fz fixed, compute the latent variable for ev-
ery training sample in the entire training set T by

Eqn. (4). The decision score of each sample can be
computed as sn = Ψ(V n, hn;Fz). Similarly, we de-
note T = ∪b∈Hz

Tb, where Tb contains the training
samples which have the sub-tag label b;

3. Update the training subset S = ∪b∈Hz
Sb, which we

can rewrite as Sb = Sposb ∪ Snegb , where superscripts
denote positive and negative subsets respectively. We
re-construct Sposb by using the top k samples in T pos

b

with the largest decision scores. Similarly, we re-
construct Sneg

b by using the top k samples (hard nega-
tives) from T neg

b . k is a predefined parameter;

In step 3, due to the fact that the dimension of our features is
relatively large, in order to feed every training sample into
the memory in step 1, we tune the parameter k so that the
size |S| ≤ 20K and we incrementally increase the size of
S during the iterative learning process.

The learning procedure described above is an algorith-
mic bootstrapping approach for generating a clean positive
training set. We run this procedure for a fixed number of it-
erations in the absence of convergence guarantees, but find
it effective experimentally. With the help of the training
subset S, our approach learns Fz on a training subset which
contains the most “trustworthy” positive samples and thus
it is likely more tolerant to label noise.

5. Initialization by Cowatch Features
For a non-convex problem, the initialization is usually

very important. In this paper we treat the sub-tag label of
a video as latent information. Intuitively, we would like to
assign the same sub-tag label to the videos which are not
just visually similar but also have a very strong semantic
similarity. In this paper, we use video cowatch statistics [2]
for the sub-tag initialization. Cowatch statistics are gener-
ated by measuring the occurrence frequency of two videos
in the same viewing session. In other words, if two videos
are watched one after the other by users, there will be a
high cowatch connection between them. Note that it is com-
mon that users will watch similar videos in a short period of
time (i.e., a viewing session). Cowatch statistics is a reli-
able tool to measure the video similarity since it combines
the votes from millions of users. We believe the feature
obtained from cowatch statistics is also a helpful cue to dis-
ambiguate different sub-tags. For example, users are more
likely to watch a “mountain bike” video followed by an-
other “mountain bike” video, and less likely followed by a
“pocket bike” video.

The procedure of using cowatch statistics for initializa-
tion is summarized as follows:
Step 1: From the positive training set of the tag label z, we
randomly sample N videos with the tag z. In our experi-
ments, we set N = 3000. We generate a cowatch video list
Cn

l for each sampled video. We remove from Cn
l the videos

that do not contain the tag label z. Then, we combine those
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Figure 2. The sub-tag initialization results for the “bike” tag. In
total, we generate four sub-tags: “mountain bike”, “falling from
bike”, “pocket bike”, and “motorbike”. Note that our algorithm
only cluster the candidate videos into four clusters and we manu-
ally assign a meaningful word label to each cluster.

cowatch lists as a video set Cs = ∪Nn=1C
n
l . Each video can

be represented as a sparse vector vn, and |vn| = |Cs|. The
value of i-th element in vn is 1 if the corresponding i-th
video of Cs also exists in Cn

l , and 0 otherwise.
Step 2: The cowatch lists of similar videos are likely to
overlap. To generate the initial sub-tag label set, we sim-
ply cluster the set {vn}Nn=1 into K clusters using k-means.
The distance between sparse feature vectors is computed by
using the L1 distance. Clusters with too few samples will
be discarded and we obtain K ′ ≤ K clusters in the end.
Then, we merge the cowatch video list Cn

l of each sam-
pled video to its corresponding cluster. The video set Cs

is generated by combining the cowatch lists of N randomly
sampled videos. It is possible that for some videos in Cs,
they may appear in only one of the N co-watch lists. Those
videos are more likely to be irrelevant to the tag label z, so
we remove those videos from the K ′ clusters.
Step 3: We can build the sub-tag set for tag z as Hz =
{0, ...,K ′ − 1}. For the purposes of initialization, we use
the cluster label of each video as its initial sub-tag label hn.
Note that the generation of this sub-tag set is an unsuper-
vised process. Our algorithm cannot automatically assign a
semantic meaningful label to each sub-tag. Then, the videos
from cluster b will form the initial training subset Sposb , and
we randomly sample a large number of negative samples to
form the Snegb , for all b ∈ Hz .

The example initialization results for the tag label “bike”
are depicted in Fig. 2. Each initialization cluster has a very
unique semantic meaning. Note that in this paper, the cow-
atch feature is only used for initialization purpose. It is also
possible to consider the cowatch feature as a part of the
video feature in our learning algorithm. However, the re-
liability of cowatch information depends on view counts of

the video. In practice, most of testing videos would be the
newly-uploaded videos, which have no viewing history.

6. Features
In order to tackle the problem of tag/concept/action

learning many researchers [20, 7, 24, 3] have decided to
use solely visual features. In the spirit of [22], we decide
to use auditory features in addition to visual features. We
believe that audio gives an important cue in video analysis,
especially for tag prediction. The audio features contribute
to detect concepts that are very difficult to define visually,
e.g., cat versus dog. Cats and dogs not only appear in simi-
lar contexts, but they are also very hard to disambiguate by
only visual features. However, a dog’s bark sound may help
us distinguish between a dog video and a cat video.

We extract a variety of features from each video, which
allow to capture various aspects of the video. The features
can be categorized into three groups: frame features, motion
features, and auditory features. For each type of feature,
we use the standard bag-of-word representation. Each fea-
ture will be represented as a histogram by vector quantizing
the feature descriptors. The histogram is normalized so that
the sum of all the bin values is 1. The final feature vector
of each video is the concatenation of the histograms from
each feature. Its dimension is fixed for videos with different
length, and the maximum number of non-zero dimensions
for a video is 12439.
Frame features: This group of features consists of the
histograms of oriented gradients (HOG) feature, color his-
togram, texton, and a face counter. For the HOG feature,
at each frame pixel location, we extract a 1800-dimensional
feature descriptor, which is the concatenation of HOG [5]
in a 10 × 10 surrounding window. The raw descriptors
are then collected into a bag-of-words representation by
quantizing them using a randomized decision tree similar
to [19]. In addition, we also compute a Hue-Saturation
color histogram [13] and a Texton histogram [17] for ev-
ery frame. Lastly, we run a face detector [25] over every
frame and count the number of faces in each frame. This
simple face counter provides an easy way to discriminate
between videos containing human faces and those which
do not. Note that all those frame-based features are rep-
resented as histograms, which are further pooled over the
entire video using mean-pooling.
Motion features: In order to compute motion features we
employ the cuboid interest point detector [7]. We extract
spatio-temporal volumes around all the detected interest
points. From each cuboid we extract two types of descrip-
tors: (1) We concatenate the normalized pixel values to a
vector and apply PCA to reduce the dimensionality to 256.
(2) We first split each slice of the cuboid into 2 × 2 cells.
Then, we concatenate all HOG descriptors of cells in the
cuboid to a vector. Similarly, PCA is applied to reduce the
dimensionality to 256. Both descriptors are further quan-
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Tag Sub-tags
bike mountain bike, falling from bike, pocket bike, motorbike
boat building a boat, jet boat, boat accident
card Card Captor Sakura (animation), card collection, mak-

ing a greeting card, card trick
dog dog1, dog2, dog3, dog4

explosion bomb explosion, explosion2, building implosion
flower paper flower (howto), flower (plant), flower3

helicopter remote controlled (RC) helicopter1, RC helicopter2,
helicopter crash, military helicopter

horse horse jumping, horse reining, horse3
kitchen kitchen remodeling, kitchen2, cooking show

mountain mountain creek, mountain biking, mountain driving,
mountain climbing

protest riot police, protest in Iran, protest3, protest in Thailand
robot industry robot, robot2, Super Robot Wars (video game)

running free running, running tips, running back (football skill)
stadium soccer stadium, football stadium, baseball stadium

transformers video game, animation1, animation2, movie, toy

Table 1. The summary of the sub-tag labels for the 15 tags used in
our experiments. Note that our algorithm cannot assign the seman-
tic meaning label to each sub-tag. For the purpose of illustration,
we manually assign a word label to each sub-tag by summarizing
the video clusters obtained from cowatch initialization. For some
sub-tags which are difficult to assign a meaningful word label, we
simply use the cluster number to represent them.

tized using their corresponding codebooks.
Auditory features: We choose two widely-used audio fea-
tures in addition to visual features: mel-frequency cep-
stral coefficients (MFCC) [4] and stabilized auditory images
(SAI) [15].

7. Experiments
We evaluate our method on a large-scale video dataset

which consists of about 50 million YouTube videos. We
only use a very small portion for training, and remaining
videos are used for testing. For ease of evaluation, we ar-
bitrarily selected 15 tags: “bike”, “boat”, “card”, “dog”,
“explosion”, “flower”, “helicopter”, “horse”, “kitchen”,
“mountain”, “protest”, “robot”, “running”, “stadium”,
“transformers”. In terms of categories, this tag set contains
“animals”, “objects”, “actions”, “scenes”, and “events”. For
each tag, we consider a set of 20K-100K videos which con-
tains the given tag as the potential positive training set, and
we randomly select around 100K videos as the negative
training set. The rest of videos are used for testing. For
each tag, we create a sub-tag set following the method de-
scribed in Sec. 5. For illustration purposes, we summarize
the sub-tag set of each tag in Table 1 and manually assign a
semantic word to each sub-tag.

7.1. Evaluation Measures
For every given tag, we train a classifier model, which we

apply on each video in the testing set (none of the videos in
this set were used during training). A decision score is com-

puted for each video using Eqn. (1). If we had the ground-
truth tag label of the 50 million testing videos, we could use
the decision scores to compute the ROC or precision-recall
curves. However, it is tremendously costly to accurately
annotate that many videos, even when using low-cost on-
line crowdsourced marketplaces (e.g., Amazon’s Mechani-
cal Turk). An alternative way is to randomly sample a rel-
atively small number of testing videos then manually an-
notate those videos and only use them in the evaluation.
We argue that this scheme is not fair, because the randomly
sampled set would either be too small to fairly represent all
the video categories on YouTube, or it would be too large to
be practical.

In this paper, we choose the precision at K
(precision@K) measure, which has been widely adopted in
information retrieval. In practice, video retrieval and rank-
ing are also important applications of automated video tag-
ging system. For each tag, we first apply the trained model
onto whole testing set (50M). We rank the videos in the
testing set by their decision scores. Then, we only annotate
the videos with top K decision scores. The precision at K
is computed as precision@K = |{relevant videos}|/K. In
this way, for each tag, the evaluation only requires the an-
notations of K videos. We choose K = 1000, giving us
15, 000 videos to annotate. Compared to 50 million videos,
this number is negligible but it is far more acceptable in
terms of annotation cost. This measurement is particularly
suitable for the situation in which the testing set is dynamic,
as in the case in which new videos are added to the collec-
tion over time. For each update of the testing set, we only
need to annotate the new videos that appear in the top-K
rank list.

7.2. Results
We compare our method to the video tag learning ap-

proach described in [22]. In order to make the comparison
fair, we use the exactly the same features (Sec. 6) for both
the baseline and our method. The average precision@1000
of the baseline is 57.36%, and our method is 84.14%.
We observed an improvement of 46% on the average
precision@1000. Fig. 3 shows the precision at K curves
of both our method and the baseline. As we can see,
our method significantly outperforms the baseline on 12
tags, and we achieve similar results on the tags “dog”,
“horse”, and “stadium”. Both our method and the baseline
achieve very good performance on the tags of “stadium” and
“horse”. Most of “dog” videos uploaded to YouTube are
usually shot from consumer level hand-held cameras. These
videos have very limited variation, and thus our method
performs similarly to the baseline on this tag. After man-
ually examining the cowatch initialization results, as shown
in Table 1, the sub-tags of “dog” do not have any seman-
tic meaning. This observation demonstrates a limitation of
our approach: our approach can barely improve the perfor-
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(k) protest (l) robot (m) running (n) stadium (o) transformers
Figure 3. Precision at K curves for both baseline and our method on the 50 million YouTube video dataset. We incremental increase K
from 100 to 1000.

mance for the unambiguous tags . This is what we expect
since for the unambiguous tags, the latent sub-tag informa-
tion has little semantic meaning and thus its contribution is
very limited.

As shown in Table 1, most of sub-tag sets generated from
cowatch initialization are semantically meaningful. One in-
teresting question is whether the iterative process of our al-
gorithm really contribute to the performance improvement.
To answer this question, we compare our approach with a
method that is only trained on the initial training subset ob-
tained by the cowatch initialization. This method essentially
only runs the first step of our learning procedure (Sec. 4.1)
once. Due to the cost of annotation, we only run this experi-
ment on two tags: “transformers” and “bike”. For compari-
son purposes, we compute precision@1000 as shown in Ta-
ble 2. We can see that our method outperforms the method
using only initial training subset. This is reasonable because
in the initial training subset, the latent sub-tags are gener-
ated from the cowatch information and are not tied with our
end goal of tag learning. Interestingly, on the “transform-
ers”, the method using only initialization is worse than the
baseline. We believe it is due to the high complexity of the
“transformers” videos, and the initialization of the sub-tag
set cannot properly capture the variance of the “transform-
ers” tag.

Given a tag label z and a testing video, besides a de-
cision score of tag z being assigned to the testing video,
we can also infer the sub-tag label for the testing video by
Eqn. (2). We visualize the testing videos with top scores
from each sub-tag in Figs. 4,5. Two interesting observa-

Tag Baseline Initialization only Our approach
transformers 50.2% 33.1% 79.4%
bike 74.8% 87.4% 92.5%

Table 2. Precision@1000 for tags “transformers” and “bike”. We
compare our method to the baseline, and a method that runs the
first step of our learning procedure once.

tions can be made. In Fig. 4 ( “transformers”), some videos
under sub-tag h0 (video game) are classified as h4 (movie).
In the cowatch initialization of tag “bike”, most videos of
sub-tag h2 are about “pocket bike”. However, as shown in
Fig. 5, the testing videos under sub-tag h2 are mostly “mo-
torbike”. Those videos seem to be “misclassified” with re-
spect to sub-tag label, but they are all related videos to the
tag label “bike”, which is exactly what we expect. As we
pointed out in Sec. 3, the latent sub-tag label is only a by-
product of our model. Our model is only optimized for tag-
level classification, so we do not aim to obtain good sub-tag
level classification results. Therefore, although some video
do not have an “accurate” sub-tag label, they are assigned
the correct tag labels. Note that the “misclassified” and “ac-
curate” are determined by comparing the testing videos with
initialization results. Sub-tag information is latent so we
cannot measure the performance of sub-tag level classifica-
tion.

8. Conclusion
We have studied the problem of semantic variations in

the videos which share the same tag. We have named those
semantic variants as sub-tags, which were treated as latent
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(a) h0 (video game)

(b) h1 (animation1) (c) h2 (animation2)

(d) h3 (toy) (e) h4 (movie)
Figure 4. Visualizations of the sub-tag labels of the testing videos
for tag “transformers”. Please refer to supplementary materials for
more examples.

(a) h0 (mountain bike) (b) h1 (falling from bike)

(c) h2 (pocket bike) (d) h3 (motorbike)
Figure 5. Visualizations of the sub-tag labels of the testing videos
for tag “bike”. Please refer to supplementary materials for more
examples.

variables and used to assist the task of tag learning. A
general latent learning framework was proposed to jointly
model the tag label and its related latent sub-tags. We
have presented a clustering approach based on cowatch
information to initialize the latent sub-tag labels in our
learning framework. By running experiments on the testing
set which consists of about 50 million YouTube videos,
we have demonstrated that our approach significantly
outperformed the baselines, with an improvement of over
46% on the average precision@1000.
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