
SPARSE CODING OF AUDITORY FEATURES FOR MACHINE HEARING IN
INTERFERENCE

Richard F. Lyon, Jay Ponte, and Gal Chechik

Google, Inc.

ABSTRACT

A key problem in using the output of an auditory model as
the input to a machine-learning system in a machine-hearing
application is to find a good feature-extraction layer. For
systems such as PAMIR (passive–aggressive model for im-
age retrieval) that work well with a large sparse feature vec-
tor, a conversion from auditory images to sparse features is
needed. For audio-file ranking and retrieval from text queries,
based on stabilized auditory images, we took a multi-scale ap-
proach, using vector quantization to choose one sparse feature
in each of many overlapping regions of different scales, with
the hope that in some regions the features for a sound would
be stable even when other interfering sounds were present
and affecting other regions. We recently extended our test-
ing of this approach using sound mixtures, and found that the
sparse-coded auditory-image features degrade less in interfer-
ence than vector-quantized MFCC sparse features do. This
initial success suggests that our hope of robustness in interfer-
ence may indeed be realizable, via the general idea of sparse
features that are localized in a domain where signal compo-
nents tend to be localized or stable.

Index Terms— Auditory image, sparse code, PAMIR,
sound retrieval and ranking

1. INTRODUCTION

We recently presented a detailed description of a sound rank-
ing and retrieval system based on sparse coding of auditory
images [1]. In this paper, we review the adopted strategy for
sparse coding, and present the results on new tests design to
determine whether the coding strategy has the intended fea-
ture of robustness to interference.

2. BACKGROUND

The layer of our system that generates sparse feature vec-
tors was developed as a quick first try between a more prin-
cipled auditory model based on a cochlea model with stabi-
lized auditory image (SAI) generation, and a more principled
machine-learning system based on training with a ranking ob-
jective. Based on successes in sparse coding of images and
video, this sparse coding is the first attempt that we know of

Cochlea
simulation

Strobe
detection

Temporal
integration

Multiscale
segmentation

 Sparse
coding

Audio in
Auditory

image

Sparse
code

Histogram
construction

Document
feature
vector

1 2

3 4

0 0 0 1 0 0 0 0 0 0... ...

0 0 0 1 0 0 0 0 0 0... ...

0 0 0 0 1 0 0 0 0 0... ...

0 0 0 1 0 0 0 0 0 0... ...

0 0 0 0 0 0 0 1 0 0... ...

0 0 0 2 1 0 0 1 0 0... ...

Σ

Fig. 1. Our process of generating sparse codes includes an au-
ditory model that produces stabilized auditory images (SAIs)
and a local box and vector quantization based way of gener-
ating sparse codes from the SAI frames. Codes are counted
(histogrammed) to make a sparse representation for the whole
audio file.

to interface the high-dimensionality SAI (tens of thousands
of dimensions, or pixels, per frame) to a machine-learning
system that can take advantage of the richness of the infor-
mation. We were able to demonstrate good performance on
the ranking/retrieval task, beating the best we could do with
vector-quantized MFCCs, but we were left with little insight
into whether the sparse coding was really capturing local and
robust features of sound components, as we hoped. By devel-
oping a harder task with sound mixtures, and doing sound re-
trieval on that set, we sought to gain more insight into whether
this approach to feature extraction was in fact getting a benefit
from the structure of the SAI.

Sparse codes in the waveform domain have been explored
by several groups [2,3]. The events or “spikes” in such codes
represent sound “particles” that are usually fairly compact in
the time–frequency space, and hence too primitive to effec-
tively map higher-level structure of typical sound sources.
Sparse coding has also been done in the space of spectral
slices, or spectrogram time-frequency products [4, 5]. These
work fairly well for encoding musical notes in polyphonic

Lag (ms)

C
o

c
h

le
a

r
c
h

a
n

n
e

l
n

u
m

b
e

r

0−10−20 10 20

10

20

30

40

50

60

70

80

90

Fig. 2. The SAI is sparse-coded by many vector quantizers,
each one looking at the contents of a local box, with different
widths, heights and positions, some of which are illustrated
here. The system reported used 49 different local boxes, giv-
ing a collection of sparse (1-of-M) sub-features at different
scales of time and frequency resolution. The feature vector
for an SAI frame is the concatenation of the sub-features from
the boxes, which still has a sparsity of 1/M , where M is the
number of codewords per VQ codebook.

music, which is what they were designed for, but are not well
suited for sounds of a less periodic or regular sort.

The PAMIR (passive–aggressive model for image re-
trieval) method [6] uses a simple linear mapping (a learned
weight matrix) to produce scores by which documents (audio
files) are ranked in response to a query; the k documents
with the highest scores are said to be “retrieved”, and the
goal is to optimize the precision (percentage of documents
deemed relevant to the query) within that top k. Classification
problems have a slightly different objective, but similarly can
benefit from large sparse feature spaces in combination with
simple linear mappings. Tom Cover pointed out in 1965 that
“A complex pattern-classification problem, cast in a high-
dimensional space nonlinearly, is more likely to be linearly
separable than in a low-dimensional space, provided that the
space is not densely populated” [7].

3. THE EXPERIMENT

3.1. The task

The experimental task that we focused on is retrieval of audio
files in response to text queries. For example, if a user enters
a query “fast car”, we want to see sound files retrieved that
sound like they have something to do with “fast” and “car”.
The system retrieves audio files by ranking them with a score
function, and returning just the top-scoring documents. Since
the number of documents and the number of queries are both
potentially very large, index operations can be used to retrieve
a list of candidate documents for each query term, to limit the

number of documents for which the query needs to be scored.
Still, we want a very fast and efficient scoring function. The
PAMIR approach uses a fast linear sparse matrix multipli-
cation, involving only as many matrix columns as there are
query words in a query, to generate the score for a document.
PAMIR also supplies an effective fast training algorithm to
optimize the matrix.

The experiments reported are not such large scale that an
indexing stage was needed.

3.2. The dataset

We collected a data set that consists of 7146 sound effects
from multiple sources. Close to half of the sounds (3855)
were collected from commercially available sound effect col-
lections. Of those, 1455 are from the BBC sound effects li-
brary. The remaining 4783 sounds are taken from a variety
of web sites; www.findsounds.com, partners in rhyme, acous-
tica.com, ilovewavs.com, simplythebest.net, wav-sounds.com,
wavsource.com, and wavlist.com. Most of the sounds contain
only a single “auditory object”, and contain the “prototypical”
sample of an auditory category. Most sounds are a few sec-
onds long but there are a few that extend to several minutes.

Most sound effects had associated labels, in the form of
filenames, or tags. We manually labeled all of the sound ef-
fects by listening to them and typing in a handful of tags for
each sound. This was used for adding tags to the existing tags
(from www.findsounds.com) and to tag the non-labeled files
from other sources. When labeling, the original file name was
displayed, so the labeling decision was influenced by the de-
scription given by the original author of the sound effect. We
restricted our tags to a somewhat limited set of terms. We also
added high level tags to each file. For instance, files with tags
such as ‘rain’, ‘thunder’ and ‘wind’ were also given the tags
‘ambient’ and ‘nature’. Files tagged ‘cat’, ‘dog’, and ‘mon-
key’ were augmented with tags of ‘mammal’ and ‘animal’.
These higher level terms assist in retrieval by inducing struc-
ture over the label space. All terms are stemmed, using the
Porter stemmer for English. After stemming, we are left with
3268 unique tags. The sound documents have an average of
3.2 tags each.

We created a set of sound mixtures by averaging pairs of
sounds from this dataset. For each sound in the database, we
randomly picked another sound from the data, truncated both
sounds to the have the same duration, resampled to 22.5 kHz
and computed the average of the two raw signals (in time do-
main). The new sound was labeled with the union of of the
labels of the two original sounds. Since we had previously
observed that most sounds were easily identifiable from the
early part of the recording, we don’t think the truncation had
much effect in making the task harder or easier, but we didn’t
test that.

k

p
re

c
is

io
n
 a

t
to

p
 k

SAI

MFCC

0 5 10

0.5

0.4

0.3

0.2

0.1

15 20 25 30

Fig. 3. Results of the experiment: precision at top k is signifi-
cantly better for the SAI features than for the MFCC features,
for all k values. Note that the y axis does not start at 0, so the
effect is not as big as it looks at large k.

3.3. The training and testing

From this set of labeled sounds, three splits were made by ran-
domly partitioning the data. Several constraints on the splits
were tried, in an attempt to not test on queries or query terms
that have no training data.

Though all the sounds are mixtures, we treat a sound mix-
ture as “relevant” to a query if its combined tag set includes
all the query terms.

For each of three splits, we hold out one third for testing
and train a PAMIR scoring matrix on the other two thirds. As
described before, queries and sound files were filtered such
each query had at least 5 relevant sound files in each of the
training and testing sets [1]. Using the trained matrix, we
measure the number of relevant queries in the top k ranked
results, and average over a frequency-weighted set of queries,
for various k values, to get the precision at top k. Query fre-
quencies were taken from the freesounds.org query logs.

We ran the same experiments with the SAI sparse code
features and with sparse codes obtained by vector quantizing
MFCCs (augmented with deltas and second deltas as in typi-
cal ASR systems).

4. RESULTS

As a comparison baseline, we first conducted a series of
experiments representing sounds using vector-quantized
MFCCs. We varied three parameters of this representation:
The number of MFCC coefficients (we tested the standard
13, but also 25 and 40); the frame length (we tested 15, 25,
40 and 60 msec); and the number of kmeans centroids (1000,
2000 and 5000). The best precision was achieved using 40

coefficients, 40-msec frames and 5000 clusters. This result
was consistent with previous experiments on pure sounds [1]
(we previously had tried more than 5000 clusters, and found
no improvement, but didn’t repeat that on this test). The top-1
precision for MFCC was 0.337. The number of coefficients
and frame length are large compared to typical practice in
speech and music analysis, allowing representation of finer
temporal structure.

For the vector-quantized SAI features, we tuned one pa-
rameter, the number of clusters used for quantization of each
local box pattern (we tested 500, 750, 1000, 1500, and 2000
clusters per box). Performance varied smoothly and peaked
at 1000 clusters per box (M = 1000 codewords per VQ code-
book).

The top-1 precision for the SAI box features was 0.4663.
This reflects a dramatic improvement of 39%, or equivalently
a reduction of 20% in the top-1 error, relative to the best vec-
tor quantized MFCC features.

By comparison, the results previously reported for the
baseline task of clean sounds were top-1 precisions of 73%
for SAI and 67% for MFCC. It required 4000 clusters per box
and many more total SAI features to achieve that difference.
For 1000 clusters per box, the SAI top-1 results were very
close to the best MFCC numbers (about 67%). That is, the
best systems that we are comparing in interference started out
with nearly equal precisions with clean sounds.

We further looked into the ranking precision of specific
queries. For each query, we computed the average precision
(a standard evaluation measure used in information retrieval),
for both SAI and MFCC. Several queries yielded an aver-
age precision of 1.0 with SAI features (meaning that all of
the N relevant audio files were ranked in the top N ranked
results), and yielded average precision below 0.1 (meaning
that probably many more than the top 10N were needed to
find the N relevant audio files) with MFCC. These queries
include “hit percuss”, “cabasa”, “bird chip”, “woodblock”,
“dragster”, “gargl”, “heartbeat machin”, “chip”, “american
psycho”, “door knob”, and “basketbal crowd”, “nail wood”,
“park swing”, and “comput mous” (note that many query
terms have been truncated as part of the normalization). In
the other direction, 1.0 for MFCC and less than 0.1 for SAI,
there were fewer such queries: “nuthatch”, “baboon”, and
“guitar loop”. Looking at these and others, it appears that
more impulsive sounds do well with SAI, while more tonal
sounds do better with MFCC, though the pattern may be more
complicated than that.

5. OTHER APPLICATIONS

We, and others, have used the same SAI box-and-VQ local
sparse coding method to represent sound files for other ap-
plications. For example, Tzanetakis and Ness made an open-
source version of the process in their Marsyas system [8] and
used it among their entries in the MIREX (music informa-

tion retrieval exchange) 2010 evaluation, where preliminary
results show it worked about as well as their other Marsyas-
based entries. We consider this a good first showing, since
the sparse coding was not at all tuned for music tasks. At
Google, we have added both MFCC and the SAI sparse code
features to a large collection of content-based audio and video
features that various classifiers can draw on. On a number
of tasks, such as language classification, the SAI sparse-code
features have proved to be more useful than the MFCC. The
SAI features are more useful than the video features in several
audio/video tasks. We hope to be able to turn some of these
tasks into reportable research results.

6. OTHER METHODS

There are many ways besides vector quantization to convert
the local dense patterns to sparse codes. For example, some of
the methods developed for locality-sensitive hashing, such as
SPEC-hashing, may be good alternatives [9]. These are also
much faster than vector quantization, which is one reason we
are looking into them. Techniques like matching pursuit, on
the other hand, tend to be slower, though they may produce
better results in applications where reconstruction error is a
relevant metric. Methods such as deep belief networks also
look like promising ways to extract stable local structural fea-
tures.

7. CONCLUSION

The retrieval and ranking of mixed-sound (SNR distributed
about 0 dB, but highly variable) audio documents from text
queries using SAI features would put a “relevant” result in
first place 39% more often with SAI features than with the
best MFCC features that we tried. In the top 10, the MFCC
would show an average of about 1.6 relevant hits, while the
SAI would show about 2.2. For sounds without interference,
the feature performance is not so disparate. These results sug-
gest that the SAI features degrade much less in interference,
compared to MFCC features.

This tolerance of other interfering sounds is exactly what
we had hoped to achieve by making the sparse feature en-
coding more local and multi-scale (the boxes) in a space (the
SAI) where sounds would show some separation based on ei-
ther spectral or temporal pattern differences—as opposed to
global vector quantization of a single feature vector such as
a spectrum or cepstrum. The results suggest that this multi-
scale feature extraction from auditory images is a good ap-
proach.

These results also suggest several more experiments to
try: perhaps it would help to vector quantize local portions
of the MFCC or the underlying log-spectral vector, to take
advantage of sounds that separate out along the spectral di-
mension; and perhaps we can find better, possibly more lo-
calized, ways to cut up the SAI into sparse features that work

better. We haven’t tested human performance on this mixture
dataset; it’s hard to do a big ranking test with humans, but we
could do a small re-ranking experiment on top-10 results, or
pairwise judgements on top 2, and see if subjects can do much
better at finding the top 1 from such small sets.

8. REFERENCES

[1] R. F. Lyon, M. Rehn, S. Bengio, T. C. Walters, and
G. Chechik, “Sound retrieval and ranking using sparse
auditory representations,” Neural computation, vol. 22,
no. 9, pp. 2390–2416, 2010.

[2] E. C. Smith and M. S. Lewicki, “Efficient auditory cod-
ing,” Nature, vol. 439, no. 7079, pp. 978–982, 2006.

[3] P-A. Manzagol, T. Bertin-Mahieux, and D. Eck, “On the
use of sparse time-relative auditory codes for music,” in
Proceedings of the 9th International Conference on Mu-
sic Information Retrieval (ISMIR 2008), 2008.

[4] P. Smaragdis and J. C. Brown, “Non-negative matrix fac-
torization for polyphonic music transcription,” in IEEE
Workshop on Applications of Signal Processing to Audio
and Acoustics, 2003, pp. 177–180.

[5] M. D. Plumbley, S. A. Abdallah, T. Blumensath, and
M. E. Davies, “Sparse representations of polyphonic mu-
sic,” Signal Processing, vol. 86, no. 3, pp. 417–431, 2006.

[6] D. Grangier and S. Bengio, “A neural network to retrieve
images from text queries,” in Artificial Neural Networks
– ICANN 2006. 2006, pp. 24–34, Springer.

[7] T. M. Cover, “Geometrical and statistical properties of
systems of linear inequalities with applications in pattern
recognition,” IEEE transactions on electronic computers,
pp. 326–334, 1965.

[8] G. Tzanetakis, “Marsyas-0.2: a case study in implement-
ing music information retrieval systems,” in Intelligent
Music Information Systems: Tools and Methodologies,
J. Shen et al., Ed., pp. 31–49. Information Science Refer-
ence, 2008.

[9] R. S. Lin, D. A. Ross, and J. Yagnik, “SPEC hash-
ing: Similarity preserving algorithm for entropy-based
coding,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp.
848–854.

